M403(2012) Solutions-Problem Set 6

(c) 2012, UBC Mathematics Department

1. To put the dynamics into standard form, write $x_{1}=y, x_{2}=\dot{y}$. Then we have

$$
\begin{array}{ll}
\dot{x}_{1}(t)=x_{2}(t), & x_{1}(0)=0, \\
\dot{x}_{2}(t)=u(t), & x_{2}(0)=0, \\
u(t) \in[-1,1] . &
\end{array}
$$

We recognize the dynamics of the Rocket Car. The associated preHamiltonian is

$$
H(t, x, p, u)=p_{1} x_{2}+p_{2} u .
$$

Solution I-Use Prior Work. (a) With our reformulation, we seek to minimize the function $\ell\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$ over all points in $\mathcal{A}=\mathcal{A}(2 ; 0, U)$, the attainable set at time $T=2$ for the rocket car. As discussed in class, a point η of the convex set \mathcal{A} achieves the minimum if and only if

$$
-\nabla \ell(\eta) \in N_{\mathcal{A}}(\eta)
$$

Here $-\nabla \ell(\eta)=(-1,1)$ is the same at every point, and we know that outward normals to \mathcal{A} provide the final values of the costate arc that the Maximum Principle associates with the corresponding state trajectory. So we seek an extremal in which $\left(p_{1}(2), p_{2}(2)\right)=(-1,1)$. The adjoint equation then gives $p_{2}(t)=t-1$, and the maximum condition implies

$$
\widehat{u}(t)=\operatorname{sgn}(t-1)= \begin{cases}-1, & \text { if } 0 \leq t<1, \\ +1, & \text { if } 1<t \leq 2 .\end{cases}
$$

For $0 \leq t \leq 1$, the constant control $\widehat{u}(t)=-1$ gives the evolution

$$
x_{2}(t)=-t, \quad x_{1}(t)=-\frac{1}{2} t^{2} ; \quad \text { note } \quad x_{1}(1)=-\frac{1}{2}, \quad x_{2}(1)=-1 .
$$

Then, for $1 \leq t \leq 2$, the constant control $\widehat{u}(t)=+1$ (with the given starting point) gives

$$
x_{2}(t)=-1+(t-1)=t-2, x_{1}(t)=\frac{1}{2} t^{2}-2 t+1 .
$$

The optimal endpoint is $\left(x_{1}(2), x_{2}(2)\right)=(-1,0)$; the corresponding value is $x_{2}(2)-x_{1}(2)=1$. Here is a sketch. The lens-shaped region is the attainable set \mathcal{A} and the green arrow illustrates the vector $(-1,1)$.

(b) In the sketch above, the set of trajectory-endpoints that are allowed to compete for the maximum is formed by intersecting the set \mathcal{A} with the vertical line $x_{1}=1$. We want to maximize x_{2}, so we want the top endpoint of this segment. In our study of the rocket car, we found a precise formula for the upper boundary of the set \mathcal{A} : it is the parabola [where $T=2$]

$$
x_{1}=-\frac{1}{2}\left[T^{2}-\frac{1}{2}\left(x_{2}+T\right)^{2}\right], \quad \text { i.e., } \quad 0=x_{1}+\frac{1}{2}\left[4-\frac{1}{2}\left(x_{2}+2\right)^{2}\right] \stackrel{\text { def }}{=} \phi\left(x_{1}, x_{2}\right) .
$$

Substituting $x_{1}=1$ gives (the positive solution) $x_{2}=2(\sqrt{3}-1)$. So this is the optimal final point for the trajectory we seek. At this final point, a vector normal to the boundary curve is

$$
\nabla \phi(1,2(\sqrt{3}-1))=(1,-\sqrt{3})
$$

This points down and to the right, so we must negate it to get an outward normal for \mathcal{A} at the point of interest. This provides the value of $p(2)$ in the extremality conditions that describe the trajectory:

$$
\left(p_{1}(2), p_{2}(2)=(-1, \sqrt{3}) .\right.
$$

We deduce that $p_{1}(t)=-1$ is constant and that

$$
p_{2}(t)=\sqrt{3}-2+t,
$$

so, since $\widehat{u}(t)=\operatorname{sgn}\left(p_{2}(t)\right)$,

$$
\widehat{u}(t)= \begin{cases}-1, & \text { for } 0<t<2-\sqrt{3} \\ +1, & \text { for } 2-\sqrt{3}<t<2\end{cases}
$$

Integrating the system dynamics produces the second trajectory shown in the sketch above.

Solution II—Use the Maximum Principle Directly.

