
Chapter I. First Variations
©c 2023, Philip D Loewen

In abstract terms, the Calculus of Variations is a subject concerned with max/min
problems for a real-valued function of several variables. Given a vector space V and
a function Φ:V → R, we explore the theory and practice of minimizing Φ[x] over
x ∈ V . Additional interest and power comes from allowing

• dim(V ) = +∞,

• constrained minimization, where the choice variable x must lie in some preas-
signed subset S of V .

We’ll investigate and generalize familiar facts and new issues, including . . .

- necessary conditions: if x minimizes Φ over V , then Φ′[x] = 0 and Φ′′[x] ≥ 0;

- existence/regularity: what spaces V are appropriate?

- sufficient conditions: if x obeys Φ′[x] = 0 and Φ′′[x] > 0 then x gives a local
minimum.

- applications, calculations, etc.

A. Bernoulli’s Challenge

Example: Brachistochrone. The birth announcement of our subject came just
over 310 years ago:

“I, Johann Bernoulli, greet the most clever mathematicians in the world.
Nothing is more attractive to intelligent people than an honest, challenging
problem whose possible solution will bestow fame and remain as a lasting
monument. Following the example set by Pascal, Fermat, etc., I hope to
earn the gratitude of the entire scientific community by placing before the
finest mathematicians of our time a problem which will test their methods
and the strength of their intellect. If someone communicates to me the
solution of the proposed problem, I shall then publicly declare him worthy
of praise.” (Groningen, 1 January 1697)

Here is a statement of Bernoulli’s problem in modern terms: Given two points α
and β in a vertical plane, find the curve joining α to β down which a bead—sliding
from rest without friction—will fall in least time. The Greek works for “least” and
“time” give the unknown curve its impressive title: the brachistochrone. To set
up, install a Cartesian coordinate system with its origin at point α and the y-axis
pointing downward. Then B ≥ 0, for the bead to “fall”.

Now speed is the rate of change of distance relative to time: v = ds/dt. Along a
curve in the (x, y)-plane, ds =

√
(dx)2 + (dy)2 =

√
1 + (y′(x))2 dx, so the infinites-

imal time taken to travel along the segment of curve corresponding to a horizontal
distance dx is

dt =
ds

v
=

√
1 + (y′(x))2 dx

v
.
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2 PHILIP D. LOEWEN

Here v is the speed of the bead, given from conservation of energy as

PE + KE = const.

−mgy + 1
2mv

2 = 1
2mv

2
0 .

(Here v0 is the bead’s initial velocity: v0 ≥ 0 seems reasonable.) This gives v =√
v20 + 2gy, leading to

dt =

√
1 + (y′(x))2√
v20 + 2gy(x)

dx.

The total travel time is then

T =

∫
dt =

∫ b

x=0

√
1 + (y′(x))2

v20 + 2gy(x)
dx.

Bernoulli’s challenge is to identify the function y = y(x) that minimizes T , among
all competitors obeying the prescribed endpoint conditions y(0) = 0, y(b) = B.

Example: Geodesics in the Plane. For a smooth function y defined on [a, b], the
graph has length

s =

∫
ds =

∫ √
(dx)2 + (dy)2 =

∫ b

a

√

1 +

(
dy

dx

)2

dx.

Finding the shortest graph joining given points (a,A) and (b, B) (assume a < b) has
the same general characteristics as before: minimize the number attributed to a given
curve by some integral operation.

Example: Hamilton’s Principle of Least Action. Consider the possible motions
of a particle along the x-axis, each possibility defining a time-varying function x =
x(t). If a given potential function V = V (x) is responsible for the (only) force on
that particle, then the particle’s actual trajectory will be the one that minimizes the
“action”, a scalar quantity defined by

∫
(KE(x(t), ẋ(t))− PE(x(t))) dt =

∫ (
1
2mẋ(t)

2 − V (x(t))
)
dt.

One can derive Newton’s Second Law from this, so the Principle of Least Action
might be considered an even more fundamental fact.

Notation Shift. The Physics connection above is so potent that we change symbols
for the whole course to consider functions named x that depend on the independent
variable named t. For problems involving geometry, this requires getting used to
taking axis labels from the (t, x)-plane instead of the (x, y)-plane, and stepping away
from the assumption that the letter t must always be interpreted as the time. The
next example illustrates this.
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Chapter I. First Variations 3

Example: Soap Film in Zero-Gravity. Wire rings of radii A > 0 and B > 0 are
perpendicular to an axis through both their centres; the centres are 1 unit apart. A
soap film stretches between them, forming a surface of revolution relative to the axes
shown below. Surface tension acts to minimize the area of that surface, which we
can calculate: infinitesimal ring at position t with horizontal slice dt has slant length
ds =

√
dt2 + dx2 =

√
1 + ẋ(t)2 dt, perimeter 2πx(t), hence area

dS = 2πx(t)
√
1 + ẋ(t)2 dt.

Total area is the “sum” of these contributions, i.e.,

S =

∫
dS =

∫ 1

0

2πx(t)
√
1 + ẋ(t)2 dt.

Integral Functionals. In each of the examples above, the integral to be minimized
has the form

Λ[x]
def
=

∫ b

a

L(t, x(t), ẋ(t)) dt.

for some function L = L(t, x, v). Specifically, we would use

(i) L(t, x, v) =

√
1 + v2√
v20 + 2gx

for the brachistochrone;

(ii) L(t, x, v) =
√
1 + v2 to find the shortest path between given points;

(iii) L(t, x, v) = 2πx
√
1 + v2 to identify the minimal surface of revolution.

We’ll pursue the theory for a generic L ∈ C1([a, b]×R×R) (called a “Lagrangian”)
is given. Typically L = L(t, x, v): t for “time”, x for “position”, v for “velocity”.

Analogy/Preview. Calculus deals with minimization at every level. For uncon-
strained local minima, the only possible minimizers are critical points:

• When solving minx∈R f(x), concentrate on points x where f ′(x) = 0 . . . an
algebraic equation for the unknown scalar x.

• When solving minx∈Rn F (x), any solution x must make ∇F (x) = 0 . . . a system

of n algebraic equations for the unknown vector x.

• When solving minx∈C1[a,b] Λ(x), expect the solution x to make DΛ[x] = 0 . . . a
differential equation for the unknown function x.

B. The Basic Problem; Ad-hoc Methods

Exploration. Consider the basic problem with Lagrangian L(x, v) = v2 + x2 and
endpoints (a,A) = (0, 1) and (b, B) = (1, 0). Among all arcs x: [0, 1] → R such that
x(0) = 1, x(1) = 0, we must identify the one (if any) that gives the smallest value to
the integral

Λ[x]
def
=

∫ 1

0

(
ẋ(t)2 + x(t)2

)
dt.
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4 PHILIP D. LOEWEN

To develop some feeling for the problem, pick a candidate arc x(t) = 1 − t and
calculate ẋ(t) = −1,

Λ[x] =

∫ 1

0

(
(−1)2 + (1− t)2

)
dt =

4

3
≈ 1.333.

