
Quadratic Lagrangians

Setup. An interval [a, b] is given, with C1 functions γ, β, α: [a, b] → R. These help
us define the Lagrangian L: [a, b]× R× R→ R via

L(t, x, v) = α(t)v2 + 2β(t)xv + γ(t)x2.

Introduce the integral functional Λ:C1[a, b]→ R by defining

Λ[x] =

∫ b

a

L(t, x(t), ẋ(t)) dt.

Expansion. Given arcs x, h ∈ C2[a, b] such that h(a) = 0 = h(b), we have?

Λ[x+ h] =

∫ b

a

(
α(t)[ẋ+ ḣ]2

)
dt+ 2β(t)[x+ h][ẋ+ ḣ] + γ(t)[x+ h]2

=

∫ b

a


α[ẋ2 + ḣ2 + 2ẋḣ]

+2β[xẋ+ hḣ+ xḣ+ hẋ]

+γ[x2 + h2 + 2xh]

 dt

= Λ[x] + Λ[h] + 2

∫ b

a

(
αẋḣ+ β[xḣ+ hẋ] + γxh

)
dt

= Λ[x] + Λ[h] + 2

∫ b

a

(
[γx+ βẋ]h+ [βx+ αẋ]ḣ

)
dt.

Integration by parts, using h(a) = 0 = h(b), simplifies the second term in the integral
above: ∫ b

a

[βx+ αẋ]ḣ dt = [βx+ αẋ]ḣ

∣∣∣∣b
t=a

−
∫ b

a

h
d

dt
[βx+ αẋ] dt

It follows that

Λ[x+ h] = Λ[x] + Λ[h] + 2

∫ b

a

h

(
[γx+ βẋ]− d

dt
[βx+ αẋ]

)
dt.

Define the Euler Residual associated with arc x, Rx: [a, b]→ R, like this:

Rx(t) = 2[β(t)ẋ(t) + γ(t)x(t)]− 2
d

dt

[
α(t)ẋ(t) + β(t)x(t)

]
, t ∈ [a, b].

For any “variation” h in the calculation above, the scalar multiple λh serves just as
well. Substituting λh for h, and exploiting the quadratic behaviour of L and Λ, gives
this result:

Λ[x+ λh] = Λ[x] + λ2Λ[h] + λ

∫ b

a

Rx(t)h(t) dt, ∀r ∈ R.

? Here we write x instead of x(t), etc., to save space.
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This expression has a lot to offer. Let’s use the notation 〈f , g〉 =
∫ b
a
f(t)g(t) dt to

condense it:
Λ[x+ λh] = Λ[x] + 〈Rx , h〉λ+ Λ[h]λ2 =: q(λ).

Small Bump Variations. For any nondegenerate subinterval [a′, b′] of [a, b], con-
sider the arc h: [a, b]→ R defined by

h(t) =

 1− cos

(
2π

[
t− a′

b′ − a′

])
, if a′ ≤ t ≤ b′,

0, otherwise.

Notice that h(t) = 0 for each t ∈ [a, a′]∪[b′, b], so h is a legitimate variation. Moreover,
h ∈ C1[a, b] because

ḣ(t) =

 2π

b′ − a′
sin

(
2π

[
t− a′

b′ − a′

])
, if a′ ≤ t ≤ b′,

0, otherwise.

(To be sure about ḣ(a′) and ḣ(b′), notice that both one-sided limit values of ḣ exist
and equal 0 for each of these two points; a famous application of the Mean-Value
Theorem explains why this implies ḣ(a′) = 0 = ḣ(b′).)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

t

y

Necessary Conditions for Minimality. If the arc x gives the minimum value for Λ
among competing functions with the same endpoint values, then for every variation
h as above, the quadratic function q(λ) must be minimized at λ = 0. Therefore
0 = q′(0) = 〈Rx , h〉. That is,

∀h [h(a) = 0 = h(b)],

∫ b

a

Rx(t)h(t) = 0.

Here the variation h is arbitrary, so the only way this can hold is to have Rx(t) = 0
for all t. In detail,

d

dt

[
α(t)ẋ(t) + β(t)x(t)

]
= β(t)ẋ(t) + γ(t)x(t). (DEL)

This is the (differentiated) Euler-Lagrange equation. Note that for any arc x that
satisfies (DEL), we have

Λ[x+ h] = Λ[x] + Λ[h] ( + 0), ∀h with h(a) = 0 = h(b).
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Example. When the coefficients γ, β, α are constant, (DEL) reduces to

αẍ+ βẋ = βẋ+ γx.