(a) With the dynamic reformulation above, our goal is to minimize $\ell\left(x_{1}(2), x_{2}(2)\right)$, where $\ell\left(x_{1}, x_{2}\right)=$ $x_{1}-x_{2}$. If a control \widehat{u} gives the minimum, it must be extremal. That is, the corresponding state evolution $x(\cdot)$ must come with some arc $p:[0,2] \rightarrow \mathbb{R}^{2}$ satisfying the following conditions:
(AE) $-\dot{p}_{1}=H_{x_{1}}=0,-\dot{p}_{2}=H_{x_{2}}=p_{1}$, with H evaluated at $(t, x(t), p(t), \widehat{u}(t))$.
This gives $p_{1}(t)=-m$ and $p_{2}(t)=m t+b$ for some constants m, b.
(GD) $\dot{x}_{1}=H_{p_{1}}=x_{2}, \dot{x}_{2}=H_{p_{2}}=\widehat{u}$, all evaluated along the trajectory as in (i).
This repeats the state equations. Further analysis appears below.
(MC) For almost all t, the choice $w=\widehat{u}(t)$ maximizes $H(t, x(t), p(t), w)$ over $w \in[-1,1]$.

This gives $\widehat{u}(t)=\operatorname{sgn}\left(p_{2}(t)\right)=\operatorname{sgn}(m t+b)$.
(TC) $\left(-p_{1}(2),-p_{2}(2)\right)=\nabla \ell\left(x_{1}(2), x_{2}(2)\right)=(1,-1)$.
Since $p(2)=(-m, 2 m+b)$, this amounts to $(m,-2 m-b)=(1,-1)$, so $m=1$ and $b=-1$.
From (TC), $p_{2}(t)=t-1$. Hence, from (iii),

$$
\widehat{u}(t)=\operatorname{sgn}(t-1)= \begin{cases}-1, & \text { if } 0 \leq t<1 \\ +1, & \text { if } 1<t \leq 2\end{cases}
$$

In a strict interpretation, this completes the problem. But it's nice to see a little more: for $0 \leq t \leq 1$, the constant control $\widehat{u}(t)=-1$ gives the evolution

$$
x_{2}(t)=-t, \quad x_{1}(t)=-\frac{1}{2} t^{2} ; \quad \text { note } \quad x_{1}(1)=-\frac{1}{2}, x_{2}(1)=-1 .
$$

Then, for $1 \leq t \leq 2$, the constant control $\widehat{u}(t)=+1$ (with the given starting point) gives

$$
x_{2}(t)=-1+(t-1)=t-2, x_{1}(t)=\frac{1}{2} t^{2}-2 t+1
$$

The optimal endpoint is $\left(x_{1}(2), x_{2}(2)\right)=(-1,0)$; the corresponding value is $x_{2}(2)-x_{1}(2)=1$. These elements are in the sketch provided above.
(b) This time the final condition involves the target set $S=\{1\} \times \mathbb{R}$, and at every point of S [including the maximizing endpoint], the cone of outward normals is given by

$$
N_{S}\left(x_{1}(2), x_{2}(2)\right)=\mathbb{R} \times\{0\} .
$$

The conditions defining extremality of a control \widehat{u} are all the same as in part (a), except that (TC) is replaced by

$$
\begin{aligned}
\quad-\left(p_{1}(2), p_{2}(2)\right) & =\nabla \ell\left(x_{1}(2), x_{2}(2)\right)+N_{S}\left(x_{1}(2), x_{2}(2)\right), \\
\text { i.e., } \quad(m,-2 m-b) & =(1,-1)+\mathbb{R} \times\{0\} \\
\text { i.e., } \quad m-1 \in \mathbb{R}, & -2 m-b+1 \in\{0\} .
\end{aligned}
$$

The first of these inclusions gives no useful information at all about m, but the second gives $b=1-2 m$, so that $p_{2}(t)=m t+1-2 m$. What information can we extract about the switching strategy for \widehat{u} ? Notice that a constant control $\widehat{u} \equiv \sigma(\sigma= \pm 1)$ cannot hope to solve the problem, since it produces a trajectory that violates the endpoint constraint:

$$
\widehat{u}(t) \equiv \sigma \text { on }[0,2] \Longrightarrow x(t)=\left(\frac{1}{2} \sigma t^{2}, \sigma t\right) \text { on }[0,2] \Longrightarrow x_{1}(2)=2 \sigma \neq 1
$$