Then consider some alternatives: x(t) = 1− t2 has the required endpoint values, and
it gives

Λ[x] =

∫ 1

0

(
(−2t)2 + (1− t2)2

)
dt =

28

15
≈ 1.867.

That’s worse. Or consider a piecewise-linear choice: for each x-intercept r ∈ [0, 1],
let

xr(t) =

{
1− t/r, for 0 ≤ t < r,
0, for r ≤ t ≤ 1.

Calculation gives

Λ[xr] =

∫ r

0

[(
− 1

r

)2

+

(
t− r

r

)2
]
dt =

1

r
+
r

3
.

Now the derivative
d

dr
Λ[xr] = − 1

r2
+

1

3
=
r2 − 3

3r2

is negative at all points in the interval 0 < r < 1, so the lowest value we can get out
of a path like this happens when r = 1 . . . our original linear guess.

Another parametric approach is to stick with x(t) = 1 − t as the reference arc,
pick some smooth function h with h(0) = 0 = h(1), and consider the family of
functions

xλ(t)
def
=x(t) + λh(t), 0 ≤ t ≤ 1.

Since h(t) vanishes at both ends of the interval, the endpoint values for xλ agree with
those for x, no matter what λ we apply. To be concrete, take h(t) = t2 − t. Then
xλ(t) = 1− t+ λ(t2 − t), and

Λ[xλ] =

∫ 1

0

[
(− 1 + λ(2t− 1))

2
+
(
1− t+ λ(t2 − t)

)2]
dt =

11

30
λ2 − 1

6
λ+

4

3
.

This is a convex quadratic, with a global minimum at λ = 5
22 . The corresponding

integral value is Λ[x5/22] ≈ 1.314. At last, an improvement!

Now replace the linear reference arc x(t) = 1 − t, with some general function
x̂ satisfying the given endpoint conditions, and consider a rather arbitrary h with
h(0) = 0 = h(1). Build xλ(t) = x̂(t) + λh(t) as before, and consider

φ(λ)
def
=Λ[xλ]

=

∫ 1

0

[
( ˙̂x+ λḣ)2 + (x̂+ λh)2

]
dt

= Λ[x̂] + λ2Λ[h] + 2λ

∫ 1

0

(
˙̂xḣ+ x̂h

)
dt.
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Chapter I. First Variations 5

For each fixed h, φ is a convex quadratic with a global minimum at the point where
φ′(λ) = 0. To position this critical point right at λ = 0 would require

0 =

∫ 1

0

(
˙̂xḣ+ x̂h

)
dt

= ˙̂x(t)h(t)

∣∣∣∣
1

t=0

+

∫ 1

0

[
x̂h− ¨̂xh

]
dt

=

∫ 1

0

[
x̂(t)− ¨̂x(t)

]
h(t) dt.

This is the golden moment: if we choose x̂ to make the bracketed quantity identically
0, i.e.,

¨̂x(t)− x̂(t) = 0, (DEL)

then we will have the correct critical-point location for each and every possible vari-
ation h. Solving this ODE and enforcing the given endpoint conditions x̂(0) = 1 and
x̂(1) = 0 identifies a unique candidate:

x̂(t) =
et−1 − e−(t−1)

e−1 − e1
.

Further, with λ = 1 above, we have for every variation h that

Λ[x̂+ h] = Λ[x̂] + Λ[h] ≥ Λ[x̂].

Therefore the arc x̂ actually gives the global minimizer for the problem set up above.
Calculation gives Λ[x̂] ≈ 1.313. ////

Discussion. The differential equation (DEL) describing the arc x̂ above is called the
Euler-Lagrange Equation (in differential form). It’s a key ingredient in the theory we
are about to explore. Re-running the argument implicit above in more abstract terms
will reveal how to produce the corresponding differential equation for any reasonable
integrand L = L(t, x, v). This is our next priority.

C. Smooth Extremals in the Basic Problem

The Basic Problem. Given points (a,A), (b, B), with a < b, the basic problem in

the Calculus of Variations is this:

minimize Λ[x] =

∫ b

a

L(t, x(t), ẋ(t)) dt

over x ∈ X
subject to x(a) = A, x(b) = B.

Shorthand:

min
x∈X

{∫ b

a

L(t, x(t), ẋ(t)) dt : x(a) = A, x(b) = B

}
. (P )
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6 PHILIP D. LOEWEN

Choice Variables. When a closed real interval [a, b] of finite length is given, C[a, b]
denotes the set of functions continuous on [a, b]. The set X = Ck[a, b] denotes the
collection of all x ∈ C[a, b] whose derivatives ẋ, ẍ, . . . x(k) are defined and continuous
on (a, b), with finite one-sided limits at a and b. Typically x = x(t). A typical x in
X is called an “arc”: that term adapts to whatever k is in force at any given time.

For x in C1[a, b], we use the one-sided limit requirement mentioned in the definition
to define

ẋ(a) = lim
r→0+

x(a+ r)− x(a)

r
, ẋ(b) = lim

r→0+

x(b)− x(b− r)

r
.

This makes ẋ continuous on [a, b]. Similar methods will make ẍ ∈ C[a, b] for any
x ∈ C2[a, b].

Examples: (i) The function x(t) = t|t| has ẋ(t) = 2|t|. (Calculate by cases.) There-
fore x ∈ C1[−1, 1]. However, x 6∈ C2[−1, 1]: one has ẍ(t) = 2 sgn(t) for all t 6= 0,
and this has a discontinuity at t = 0.

(ii) The function x(t) =
√
t does not lie in C1[0, 1]. (It has ẋ(t) = 1/(2

√
t) for

t > 0, and it’s impossible to make a continuous extension that captures the left
endpoint, t = 0.)

Generally we would like to use the smallest k possible, to allow an open com-
petition between the most general class of arcs for which all the ingredients of the
problem make sense. This will turn into a theme later. For this section, let’s
focus on arcs and variations of class C2.

Terminology. In the context set by an instance of the Basic Problem, we say

• an arc x: [a, b] → R is “admissible” if x(a) = A and x(b) = B;

• an arc h: [a, b] → R is “a variation” if h(a) = 0 and h(b) = 0.

Our ultimate goal is to minimize

Λ[x] :=

∫ b

a

L(t, x(t), ẋ(t)) dt

among all admissible arcs x. In this “basic problem”, a simple admissible arc is
always available—the straight line between the given endpoints:

x0(t) = A+

(
t− a

b− a

)
[B −A], a ≤ t ≤ b.

The number Λ[x0] provides a reference value for the cost we hope to minimize: clearly
the minimum value must be less than or equal to Λ[x0]. The arc x0 also provides a
reference input for our problem, and we can search for preferable inputs by making
wise adjustments to x0.

Reference Arc and Variations. Fix any specific admissible arc x̂. To save writing
later, define 3 functions:

L̂(t) = L(t, x̂(t), ˙̂x(t)), L̂x(t) = Lx(t, x̂(t), ˙̂x(t)), L̂v(t) = Lv(t, x̂(t), ˙̂x(t)).
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Chapter I. First Variations 7

Preview: We will soon be very interested in the related function

R(t) = L̂x(t)−
d

dt
L̂v(t).

(You can build R(t) as soon as you specify x̂: no other ingredients are needed.)