Suppose γ = 1 and α = 1: then ẍ− x = 0 requires x(t) = c1e
t + c2e

−t for some real
constants c1 and c2. The endpoint conditions x(a) = A and x(b) = B provide a 2× 2
system of linear equations that determines the unique compatible values for c1, c2.
Further, if y is any other arc with y(a) = A and y(b) = B, we can define h = y − x
and say

Λ[y] = Λ[x+ h] = Λ[x] + Λ[h] ≥ Λ[x] + 0.

(We have Λ[h] ≥ 0 for each and every variation h thanks to the obvious inequality
L(x, v) ≥ 0 for all (x, v).) Conclusion: When L = v2 + x2, the Basic Problem has a
unique global minimum at the arc x identified above.

Remark. In the constant-coefficient case, there is no β in (DEL). Why not? Look
at the β-term in the integral we seek to minimize:∫ b

a

2βx(t)ẋ(t) dt = β

∫ b

a

d

dt

(
x(t)2

)
dt = β

[
x(b)2 − x(a)2

]
= β

[
B2 −A2

]
.

So – in the context of the Basic Problem – the term involving β effectively adds a
constant to the objective function Λ. This might change the minimum value, but it
has no effect on the minimizing input.

Example. Consider the constant-coefficient case with γ = 1 and α = −1. Then (DEL)
says ẍ+ x = 0, with the general solution

x(t) = c1 cos(t) + c2 sin(t), c1, c2 ∈ R.

To explore further, assume a = 0. Then the endpoint conditions reduce to

c1 = A,

c1 cos(b) + c2 sin(b) = B,
i.e., c1 = A, c2 sin(b) = B −A cos(b).

In cases where sin(b) 6= 0, a unique solution is available. But if b = nπ for some
integer n > 0, we must have B = A cos(nπ) = (−1)nA. That is, if b = nπ then the
problem has to be set up just right to have any compatible solution of (DEL) at all,
and when it is there is an infinite family of compatible solutions for (DEL),

x(t) = A cos(t) + c2 sin(t), c2 ∈ R.

12 Jan 2026

Every different value for b > 0 gives a new instance of the Basic Problem, and there
appears to be a significant qualitative transition when b = π. Full understanding will
emerge later, but let’s fix b > 0 and some integer n ≥ 1, define ωn = nπ/b and let
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hn(t) = sin(ωnt). Note that hn(0) = 0 and hn(b) = sin(nπ) = 0. Then calculate

Λ[hn] =

∫ b

0

(
ḣn(t)2 − hn(t)2

)
dt

=

∫ π/ωn

t=0

(
ω2
n cos2(ωnt)− sin2(ωnt)

)
dt

=

∫ nπ

θ=0

(
ω2
n cos2 θ − sin2 θ

) dθ
ωn

(sub θ = ωnt, dθ = ωn dt)

=
1

ωn

[
ω2
n

(
nπ

2

)
− nπ

2

]
=

nπ

2ωn

(
ω2
n − 1

)
.

Let’s focus on the sign of the expression on the right. Two cases arise:

Option 1: If b < π, then ωn = nπ/b > n ≥ 1 for each n, so Λ[hn] > 0 for each
n. This is compatible with the possibility that the unique admissible extremal
whose graph connects (0, A) to (b, B) could be a minimizer. (Spoiler: it is!)

Option 2: If b > π, then ω1 = π/b < 1, so L[h1] < 0. This shows that any
admissible solution x of (DEL) is certainly not a minimizer for Λ. (Reason:
Λ[x + h1] = Λ[x] + Λ[h1] < Λ[x].) However, for each integer n > b/π, we have
ωn > 1 so that Λ[hn] > 0. That is, different variations h lead to different
behaviours for the quadratic function λ 7→ Λ[x+ λh]: that function will have a
maximum value at λ = 0 when h = h1, and a minimum value at λ = 0 when
h = hn for any n sufficiently large. Pretty fancy.

Remark. Note that if m = 2 and k = 2, the integrand just mentioned has

L(t, x, v) = 1
2mv

2 − 1
2kx

2 = 1
2mv

2 − V (x), for V (x) = 1
2kx

2.

Thus it’s compatible with the setup for Hamilton’s Principle of Least Action, and our
findings when b > π suggest that the phrase “least action” is not always appropriate.
Well-informed researchers might use the phrase “stationary action” instead, or adopt
an interpretation in which the action integral is used only on short-duration segments
of the real-world trajectory. ////

Interpretations. Let’s return to the Basic Problem (P) for the generic quadratic
above, namely, L(t, x, v) = α(t)v2 + 2β(t)xv + γx2. Recall that for any smooth
h = h(t) with h(a) = 0 = h(b),

Λ[x+ λh] = Λ[x] + 〈Rx , h〉λ+ Λ[h]λ2 =: q(λ), where

Rx(t) = 2[β(t)ẋ(t) + γ(t)x(t)]− 2
d

dt

[
α(t)ẋ(t) + β(t)x(t)

]
, t ∈ [a, b].