So the function p_{2} must have a sign change somewhere in the interval $(0,2)$. Calculation shows $p_{2}(\tau)=0$ iff $\tau=2-1 / m$, so we must have

$$
0<\tau<2 \text {, i.e., } \quad-2<-\frac{1}{m}<0, \quad \text { i.e., } \quad m>\frac{1}{2} \text {. }
$$

This implies that p_{2} has positive slope, so it starts negative and finishes positive. The optimal control must have the form below for some τ :

$$
\widehat{u}(t)= \begin{cases}-1, & \text { if } 0 \leq t<\tau \tag{*}\\ +1, & \text { if } \tau<t \leq 2\end{cases}
$$

To find τ, we just integrate the dynamics and enforce the constraint. On the initial segment, $\widehat{u}(t)=-1$ gives the evolution

$$
x_{2}(t)=-t, \quad x_{1}(t)=-\frac{1}{2} t^{2} ; \quad \text { note } \quad x_{1}(\tau)=-\frac{1}{2} \tau^{2}, \quad x_{2}(\tau)=-\tau .
$$

On the final segment, $\widehat{u}(t)=+1$ and

$$
\begin{aligned}
& x_{2}(t)=-\tau+(t-\tau)=t-2 \tau \\
& x_{1}(t)=-\frac{1}{2} \tau^{2}-\tau(t-\tau)+\frac{1}{2}(t-\tau)^{2}=\tau^{2}-2 t \tau+\frac{1}{2} t^{2} .
\end{aligned}
$$

The trajectory finishes in the target line S if and only if

$$
0=x_{1}(2)-1=\tau^{2}-4 \tau+1=\tau^{2}-4 \tau+4-3=(\tau-2)^{2}-3,
$$

i.e., $\tau=2 \pm \sqrt{3}$. Only the choice $\tau=2-\sqrt{3}$ lies in the interval $(0,2)$, so this is the switching time we want: using it in (*) completes the determination of \widehat{u}. The corresponding maximum value is

$$
x_{2}(2)=[2-2 \tau]_{\tau=2-\sqrt{3}}=2(\sqrt{3}-1) .
$$

2. The sketch supplied at the end of this writeup summarizes the answer. Here's how to derive it.

The conditions of the Maximum Principle involve $H((x, y),(p, q), u)=p y+q u$, and stipulate that a time-optimal control \widehat{u} that steers some initial point to S in minimum-time T must have corresponding state trajectory (x, y) and costate arc (p, q) satisfying the given system dynamics and
(a) $-\dot{p}=H_{x}=0,-\dot{q}=H_{y}=p$, so p is constant and $q(t)=b-p t$ for some b.
(c) $\widehat{u}(t) \in \arg \max \{q(t) v: v \in[-1,1]\}=\operatorname{sgn}(q(t))=\operatorname{sgn}(b-p t)$,
(d) $-(p(T), q(T)) \in N_{S}(x(T), y(T))$.

If the final point lies on a the face of S where $y=x+1$ and $-1<x<0$, then the outward normals to S all have the same direction as $(-1,1)$. Since the adjoint functions are scale-invariant, we may insist that $(-p, p T-b)=(-1,1)$, giving $p=1$ and $b=T-1$. Hence $q(t)=T-1-t$. So $q(t)$ is strictly decreasing, and changes sign from positive to negative when $t=T-1$. The corresponding control has the form

$$
\widehat{u}(t)= \begin{cases}1, & \text { if } 0 \leq t<T-1 \\ -1, & \text { if } T-1<t \leq T\end{cases}
$$

For a final point $\left(x_{0}, y_{0}\right)$ obeying $y_{0}=x_{0}+1$ the final trajectory obeys $x=K-\frac{1}{2} y^{2}$ with $K=x_{0}+\frac{1}{2} y_{0}^{2}$, i.e.,

$$
x=x_{0}+\frac{1}{2}\left(y_{0}^{2}-y^{2}\right) .
$$

The extreme cases $\left(x_{0}, y_{0}\right)=(-1,0)$ and $\left(x_{0}, y_{0}\right)=(0,1)$ give parabolas $x=-1-\frac{1}{2} y^{2}$ and $x=\frac{1}{2}-\frac{1}{2} y^{2}$, respectively. Since the trajectories' displacement along the y-axis has unit speed, the switching point (x, y) must obey where $y=1+y_{0}$ and therefore

$$
x=x_{0}+\frac{1}{2}\left[y_{0}^{2}-\left(y_{0}+1\right)^{2}\right]=x_{0}+\frac{1}{2}\left[-1-2 y_{0}\right]=x_{0}+\frac{1}{2}\left[-1-2\left(1+x_{0}\right)\right]=-\frac{3}{2} .
$$

So the switching locus is the segment of $x=-3 / 2$ which runs between $y=1$ and $y=2$, its intersection points with the extreme parabolas already found.