Example. If L(t, x, v) and x̂(t) = sin(t), then L̂(t) = 1, L̂x(t) = 2 sin(t), and

L̂v(t) = 2 cos(t), leading to

R(t) = 2 sin(t)− d

dt
[2 cos(t)] = 4 sin(t).

Variations. Fix any particular variation h, and consider the one-parameter family
of arcs

xλ(t) = x̂(t) + λh(t), a ≤ t ≤ b; λ ∈ R.

Each of these arcs is admissible; the sign and magnitude of the parameter λ determine
the strength by which a perturbation of “shape” h is added to the reference shape
x̂ = x0. To assess how much improvement from the reference value we can achieve,
we define the function

φ(λ)
def
=Λ[xλ] =

∫ b

a

L(t, xλ(t), ẋλ(t)) dt.

Here φ(0) = Λ[x̂] is our reference value, and if φ′(0) < 0 we know that φ(λ) < φ(0) for
small λ > 0: that is, a small perturbation of shape h will improve our reference arc.
(If φ′(0) > 0, then φ(λ) < φ(0) for small λ < 0, so an improvement is still possible—
it is obtained by adding a small positive multiple of −h to x̂.) To get the most
possible improvement out of this idea, we could somehow solve the single-variable
problem of choosing the scalar λ∗ that minimizes the function φ. The resulting
perturbed arc xλ∗ is certain to be preferable to x̂ whenever φ′(0) 6= 0. In some
practical problems, good choices of the reference arc x̂ and the variation hmight make
xλ∗ a usable improvement. Alternatively, one could build an iterative-improvement
scheme by declaring xλ∗ as the new reference arc (change its name to x̂) choosing
a new variation, and repeating the process above to generate further improvements.
(Note: This approach is both conceptually attractive and technically feasible, but it
is neither efficient nor effective. Training computers to find approximate solutions
for the basic problem is an ongoing area of research, and the best known methods
are quite different from the one outlined above.)

Every time we choose a reference arc x̂ and a variation h, we can define the
single-variable function

φ(λ)
def
=Λ[x̂+ λh].

For small λ, the linear approximation

φ(λ) ≈ φ(0) + φ′(0)λ+ o(λ) as λ→ 0

reveals the scalar φ′(0) as the rate of change of the objective value Λ with respect
to a variation in direction h, locally near the reference arc x̂. It seems natural to
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8 PHILIP D. LOEWEN

say that h provides a “descent direction for Λ at x̂” when φ′(0) < 0. Let’s calculate
φ′(0), holding tight to a single fixed variation h throughout.

φ′(0) = lim
λ→0

φ(λ)− φ(0)

λ

= lim
λ→0

∫ b

a

L(t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t))− L(t, x̂(t), ˙̂x(t))

λ
dt

=

∫ b

a

lim
λ→0

L(t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t))− L(t, x̂(t), ˙̂x(t))

λ
dt

=

∫ b

a

[
d

dλ
L(t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t))

]

λ=0

dt

=

∫ b

a

L̂x(t)h(t) + L̂v(t)ḣ(t) dt

=

∫ b

a

(
L̂x(t)−

d

dt
L̂v(t)

)
h(t) dt (int by parts).

In summary, we have

φ′(0) =

∫ b

a

R(t)h(t) dt,

where R(t) = L̂x(t)−
d

dt
L̂v(t).

(∗∗)

Formula (∗∗) is valid for any smooth admissible arc x̂ and variation h, and is full of
useful information. A key observation: φ and φ′(0) depend on our choice of h, but
R does not. One can calculate the function R for any candidate arc x̂.

Viewpoint 1 (Descent Directions). For an admissible arc x̂, we can use (∗∗)
to guide a search for descent directions. It suffices to choose a variation h whose
pointwise product with R is large and negative. The choice h = −R is particularly
tempting, but the requirement that h(a) = 0 = h(b) sometimes requires a modifica-
tion of this selection.

Example. Suppose (a,A) = (0, 0), (b, B) = (π2 ,
π
2 ), and L(t, x, v) = v2−x2. Consider

the linear reference arc x̂(t) = t. Its objective value is

Λ[x̂] =

∫ π/2

0

(
˙̂x(t)2 − x̂(t)2

)
dt =

∫ π/2

0

(
1− t2

)
dt =

π

2
− 1

3

(
π

2

)3

≈ 0.2789.

To improve on this, calculate

Lx(t, x, v) = −2x, Lv(t, x, v) = 2v,

so Lx(t, x̂(t), ˙̂x(t)) = −2t, Lv(t, x̂(t), ˙̂x(t)) = 2.

We get R(t) = [−2t] − d
dt [2] = −2t. Here −R(t) = 2t does not vanish at both end-

points, but it is positive everywhere, so we try a variation that is positive everywhere:

h(t) = sin(2t).
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Calculation gives

φ(λ) =

∫ π/2

0

(
[1 + 2λ cos(2t)]2 − [t+ λ sin(2t)]2

)
dt

=

∫ π/2

0

(
[1 + 4λ cos(2t) + 4λ2 cos2(2t)]− [t2 + 2λt sin(2t) + λ2 sin2(2t)]

)
dt

=
3π

4
λ2 − π

2
λ+

π

2
− π3

24
.

This is minimized when λ = 1/3, and the minimum value provides a 94% discount
from the reference value Λ[x̂]:

Λ[x1/3] = φ(1/3) =
5π

12
− π3

24
≈ 0.01707.

Viewpoint 2 (Necessary Conditions). If our minimization problem has a solu-
tion, we don’t need to know it in detail to assign it the name “x̂”. If the solution
happens to be C2, then the derivation above applies and conclusion (∗∗) is available.
But now, by hypothesis, the arc x̂ is impossible to improve upon: we must have
φ′(0) = 0 for every possible variation h, i.e.,

0 =

∫ b

a

R(t)h(t) dt for every h ∈ C2[a, b] obeying h(a) = 0 = h(b). (†)

This forces R(t) = 0 for all t. To see why any other outcome is impossible, imagine
that some θ ∈ (a, b) makes R(θ) < 0. Our smoothness hypotheses guarantee that R
is continuous on [a, b]. Recall

R(t) = Lx(t, x̂(t), ˙̂x(t))−
d

dt

[
Lv(t, x̂(t), ˙̂x(t))

]
, t ∈ [a, b].

So if R(θ) < 0, there must be some r > 0 small enough R(t) < 0 for all t in the
open interval (θ− r, θ+ r) centred at θ. (Also, make sure r is small enough that this
interval fits inside [a, b].) For a specific choice of such an r, consider the variation

h(t) =




F

(
t− θ

r

)
, for θ − r ≤ t ≤ θ + r,

0, otherwise,

where F (u) = (u2 − 1)4. This variation belongs to C2[a, b], and it’s constructed to
make R(t)h(t) < 0 for t ∈ (θ − r, θ + r). Outside this interval we have R(t)h(t) = 0,
so the integral detailed (∗∗) shows

φ′(0) =

∫ β

α

R(t)h(t) dt < 0.

