This examination has 5 questions and 3 pages.

The University of British Columbia

Final Examinations-December 2006

Mathematics 403

Stabilization and Optimal Control of Dynamical Systems (Professor Loewen)
Open book examination.
Time: $2 \frac{1}{2}$ hours

Any resources used in class may be used during the examination.
Write your answers in the official examination booklet. Start each solution on a separate page.
[15] 1. Consider the matrix below, where $\omega>0$ is an unknown constant and $\zeta=\sqrt{3} / 2$:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & -2 \omega \zeta
\end{array}\right]
$$

(a) Find $e^{t A}$.
(b) Find $e^{t \widetilde{A}}$, where $\widetilde{A}=P^{-1} A P$ and $\quad P=\left[\begin{array}{rr}2 & -1 \\ 1 & 0\end{array}\right]$.
(c) Show that for each piecewise continuous function $u:[0,+\infty) \rightarrow \mathbb{R}$ that satisfies $|u(t)| \leq 10^{403}$ for almost all t, and each $x:[0,+\infty) \rightarrow \mathbb{R}$ obeying

$$
\ddot{x}(t)+2 \omega \zeta \dot{x}(t)+\omega^{2} x(t)=u(t) \quad \text { a.e. } t \in[0,+\infty)
$$

one has $\sup _{t \geq 0}|x(t)|<\infty$.
[20] 2. Consider the single-input system $\dot{x}=A x+B u$ in which

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \tag{*}\\
0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0
\end{array}\right], \quad B=\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right]
$$

It can be shown that $\operatorname{det}(s I-A)=s^{4}+s^{3}-2 s^{2}-s$.
(a) Show that the system $(*)$ is controllable.
(b) Find an invertible matrix P such that the pair $(\widetilde{A}, \widetilde{B})=\left(P^{-1} A P, P^{-1} B\right)$ has controllable canonical form.
(c) Find a feedback matrix F for which the four eigenvalues of $A+B F$ are $-1,-1 \pm i,-2$.
[20] 3. Let $\mathcal{A}(T)$ denote the set of all vectors $x(T)$ corresponding to solutions for this system:

$$
\begin{array}{ll}
\dot{x}_{1}(t)= & x_{2}(t), \\
x_{1}(0)=0 \\
\dot{x}_{2}(t)=-x_{1}(t) \\
|u(t)| \leq 1 . & x_{2}(0)=0 \\
\end{array}
$$

(a) Find and sketch $\mathcal{A}(\pi / 2)$.
(b) Find and sketch $\mathcal{A}(\pi)$.

This examination has 5 questions and 3 pages.
[20] 4. In this problem, the state x and control u are scalars, α, β, A, and B are constants, and $A<B$:

$$
\begin{array}{lll}
\text { minimize } & \int_{0}^{1}\left(\frac{1}{2} u(t)^{2}+e^{-x(t)}\right) d t \\
\text { subject to } & \dot{x}(t)=e^{x(t)} u(t) & \text { a.e. } t \in[0,1], \\
& u(t) \in[A, B] & \text { a.e. } t \in[0,1], \\
& x(0)=\alpha, x(1)=\beta . &
\end{array}
$$

(a) Show that the dynamics $\dot{x}=u e^{x}$ and endpoint conditions $x(0)=\alpha, x(1)=\beta$ can all be satisfied with a constant control, $u(t) \equiv c$. Express c in terms of α and β.
(b) Assume that the control constraints obey $A<c<B$, taking c from part (a). Show that every extremal control $u(\cdot)$ is both nonconstant and nonincreasing. Give a qualitative description of the form of a typical extremal control.
(c) Discard the constraint " $u \in[A, B]$ " and find the unique extremal control-state pair in terms of β, assuming $\alpha=0$.
[25] 5. Consider the following optimal control problem with scalar state x and control u :

$$
\begin{array}{lll}
\text { minimize } & 3 x(\pi)^{2}+\int_{\tau}^{\pi} u(t)^{2} d t \\
\text { subject to } & \dot{x}(t)=(\pi-t) u(t), & \text { a.e. } t \in(\tau, \pi), \\
& u(t) \in \mathbb{R}, & \text { a.e. } t \in(\tau, \pi), \\
& x(\tau)=\xi . &
\end{array}
$$

Solve the following parts in whatever order you find most convenient.
(a) Find an extremal control-state pair in terms of the initial point (τ, ξ), assuming $\tau<\pi$.
(b) Show that the extremal in (a) is a true minimizer.
(c) Find the true Hamiltonian, $\mathbb{H}(t, x, p)$, for this problem.
(d) Find a function $v=v(t, x)$ that satisfies

$$
\begin{array}{lr}
v_{t}(t, x)+\mathbb{H}\left(t, x,-v_{x}(t, x)\right)=0, & 0<t<\pi, \\
v(\pi, x)=3 x^{2}, & x \in \mathbb{R},
\end{array}
$$

(e) Find an optimal control law in feedback form. That is, find a function $U=U(t, x)$ such that for each (τ, ξ) with $\tau<\pi$, the unique solution $x(\cdot)$ of

$$
\dot{x}(t)=(\pi-t) U(t, x(t)), \quad \text { a.e. } \tau<t<\pi, \quad x(\tau)=\xi,
$$

is the extremal arc identified in part (a).

Selected Formulas

$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
$|p q| \leq \frac{1}{2}\left(p^{2}+q^{2}\right)$
$\dot{x}=A x+B u \Longrightarrow x(t)=e^{A(t-r)} x(r)+\int_{r}^{t} e^{A(t-s)} B u(s) d s$
$(I-M)^{-1}=I+M+M^{2}+\cdots \quad$ for any square matrix M such that the right side converges
$\omega \neq 0, \gamma^{2} \neq \omega^{2}, \quad X(t)=\frac{\beta \sin (\gamma t)}{\omega^{2}-\gamma^{2}}+\frac{\alpha \cos (\gamma t)}{\omega^{2}-\gamma^{2}} \Longrightarrow \ddot{X}(t)+\omega^{2} X(t)=\alpha \cos (\gamma t)+\beta \sin (\gamma t)$
$\omega \neq 0, \quad X(t)=\frac{\alpha t \sin (\omega t)}{2 \omega}-\frac{\beta t \cos (\omega t)}{2 \omega} \Longrightarrow \ddot{X}(t)+\omega^{2} X(t)=\alpha \cos (\omega t)+\beta \sin (\omega t)$