If the final point lies at the vertex $(-1,0)$ of S, there is a big range of choices for the possible normal to S. One points straight down, leading via (d) to $(0,-1)=-(p(T), q(T))=(-p, p T-b)$. This gives $p=0$ and $b=1$, so $\widehat{u}(t)=1$ always and the system cruises to $(-1,0)$ along $x=-1+\frac{1}{2} y^{2}$. The others all point to the left, having form $(-1, k)$ for some $k \leq 1$. For these condition (d) gives $(-1, k)=(-p, p T-b)$ so $p=1$ and $b=T-k$, leading to $q(t)=T-t-k$. Each $k \leq 1$ produces a different decreasing function; the sign changes at time $T-k$. The corresponding family of controls (one for each k) describes a band of trajectories that follow $u \equiv 1$ until they switch onto a short arc of the parabola $x=-1-\frac{1}{2} y^{2}$ for their final trip to the target.

If the final point lies at the vertex $(0,1)$ of S, there are many possible normals, so there may be many corresponding trajectories. The normal $(1,0)$ leads to $(1,0)=(-p, p T-b)$ with $p=-1$ and $b=-T$, so $q(t)=-T-t$ is everywhere negative and the system follows $u \equiv-1$ forever. The normals $(r, 1)$ where $r \geq-1$ lead to $(r, 1)=(-p, p T-b)$, i.e., $p=-r$ and $b=-r T-1$, i.e., $q(t)=-r T-1+r t$. Whenever $r \geq 0$ we have $q(t)=-1+r(t-T)<0$ so the same trajectory is produced. But for $-1 \leq r<0, q$ is strictly decreasing and may start positive. Its sign change occurs when $t=T+1 / r<T-1$, which corresponds to a point on the parabola $x=\frac{1}{2}-\frac{1}{2} y^{2}$ above and to the left of the line segment found earlier.

Key features identified above are shown in this sketch:

On parabolic arcs opening to the right, the control obeys $u=1$. In the small region adjacent to the hypotenuse of S, the time-optimal control is $u=-1$.
3. Here the preHamiltonian is

$$
H(\mathbf{x}, \mathbf{p}, u)=p_{1}\left(-3 x_{1}+3 u\right)+p_{2}\left(-x_{2}+u\right)=-3 x_{1} p_{1}-x_{2} p_{2}+\left(3 p_{1}+p_{2}\right) u .
$$

The extremality conditions relating an optimal control-state pair $\widehat{u}(\cdot), \mathbf{x}(\cdot)$ to its costate $\mathbf{p}(\cdot)$ say
(a) $-\dot{p}_{1}(t)=H_{x_{1}}(\mathbf{x}(t), \mathbf{p}(t), \widehat{u}(t))=-3 p_{1}(t)$, so $p_{1}(t)=K e^{3 t}$ for some $K \in \mathbb{R}$;

$$
-\dot{p}_{2}(t)=H_{x_{2}}(\mathbf{x}(t), \mathbf{p}(t), \widehat{u}(t))=-p_{2}(t) \text {, so } p_{2}(t)=C e^{t} \text { for some } C \in \mathbb{R} .
$$

(b) $\dot{x}_{1}(t)=H_{p_{1}}(\mathbf{x}(t), \mathbf{p}(t), \widehat{u}(t))=-3 x_{1}(t)+3 \widehat{u}(t)$,

$$
\dot{x}_{2}(t)=H_{p_{2}}(\mathbf{x}(t), \mathbf{p}(t), \widehat{u}(t))=-x_{2}(t)+\widehat{u}(t),
$$

(c) $\widehat{u}(t) \in \arg \max \left\{\left[3 p_{1}(t)+p_{2}(t)\right] v:-1 \leq v \leq 1\right\}$, so $\widehat{u}(t) \in \operatorname{Sgn}\left(3 p_{1}(t)+p_{2}(t)\right)$ a.e..
(d) $-\mathbf{p}(T) \in N_{\{\mathbf{0}\}}(\mathbf{0})=\mathbb{R}^{2}, \mathbf{p}(T) \neq \mathbf{0}$. This forces $K^{2}+C^{2} \neq 0$ in (a), but otherwise gives no useful information.
Introduce $\phi(t)=3 p_{1}(t)+p_{2}(t)=3 K e^{3 t}+C e^{t}$, so $\widehat{u}(t) \in \operatorname{Sgn} \phi(t)$ in (c). Notice that

$$
\phi(t)=0 \Longleftrightarrow 3 K e^{3 t}=-C e^{t} \Longleftrightarrow 3 K e^{2 t}=-C .
$$

If $K \neq 0$, this has at most one solution for t. Case $K=0$ is possible, but it forces $C \neq 0$ by (d), and $\phi(t)=C e^{t}$ is then a function with no zeros at all. Thus we deduce that the control function \widehat{u} is piecewise constant at level -1 or +1 , with at most one jump.