This contradicts (†). This shows that if x̂ is a minimizer when X = C2[a, b], then
R cannot take on any negative values. Positive R-values are impossible for similar
reasons. Our conclusion, that R(t) = 0 for all t ∈ [a, b], is usually written as

Lx(t, x̂(t), ˙̂x(t)) =
d

dt

[
Lv(t, x̂(t), ˙̂x(t))

]
, t ∈ [a, b]. (DEL)

This is the renowned Euler-Lagrange Equation (“EL”) in differentiated form (“D”,
hence “DEL”). If a smooth arc x̂ gives the minimum in the basic problem, it must
obey (DEL). Solutions of (DEL) are called extremal arcs.
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Example. When L(t, x, v) = v2−x2, we have Lx(t, x, v) = −2x and Lv(t, x, v) = 2v,
so equation (DEL) for an unknown arc x(·) says

−2x(t) =
d

dt
[2ẋ(t)] , i.e., ẍ(t) + x(t) = 0.

A complete list of smooth solutions for this equation is

x(t) = c1 cos(t) + c2 sin(t), c1, c2 ∈ R.

In a previous example, the prescribed endpoints where (a,A) = (0, 0) and (b, B) =
(π2 ,

π
2 ). Only one solution joins these points: substitution gives

0 = x(0) = c1,
π
2 = c2 sin

(
π
2

)
= c2,

so x(t) = π
2 sin(t) is the only smooth contender for optimality in the corresponding

problem. Its objective value is

Λ[π2 sin] =

(
π

2

)2 ∫ π/2

0

(
cos2 t− sin2 t

)
dt =

π2

4

∫ π/2

0

cos(2t) dt =
π2

8
sin(2t)

∣∣∣∣
π/2

t=0

= 0.

////

Discussion. It seems natural to call R the residual in equation (DEL), and to
record the following interpretation. A given arc x̂ is extremal if and only if it makes
R = 0. If x̂ makes R(θ) < 0 at some instant θ, then perturbing x̂ with a smooth
upward bump centred at θ will give a preferable arc (i.e., an arc with lower Λ-value).
A smooth downward bump is advantageous near any point where R(θ) > 0.

D. Local Minimizers and First-Derivative Conditions

Abstract Version. Suppose X is a real vector space, and Φ:X → R is given. We’re
interested in minimizing Φ. A point x̂ inX provides aDirectional Local Minimum
(DLM) for Φ over X exactly when, for every h ∈ X, there exists r = r(h) > 0 so
small that

∀λ ∈ (0, ε), Φ[x̂] ≤ Φ[x̂+ λh].

Intuitively, x̂ is a DLM for Φ if it provides an ordinary local minimum in the one-
variable sense along every line through x̂ in the space X.

Directional Derivatives. For a given Φ:X → R and base point x̂ in X, the direc-

tional derivative of Φ at x̂ in direction h is this real number (or “undefined”):

Φ′[x;h]
def
= lim

λ→0+

Φ[x̂+ λh]− Φ[x̂]

λ
.

Note: Φ′[x; 0] = 0, and for all r > 0,

Φ′[x̂; rh] = lim
λ→0+

Φ[x̂+ λrh]− Φ[x̂]

λ
× r

r
= r lim

λ→0+

Φ[x̂+ (λr)h]− Φ[x̂]

(λr)
= rΦ′[x̂;h].
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Chapter I. First Variations 11

When x̂ and Φ are such that Φ′[x̂;h] is a well-defined real number for every h ∈ X,
we say Φ is directionally differentiable at x̂, and define the derivative of Φ at x̂ as the
operator DΦ[x̂]:X → R for which

DΦ[x̂](h) = Φ′[x̂;h] ∀h ∈ X.

Terminology. In this setup, different regularity-levels for the operator DΦ[x̂] attract
different terms (sometimes surnames).

(a) If DΦ[x̂] is linear then Φ is Gâteaux differentiable at x̂;

(b) If DΦ[x̂] is linear and, in addition,

0 = lim
‖h‖→0

Φ[x̂+ h]− (Φ[x̂] +DΦ[x̂](h))

‖h‖ ,

then Φ is Fréchet differentiable at x̂. (This requires X to have a norm-based
topology, so we won’t use it.)

Descent. If Φ′[x̂;h] < 0, then h 6= 0, and h provides a first-order descent direction

for Φ at x̂. That is, for 0 < λ≪ 1,

Φ′[x;h] ≈ Φ[x̂+ λh]− Φ[x̂]

λ
=⇒ Φ[x̂+ λh] ≈ Φ[x̂] + λΦ′[x̂;h] < Φ[x̂]. (∗)

Proposition. If x̂ gives a DLM for Φ over X, then

∀h ∈ X, Φ′[x̂;h] ≥ 0 (or Φ′[x̂;h] is undefined). (∗∗)

In particular, if Φ is directionally differentiable at x̂ andDΦ[x̂] is linear, thenDΦ[x̂] =
0 (“the zero operator”).

Proof. If (∗∗) is false, then Φ′[x̂;h] < 0 for some h ∈ X, and the definition of a DLM
is contradicted by (∗). So (∗∗) must hold. Now if DΦ[x̂] is linear, then for arbitrary
h ∈ X two applications of (∗∗) give

DΦ[x̂](h) = Φ′[x̂;h] ≥ 0,

−DΦ[x̂](h) = DΦ[x̂](−h) = Φ′[x̂;−h] ≥ 0

Thus 0 ≤ DΦ[x̂](h) ≤ 0, giving DΦ[x̂](h) = 0. Since this holds for arbitrary h ∈ X,
DΦ[x̂] must be the zero operator. ////

18 Sep 2023

Affine Constraints. When X = C2[a, b], the endpoint-constrained “basic problem”
in the calculus of variations restricts the competition to the subset {x ∈ X : x(a) = 0 = x(b)}.
This is an affine subspace of X, i.e., a shifted copy of the subspace defined by

VII = {h ∈ X : h(a) = 0 = h(b)} .

For any two admissible inputs x1(·) and x2(·), the difference h(·) = x2(·) − x1(·)
shows that x2(·) = x1(·) + h(·). It follows that the set

x1 + VII = {x1() + h() : h ∈ VII}
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12 PHILIP D. LOEWEN

is the same for any choice of admissible x1(). For any admissible x̂, minimizing
Λ[x] over admissible arcs x is the same as minimizing Λ[x̂ + h] over h ∈ VII . With
natural re-interpretations of the terms “directional local minimum” and “directional
differentiability”, we can assert that any arc x̂ giving a DLM in the basic problem
must satisfy

Λ′[x̂;h] = 0, ∀h ∈ VII .

Natural Boundary Conditions. ForX = C2[a, b] and Λ[x] =

∫ b

a

L(t, x(t), ẋ(t)) dt,

we used integration by parts to get

Λ′[x̂;h] =

∫ b

a

(
L̂x(t)h(t) + L̂v(t)ḣ(t)

)
dt

= L̂v(t)h(t)
∣∣∣
b

t=a
+

∫ b

a

(
L̂x(t)−

d

dt
L̂v(t)

)
h(t) dt.