Improvements. When Λ[h] 6= 0, function q has a unique critical point λ̂ defined by

0 = q′(λ̂), i.e., λ̂ = −〈Rx , h〉
2Λ[h]

,
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with associated function value

q(λ̂) = Λ[x]− 〈Rx , h〉
4Λ[h]

.

This general result requires no special hypotheses.

(i) In the case where Λ[h] > 0, the quadratic q(λ) is convex (a.k.a. concave-up),
and the critical value above is the lowest result value available on the line in
direction h through the point x of function space. This value is achieved by the
perturbed arc x+ λ̂h. If λ̂ 6= 0, this new arc makes a definite improvement on x.

(ii) In the case where Λ[h] < 0, the quadratic q(λ) is concave (a.k.a. concave-down),
and the values of Λ[] have no lower bound on the line in direction h through the
point x. This implies that the problem of minimizing Λ has no solution. The
perturbed arc x+ λ̂h gives the maximum value for Λ on the line in direction h
through the point x of function space.

Descent Directions. For variations that are “small” in some suitable sense, the
identity above suggests the approximation

Λ[x+ h]− Λ[x] ≈ 〈Rx , h〉 .

To take a small step from x in a direction that gives a lower Λ-value, any h that
makes the right side negative will serve. Every such h is a descent direction at x. If
Rx is not identically zero, choosing h ≈ −Rx will achieve this. The only challenge
here is arranging h(a) = 0 = h(b): there is no reason to expect that Rx will have
zero endpoint values, so some adaptation may be needed. But, as discussed earlier,
if Rx has nonzero value at even one point, there will exist some bump variation h
with small support for which 〈Rx , h〉 < 0.

Stationarity. If the reference arc x is a local minimizer for Λ, there must be no
first-order improvements or descent directions. This explains why we must have
〈Rx , h〉 = 0 for every variation h, and this is the property encapsulated in the
Differentiated Euler-Lagrange equation (DEL).

reference

Descent Directions—Example. Consider this problem:

minimize Λ[x]
def
=

∫ π/2

0

(
ẋ(t)2 − x(t)2

)
dt

over all x ∈ C1[0, π/2]

subject to x(0) = 0, x(π/2) = π/2.

Here L(t, x, v) = v2 − x2. This fits the pattern above, with α(t) = 1, β(t) = 0,
γ(t) = −1. For an arbitrary admissible arc x, the Euler Residual is

Rx(t) = −2x(t)− 2
d

dt
[0 + ẋ(t)] = −2ẍ(t)− 2x(t).
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Consider the particular admissible arc x(t) = t: this one has

Rx(t) = −2t.

Since Rx(t) < 0 for all t ∈ [0, π/2], we try the small bump variation idea above with
subinterval [a′, b′] = [0, π/2] of full width. That is,

h(t) = 1− cos(4t), 0 ≤ t ≤ π

2
.

Calculation gives

Λ[x] =

∫ π/2

0

(
12 − t2

)
dt =

π

2

[
1− π2

12

]
≈ 0.2789,

Λ[h] =

∫ π/2

0

(
16 sin2(4t)− (1− cos(4t))2

)
dt =

13

4
π ≈ 10.21

〈Rx , h〉 =

∫ π/2

0

(−2t) [1− cos(4t)] dt = −π
2

4
≈ −2.467.

The abstract calculations above show that the greatest reduction in Λ-value by per-
turbing x by adding some multiple of h comes from choosing the multiple

λ̂ = −〈Rx , h〉
2Λ[h]

=
π2/4

13π/2
=

π

26
≈ 0.1208.

The corresponding objective value is

Λ[x+ λ̂h] = q(λ̂) =
π

2
− 29

624
π3 = 0.1298.

This is a rather significant improvement in the objective value, dropping about 53%
from the value of Λ[x].

The absolute minimizer in this example is known to be

x̂(t) =
π

2
sin(t), 0 ≤ t ≤ π

2
,

with Λ[x̂] = 0. Sketches follow (please interpret the caption x+ ry as x+ λ̂h).
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Here is another try with the same initial guess. The calculations can all be done
by hand, but I used Maple. Take

h(t) = t
(π

2
− t
)
, 0 ≤ t ≤ π

2
.

This has

Λ[h] =
π3

24
− π5

960
≈ 0.9732,

〈Rx , h〉 = −π
4

96
.

Consequently the quadratic function q(λ) = Λ[x+ λh] has a global minimum at the
point where

λ̂ =
5π

40− π2
,

and the minimum value is

Λ[x+ λ̂h] = q(r̂) = 0.0144.

This is a huge improvement over both the original guess and the previous refinement.
Here are some more sketches. (Again, please interpret the caption x+ ry as x+ λ̂h.)
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