Now for given real numbers a < b, consider these subspaces of PWS[a, b]:

VMN =
{
h ∈ C1[a, b] : Mh(a) = 0, Nh(b) = 0

}
,

VII =
{
h ∈ C1[a, b] : h(a) = 0, h(b) = 0

}
,

VI0 =
{
h ∈ C1[a, b] : h(a) = 0

}
,

V0I =
{
h ∈ C1[a, b] : h(b) = 0

}
,

V00 = C1[a, b].

Each of these subspaces describes a different class of variations, and these correspond
to different possible modifications of the endpoint conditions in the original problem.

To illustrate, imagine dropping the right-endpoint constraint in the basic prob-
lem, to confront instead the problem

min {Λ[x] : x(a) = A, x(b) ∈ R} .

The appropriate class of variations is VI0: an admissible x̂ gives a DLM if and only
if every h ∈ VI0 comes with some r = r(h) > 0 such that

Λ[x̂] ≤ Λ[x̂+ λh] whenenver λ ∈ (−r, r).

This requires
0 = Λ′[x̂;h] = 〈see above〉 , ∀h ∈ VI0.

Now VI0 ⊇ VII , and we already know that this implies (DEL), i.e.,

d

dt
L̂v(t) = L̂x(t), t ∈ (a, b).

Back-substituting above shows

Λ′[x̂;h] = L̂v(t)h(t)
∣∣∣
b

t=a
+ 0 = L̂v(b)h(b)− L̂v(a)h(a) = L̂v(b)h(b), ∀h ∈ VI0.
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Chapter I. First Variations 13

Since h(b) is arbitrary, we get the so-called “natural boundary condition”

L̂v(b) = 0.

A similar argument, with a similar outcome, applies to problems when x(a) is free
to vary in R, but x(b) = B is specified. When both endpoints are free, both natural
boundary conditions are in force. The table below summarizes these results:

BC’s in Prob Stmt Admissible Variations Natural BC’s

x(a) = A, x(b) = B VII ,

x(a) = A, VI0 , L̂v(b) = 0

, x(b) = B V0I L̂v(a) = 0,

, V00 = C1[a, b] L̂v(a) = 0, L̂v(b) = 0

Example. Consider the Brachistochrone Problem with a free right endpoint:

min

{
Λ[x] =

∫ b

0

√
1 + ẋ(t)2

v20 + 2gx(t)
dt : x(0) = 0

}
.

Here Lv = v
[
(1 + v2)(v20 + 2gx)

]−1/2
, and the natural boundary condition at t = b

says a minimizing curve must obey

0 = L̂v(b) = v
[
(1 + v2)(v20 + 2gx)

]−1/2
∣∣∣
(x,v)=(x̂(b),

˙
x̂(b))

.

It follows that ˙̂x(b) = 0: the minimizing curve must be horizontal at its right end.

[Troutman, page 156: “In 1696, Jakob Bernoulli publicly challenged his younger
brother Johann to find the solutions to several problems in optimization including
[this one] (thereby initiating a long, bitter, and pointless rivalry between two repre-
sentatives of the best minds of their era).”] ////

Practice. Modify the derivation above to treat free-endpoint problems where the
cost to be minimized includes endpoint terms, so it looks like this:

k(x(a)) + ℓ(x(b)) +

∫ b

a

L(t, x(t), ẋ(t)) dt.

Future Considerations. Later, we’ll study problems in which one or both endpoints
are allowed to vary along given curves in the (t, x)-plane. The analysis above handles
only rather special curves . . . namely, the vertical lines t = a and t = b.
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14 PHILIP D. LOEWEN

E. Piecewise Smooth Arcs 20 Sep 2023

Define the space PWC[a, b], also denoted Ĉ[a, b]: these are the continuous func-
tions x on [a, b] for which some finite list of points a = t0 < t1 < · · · < tn = b
is enough to cover over (or mask) all the simple jumps or missing definitions for x.
That is, ẋ() is defined and continuous at all points of every open interval (tk−1, tk),
and the following one-sided limits exist in R:

lim
t→t+

k−1

x(t), lim
t→t−

k

x(t), k = 1, 2, . . . , n.

Functions v() and w() in PWC[a, b] are essentially equal if v(t) = w(t) at all but
finitely many points t in [a, b].

The space PWS[a, b], or Ĉ1[a, b], is defined like this:

x ∈ PWS[a, b] ⇐⇒ x(t) = A+

∫ t

a

v(r) dr for some v ∈ PWC[a, b], A ∈ R.

In this definition, the integrand v() can be replaced with any w() ∈ PWC[a, b] that
is essentially equal to v(). Thanks to the Fundamental Theorem of Calculus, the
definition above one makes ẋ() ∈ PWC[a, b] with ẋ() essentially equal to v().

For x ∈ PWS[a, b], the points in (a, b) where ẋ() has a jump discontinuity are
called corner points. (Sketching the graph of x() makes this seem appropriate.)

Now for any L ∈ C([a, b] × R × R) and x ∈ PWS[a, b], the function t 7→
L(t, x(t), ẋ(t)) is piecewise continuous, so it is meaningful to define

Λ[x] =

∫ b

a

L (t, x(t), ẋ(t)) dt.

So the basic problem in the COV still makes sense in the function space X =
PWS[a, b] . . . a strictly larger set than C2[a, b].

The Variational Setting. Suppose L ∈ C1 and we pose Basic Problem in X =
PWS[a, b] instead of C2[a, b]. What must change? Pick arbitrary x̂, h ∈ PWS[a, b]
and calculate as before:

Λ′[x̂;h] = lim
λ→0+

1

λ

[
Λ[x̂+ λh]− Λ[x̂]

]
(1)

= lim
λ→0+

1

λ

∫ b

a

[
L
(
t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t)

)
− L(t, x(t), ẋ(t))

]
dt (2)

=

∫ b

a

lim
λ→0+

1

λ

[
L
(
t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t)

)
− L

(
t, x̂(t), ˙̂x(t)

)]
dt (3)

=

∫ b

a

∂

∂λ

[
L
(
t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t)

)]

λ=0

dt (4)

=

∫ b

a

[
Lx

(
t, x̂(t), ˙̂x(t)

)
h(t) + Lv

(
t, x̂(t), ˙̂x(t)

)
ḣ(t)

]
dt (5)
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Chapter I. First Variations 15

Here line (1) is the definition of the directional derivative, and line (2) comes from
the definition of Λ. Passing from (2) to (3) requires that we interchange the limit and
the integral. In our case this is justified because the limit is approached uniformly
in t, a consequence of L ∈ C1. See, e.g., Walter Rudin, Real and Complex Analysis,

page 223. Existence of the derivative in (4) and its evaluation in (5) also follow from
our assumption that L ∈ C1; the definition of this derivative allows it to be evaluated
as shown inside the integral in (3).

Using the notation L̂(t) = L
(
t, x̂(t), ˙̂x(t)

)
and likewise defining L̂x(t) and L̂v(t),

we summarize: if L ∈ C1 and x̂ ∈ Ĉ1[a, b], then

Λ′[x̂;h] =

∫ b

a

[
L̂x(t)h(t) + L̂v(t)ḣ(t)

]
dt ∀h ∈ Ĉ1[a, b]. (∗)

This is the point where we formerly applied integration by parts. But now, L̂v(t)
might be only piecewise continuous, so we need a new approach. The inspired idea
is to focus on the complementary term when integrating by parts. That is, let

p(t) =

∫ t

a

L̂x(r) dr. Then p(a) = 0 and, somewhat informally,

dp(t) = ṗ(t) dt = L̂x(t) dt.

Hence the first term on the right in (∗) is
∫ b

a

L̂x(t)h(t) dt =

∫ b

a

h(t) dp

= p(t)h(t)

∣∣∣∣
b

t=a

−
∫ b

a

p(t) dh(t)

= p(b)h(b)−
∫ b

a

L̂x(t)ḣ(t) dt

We conclude that for all h ∈ Ĉ1[a, b],

Λ′[x̂;h] =

[∫ b

a

L̂x(t) dt

]
h(b) +

∫ b

a

(
L̂v(t)−

∫ t

a

L̂x(r) dr

)
ḣ(t) dt. (∗∗)

Note that this expression well-defined for all h ∈ PWS[a, b], and linear in h.

Our general discussion above shows that if some arc x̂ gives a directional local
minimum for Λ relative to VII , then every h ∈ VII must satisfy

0 = Λ′[x̂;h] =

∫ b

a

N̂(t)ḣ(t) dt, where N̂(t) = L̂v(t)−
∫ t

a

L̂x(r) dr.

This situation explains our interest in the Fundamental Lemma below.
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16 PHILIP D. LOEWEN

Lemma (duBois-Reymond). If N : [a, b] → R is piecewise continuous, TFAE:

(a)

∫ b

a

N(t)ḣ(t) dt = 0 for all h ∈ VII .

(b) The function N is essentially constant.

Proof. (b⇒a): If N(t) = c for all t in [a, b] (allowing finitely many exceptions), then
each h ∈ VII obeys

∫ b

a

N(t)ḣ(t) dt =

∫ b

a

cḣ(t) dt = ch(t)

∣∣∣∣
b

t=a

= 0. (∗)

(a⇒b): Pick any piecewise continuous function N . (We’ll only need property (a) at
the very end.) Use the average value of N , namely the constant

N =
1

b− a

∫ b

a

N(r) dr,

to define

h(t) =

∫ t

a

(
N −N(r)

)
dr.

Obviously h ∈ PWS[a, b] with h(a) = 0, but also (by definition of N)

h(b) =

∫ b

a

(
N −N(r)

)
dr = (b− a)N −

∫ b

a

N(r) dr = 0.

Therefore h ∈ VII ; in particular, using c = N in line (∗) gives
∫ b

a

Nḣ(t) dt = 0.

It follows that∫ b

a

N(t)ḣ(t) dt =

∫ b

a

(
N(t)−N

)
ḣ(t) dt

=

∫ b

a

(
N(t)−N

) (
N −N(t)

)
dt = −

∫ b

a

(
N(t)−N

)2
dt.

If (a) holds, this integral equals 0, and therefore N(t) = N for all t in [a, b] (with at
most finitely many exceptions). This proves (b). ////

Theorem (Euler-Lagrange Equation—Integral Form). If x̂ is a directional
local minimizer in the basic problem (P ), then there is a constant c such that at
every t ∈ [a, b] that is not a corner point for x̂(),

L̂v(t) = c+

∫ t

a

L̂x(r) dr. (IEL)

Proof. As discussed above, directional local minimality implies that for every h in
VII obeys

0 = Λ′[x̂;h] =

∫ b

a

N̂(t)ḣ(t) dt, where N̂(t) = L̂v(t)−
∫ t

a

L̂x(r) dr.

Thanks to the Fundamental Lemma, it follows that N̂ is essentially constant. ////
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22 Sep 2023

Terminology. Any x̂ ∈ Ĉ1 obeying (IEL) (with finitely many exceptions) on an
open interval is called an extremal for L.

The indefinite integral on the right side in (IEL) defines a continuous function
of t in the full interval [a, b]. This leads to the first of two Weierstrass-Erdmann
Corner Conditions:

Proposition (WE1). If L ∈ C1 and x̂ gives the minimum in the Basic Problem

(with X = PWS[a, b]) then all discontinuities of t 7→ L̂v(t) are removable. That is,
for each t ∈ (a, b), the one-sided limits below exist (finitely) and are equal:

L̂v(t
−)

def
= lim

r→t−
Lv

(
r, x̂(r), ˙̂x(r)

)
and L̂v(t

+)
def
= lim

r→t+
Lv

(
r, x̂(r), ˙̂x(r)

)
.

Proof. Take the limits on the right side of IEL instead of the left. ////

Discussion. At each particular point t where ˙̂x is continuous, the Fundamental
Theorem of Calculus affirms that the right side in (IEL) is differentiable, with

d

dt
L̂v(t) = L̂x(t). (DEL)

This is the familiar differential form of the Euler-Lagrange equation. So (IEL) implies
(WE2) at every corner point, and (DEL) on every open interval between corner
points. This relationship is reversible: any arc that satisfies (DEL) on successive
open intervals and satisfies (WE2) at the junction points will be an extremal in the
sense of (IEL).

Remark. Note that (IEL) is the same for the function −L as it is for L, so it must
hold also for a directional local maximizer in the Basic Problem. An extremal arc in
the COV is analogous to a “critical point” in ordinary calculus: the set of extremal
arcs includes every arc that provides a (directional) local minimum or maximum, and
possibly some arcs that provide neither.

Remark. For any admissible arc x̂ that fails to satisfy (IEL), the continuous function

N̂ defined above will be nonconstant and the proof of the Fundamental Lemma shows
that Λ′[x̂;h] < 0 for the variation h defined by

h(t) =

∫ t

a

(
N −N(r)

)
dr, where N =

1

b− a

∫ b

a

N(r) dr.

That is, this h is a descent direction for Λ[·] relative to the nominal arc x̂. ////

Extremality Promotes Regularity. Having assumed L ∈ C1, we can rely on
continuity from the function Lv, and this will make the composite function t 7→
Lv(t, x(t), ẋ(t)) piecewise continuous for each arc x ∈ PWS[a, b]. Noting the possible
example L = 1

2v
2 makes it clear that this function could easily have essential jump

discontinuities, depending on the arc x of interest. Condition (WE1) above is a hint
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18 PHILIP D. LOEWEN

that extremal arcs are somewhat special in this regard: plugging an extremal x̂ into
Lv yields a composite function with only removable discontinuities. This is worth
pursuing; to warm up to the project, let us consider a slightly more general integrand
with quadratic dependence on v.

Proposition. Suppose

L(t, x, v) = 1
2A(t, x)v

2 +B(t, x)v + C(t, x)

for C1 functions A,B,C. Then for any x̂ obeying (IEL), with A(t, x̂(t)) 6= 0 for all
t ∈ [a, b], we have x̂ ∈ C2[a, b].

Proof. Here Lv(t, x, v) = A(t, x)v + B(t, x). Along the arc x̂, this identity implies
that, for all but perhaps finitely many points of [a, b], we have

˙̂x(t) =
1

A(t, x̂(t))

[
L̂v(t)−B(t, x̂(t))

]
. (†)

Now the function of t on the right side here has no essential discontinuities in [a, b]:
at any particular t in (a, b), the one-sided limits from the left and right sides exist and

agree, by (WE1). The derivative ˙̂x() inherits this property, and this implies that ˙̂x()
is actually defined and continuous at all points of (a, b). (This follows from the Mean
Value Theorem.) We can use this in two ways. First, it implies that the identity (†)
above actually holds for all t ∈ [a, b] with no exceptions at all. Second, it implies that

L̂x() ∈ C[a, b], so, from (IEL), L̂v() ∈ C1[a, b]. So, back in (†), the function of t on
the right lies in C1[a, b]. Therefore the identity it supports shows that x̂ ∈ C2[a, b].

////

We will generalize this to non-quadratic Lagrangians after a brief digression.

F. Special Lagrangians

Example. Find candidates for minimality in (P ) with L(t, x, v) = v2 − x2 and
(a,A) = (0, 0), in cases

(i) (b1, B1) = (π/2, 1),

(ii) (b2, B2) = (3π/2, 1).

Note Lv(t, x, v) = 2v and Lx(t, x, v) = −2x.

If x̂ minimizes Λ among all C1 curves from (0, 0) to (b1, B1), then (DEL) says

d

dt

(
2 ˙̂x(t)

)
∃
=− 2x̂(t) ∀t.

That is, ¨̂x(t) = −x̂(t) for all t. This shows x̂ ∈ C2, and gives the general solution

x̂(t) = c1 cos(t) + c2 sin(t), c1, c2 ∈ R.

(i) Here the boundary conditions give c1 = 0, c2 = 1. Unique candidate: x̂1(t) =
sin(t). Later we’ll show that x̂1 gives a true [global] minimum:

Λ1[x̂1] = min

{
Λ1[x] =

∫ π/2

0

(
ẋ(t)2 − x(t)2

)
dt : x(0) = 0, x(π/2) = 1

}
.
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(ii) Here the BC’s identify the unique candidate x̂2(t) = − sin(t). Later we’ll show
that this does not give even a directional local minimum; moreover,

inf

{
Λ2[x] =

∫ 3π/2

0

(
ẋ(t)2 − x(t)2

)
dt : x(0) = 0, x(3π/2) = 1

}
= −∞.

////

Special Case 1: L = L(t, v) is independent of x.

Here (IEL) reduces to a first-order ODE for x̂, involving an unknown constant:

L̂v(t) = const.

Consider these subcases, where L = L(v) is also independent of t:

L = v2, L =
√

1 + v2, L =
( [
v2 − 1

]+)2

.

In these three cases, every extremal x̂ is globally optimal relative to its endpoints.
To see this, let c = Lv( ˙̂x) and define

f(v) = L(v)− cv.

Then f ′(v) = Lv(v)− c is nondecreasing, with f ′( ˙̂x(t)) = 0, so f ′(v) < 0 for v < ˙̂x(t)

and f ′(v) > 0 for v > ˙̂x(t). Thus ˙̂x(t) gives a global minimum for f . That is,

f(v) ≥ f( ˙̂x(t)) ∀v ∈ R, ∀t ∈ [a, b]. (∗)

Now every arc x obeying the BC’s has
∫ b

a
cẋ(t) dt = c [x(b)− x(a)] = c [B −A], so

∫ b

a

f(ẋ(t)) dt ≥
∫ b

a

f( ˙̂x(t)) dt

∫ b

a

L(ẋ(t)) dt− c [B −A] ≥
∫ b

a

L( ˙̂x(t)) dt− c [B −A]

Λ[x] ≥ Λ[x̂].

(For L =
√
1 + v2, this proves that the arc of shortest length from (a,A) to (b, B)

is the straight line. The technical definition of the term “arc” here leaves room for
some improvement in this well-known conclusion.)

An Optimistic Calculation: Suppose x̂ solves (IEL) and is in fact C2. (See
“Regularity Bonus” above, and Section D below.) Then the Chain Rule and (DEL)
together give

d

dt
L
(
t, x̂(t), ˙̂x(t)

)
= L̂t(t) + L̂x(t) ˙̂x(t) + L̂v(t)¨̂x(t)

= L̂t(t) +
d

dt

[
L̂v(t) ˙̂x(t)

]
by (DEL).
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We rearrange this to get

d

dt

[
L̂(t)− L̂v(t) ˙̂x(t)

]
= L̂t(t) ∀t ∈ [a, b]. (WE2)

Special Case 2: L = L(x, v) is independent of t (“autonomous”). For every ex-
tremal x̂ of class C2, (WE2) implies that

L̂(t)− L̂v(t) ˙̂x(t) = C ∀t ∈ [a, b],

for some constant C. In other words, the following function of 2 variables is constant
along every C2 arc solving (IEL):

L(x, v)− Lv(x, v) · v.

In Physics, a famous Lagrangian is L(x, v) = 1
2mv

2 − 1
2kx

2 (that’s KE minus
PE for a simple mass-spring system). Here Lv = mv, and the function above works
out to (

1
2mv

2 − 1
2kx

2
)
− (mv)v = −

(
1
2mv

2 + 1
2kx

2
)
,

the total energy. For other Lagrangians, condition (WE2) expresses conservation of
energy along real motions. ////

Caution. (WE2) and (IEL) are not quite equivalent, even for very smooth arcs. The
Lagrangian L(x, v) = 1

2mv
2 − 1

2kx
2 illustrates this. As shown above, (WE2) holds

along an arc x̂ if and only if

1
2m

˙̂x(t)2 + 1
2kx̂(t)

2 = const,

and this is true for any constant function x̂. However, (IEL) holds along x̂ iff

m¨̂x(t) + kx̂(t) = 0,

and the only constant solution of this equation is x̂(t) = 0. The upshot: Every
smooth solution of (IEL) must obey (WE2), but (WE2) may have some spurious
solutions as well. Home practice: Show that if x ∈ C2 obeys (WE2) and satisfies
ẋ(t) 6= 0 for almost all t, then x obeys (IEL) also. (Thus, many solutions of WE2
also obey IEL, and we can predict which they are.) ////

G. Smoothness of Extremals

Recall the quadratic approximation:

f(v) ≈ f(v̂) +∇f(v̂)(v − v̂) + 1
2 (v − v̂)TD2f(v̂)(v − v̂), v ≈ v̂.

Use this on the function f(v) = L(t, x, v) near v̂ = ˙̂x(t):

L(t, x, v) ≈ L(t, x, v̂) + Lv(t, x, v̂)(v − v̂) + 1
2Lvv(t, x, v̂)(v − v̂)2.
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Here the coefficient of 1
2v

2 is A(t, x) = Lvv(t, x, v̂). So we might expect the propo-

sition above to hold for general L, under the assumption that L̂vv(t) 6= 0 for all
t ∈ [a, b]. This turns out to be correct, but the reasons are not simple.

Classic M100 problem: Assuming the relation

v3 − v − t = 0

defines v as a function of t near the point (t, v) = (0, 0), find dv/dt there.

Solution: Differentiation gives

3v2
dv

dt
− dv

dt
− 1 = 0 =⇒ dv

dt
=

1

3v2 − 1
.

At the point (t, v) = (0, 0), substitution gives

dv

dt

∣∣∣∣
(t,v)=(0,0)

= −1.

The curve t = v3 − v is easy to draw in the (t, v)-plane. As the following sketch
shows, there are three points on the curve satisfying t = 0, and the calculation above
finds the slope at just one of them:

t

 v

α  β

p 

q 

Figure 1: The curve v3 − v − t = 0 in (t, v)-space.

(The shaded rectangle will be described later.)

Classic M200 reformulation: Assuming the relation F (t, v) = 0 defines v as a function
of t near the point (t0, v0), find dv/dt at this point.

Solution:

0 =
d

dt
F (t, v(t)) = Ft(t, v(t)) + Fv(t, v(t))

dv

dt
=⇒ dv

dt
= −Ft(t, v(t))

Fv(t, v(t))
.

Classic M321 theorem (Rudin, Principles, Thm. 9.28):
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Implicit Function Theorem. An open set U ⊆ R
2 is given, along with

(t0, v0) ∈ U and a function F :U → R (F = F (t, v)) such that both Ft and
Fv exist and are continuous at each point of U . Suppose F (t0, v0) = 0. If
Fv(t0, v0) 6= 0, then there are open intervals (α, β) containing t0 and (p, q)
containing v0 such that

(i) For each t ∈ (α, β), the equation F (t, v) = 0 holds for a unique point
v ∈ (p, q).

(ii) If we write ψ(t) for the unique v in (i), so that F (t, ψ(t)) = 0 for all
t ∈ (α, β), then ψ ∈ C1(α, β), with

ψ̇(t) = −Ft(t, ψ(t))

Fv(t, ψ(t))
∀t ∈ (α, β).

Illustrations. The equation z = F (t, v) defines a surface (the graph of F ) in R
3

lying above the open set U . The (t, v)-plane in R
3 is defined by the equation z = 0.

This plane slices the graph of F in the same curve we see in the M100 example above.

–1
–0.5

0
0.5

1

t

–1
–0.5

0
0.5

1

v

–1

0

1

Figure 2: The plane z = 0 slicing the surface z = F (t, v).

The Theorem presents conditions under which some open rectangle (α, β) × (p, q)
centred at (t0, v0) contains a piece of the curve that coincides with the graph of a C1

function on (α, β). A rectangle consistent with this conclusion is shown in Figure 1.

27 Oct 2023

We now prove the famous regularity theorem of Weierstrass/Hilbert.

Theorem (Weierstrass/Hilbert). Suppose L = L(t, x, v) is C2 and x̂ ∈ PWS[a, b]

is an extremal for L. Let t0 ∈ (a, b) be a point where ˙̂x is continuous. If

Lvv(t0, x̂(t0), ˙̂x(t0)) 6= 0,

then there is an open interval containing t0 on which x̂ ∈ C2.
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Proof. Since t0 is a continuity point for ˙̂x, and the number of corner points for x̂ is
finite (by definition of the set PWS[a, b]), there must be some open interval (α0, β0)
such that t0 ∈ (α0, β0) ⊆ [a, b] and x̂ ∈ C1(α, β). On this interval, by extremality,
there is a constant c so that the function

F (t, v) := Lv(t, x̂(t), v)−
∫ t

a

L̂x(r) dr − c

obeys F (t, ˙̂x(t)) = 0 for all t in some open set around t0. In particular, F (t0, v0) = 0,

where v0 = ˙̂x(t0). Now function F is jointly C1 near (t0, v0), and, by hypothesis,

Fv(t0, v0) = Lvv(t0, x0, v0) 6= 0.

Apply the implicit function theorem: there must be some open interval (α, β) around
t0 and some open set U around v0 such that the conditions

F (t, ψ(t)) = 0, ψ(t) ∈ U

implicitly define a unique ψ ∈ C1(α, β). But ˙̂x already does these things! Specifically,

since ˙̂x is continuous at t0, with ˙̂x(t0) = v0 ∈ U , we may shrink (α, β) if necessary

to guarantee that (α, β) ⊆ (α0, β0 and indeed ˙̂x(t) ∈ U for all t ∈ I ∩ (α, β). Then

uniqueness gives ψ(t) = ˙̂x(t) for all t in this interval. But since ψ ∈ C1, this gives
˙̂x ∈ C1, i.e., x̂ ∈ C2 (I ∩ (α, β)). ////

Corollary. Suppose L ∈ C2 everywhere and x̂ ∈ PWS[a, b] is extremal for L. If
every t ∈ (a, b) is a point where

Lvv(t, x̂(t), v)) > 0 ∀v ∈ R,

then x̂ ∈ C2[a, b].

Proof. Pick any t0 ∈ (a, b). By extremality,

lim
t→t−

0

L̂v(t) = lim
t→t+

0

L̂v(t),

i.e., Lv(t0, x̂(t0), ˙̂x(t
−
0 )) = Lv(t0, x̂(t0), ˙̂x(t

+
0 )). (WE1)

But the function v 7→ Lv(t0, x̂(t0), v) is strictly increasing on the whole real line, so
there is no chance to get the same value with different inputs. That is, we must have
˙̂x(t−0 ) =

˙̂x(t+0 ). So t0 is not a corner point for x̂, and the Theorem above implies x̂ is
C2 in some open interval around t0. This works for every t0 ∈ (a, b). ////

Remarks. When an extremal x̂ is known to be C2, taking d
dt in (IEL) gives (DEL),

and our previous “optimistic calculation” also works. In cases where L = L(x, v) is
independent of t, x̂ will satisfy both

d

dt
Lv(x(t), ẋ(t)) = Lx(x(t), ẋ(t)) t ∈ (a, b), (DEL)

L(x(t), ẋ(t))− Lv(x(t), ẋ(t))ẋ(t) = k, t ∈ (a, b). (WE2)
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Example: A Famous Class of Problems. Lots of practical integrands have the
form L(x, v) = f(x)

√
1 + v2 for some smooth, positive-valued function f . (The factor√

1 + v2 is naturally associated with arc length in the (t, x)-plane.) Calculation gives

Lv(x, v) = f(x)
v√

1 + v2

Lvv(x, v) = f(x)

[√
1 + v2 − v v√

1+v2

1 + v2

]
=

f(x)

(1 + v2)3/2
.

The right side is positive for all real v, so every extremal will have the desirable
properties above. We calculate

L(x, v)− Lv(x, v)v = f(x)

[√
1 + v2 − v2√

1 + v2

]
=

f(x)√
1 + v2

.

This is constant along extremals, and the constant must be positive (since f(x) > 0
for all x), so call the constant 1/k: a typical extremal must have

kf(x(t)) =
√
1 + ẋ(t)2

ẋ(t)2 = k2f(x(t))2 − 1

ẋ(t) = ±
√
k2f(x(t))2 − 1.

Knowing that x() ∈ C2 means that ẋ() cannot jump, so open intervals on which
ẋ(t) > 0 and ẋ(t) < 0 can only meet at a point where ẋ(t) = 0, i.e., where f(x(t)) =
1/k. This should be a useful on HW03.
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