On any open interval (a, b) where \widehat{u} is constant, standard ODE-solving work reveals

$$
\begin{aligned}
& \frac{d}{d t}\left[x_{1}-\widehat{u}\right]=\dot{x}_{1}=-3\left[x_{1}-\widehat{u}\right] \quad \Longrightarrow \quad x_{1}(t)=\widehat{u}+\left[x_{1}(a)-\widehat{u}\right] e^{-3(t-a)}, \\
& \frac{d}{d t}\left[x_{2}-\widehat{u}\right]=\dot{x}_{2}=-\left[x_{2}-\widehat{u}\right] \quad \Longrightarrow \quad x_{2}(t)=\widehat{u}+\left[x_{2}(a)-\widehat{u}\right] e^{-(t-a)}
\end{aligned}
$$

Both x_{1} and x_{2} are monotonic functions of t, converging to \widehat{u} as $t \rightarrow \infty$. Eliminating t between the equations above gives

$$
\begin{equation*}
\left(\frac{x_{1}(t)-\widehat{u}}{x_{1}(a)-\widehat{u}}\right)=\left(\frac{x_{2}(t)-\widehat{u}}{x_{2}(a)-\widehat{u}}\right)^{3} . \tag{**}
\end{equation*}
$$

Thus the system state follows a cubic path in the (x_{1}, x_{2})-plane, moving toward the point $(\widehat{u}, \widehat{u})$. Some trajectories are shown in Figure 1.

Fig. 1: Trajectories with $u=+1$ are red; trajectories for $u=-1$ are blue.

Switching Curve. A trajectory along which \widehat{u} is constant obeys $\mathbf{x}(t)=\mathbf{0}$ for some t iff [see ($* *)$]

$$
\left(\frac{0-\widehat{u}}{x_{1}(a)-\widehat{u}}\right)^{-1}=\left(\frac{0-\widehat{u}}{x_{2}(a)-\widehat{u}}\right)^{-3}, \quad \text { i.e., } \quad\left(x_{1}(a)-\widehat{u}\right)=\left(x_{2}(a)-\widehat{u}\right)^{3} / \widehat{u}^{2}
$$

When $\widehat{u} \equiv+1$, this reveals a curve along which the state can ride to the origin:

$$
S_{+}: \quad x_{1}=\left(x_{2}-1\right)^{3}+1, \quad x_{2} \leq 0
$$

When $\widehat{u} \equiv-1$, the state can ride to the origin along this curve in the first quadrant:

$$
S_{-}: \quad x_{1}=\left(x_{2}+1\right)^{3}-1, \quad x_{2} \geq 0
$$

Time-Optimal Synthesis. Let $\psi(y)= \begin{cases}(y-1)^{3}+1, & \text { if } y \leq 0, \\ (y+1)^{3}-1, & \text { if } y>0 .\end{cases}$

Then the best control strategy is $U\left(x_{1}, x_{2}\right)= \begin{cases}+1, & \text { if } x_{1}>\psi\left(x_{2}\right), \\ -1, & \text { if } x_{1}<\psi\left(x_{2}\right), \\ +1, & \text { if } x_{1}=\psi\left(x_{2}\right) \text { with } x_{2}<0, \\ -1, & \text { if } x_{1}=\psi\left(x_{2}\right) \text { with } x_{2}=0, \\ 0, & \text { if } x_{1}=0=x_{2}\end{cases}$
A sketch of the optimal feedback synthesis appears below. The curve $x=\psi(y)$ divides the plane into two symmetric pieces. Above the curve, the control $U=-1$ drives the state downward on a cubic curve with vertex $(-1,-1)$. The state hits the switching curve before reaching that vertex, and rides to the origin along $x=\psi(y)$ using the constant control $U=1$. A symmetric description applies below the curve.

Fig. 2: Feedback synthesis.
4. Defining $u=\dot{x}-x$ and $y(t)=\int_{0}^{t}(3 \dot{x}(r)-5 x(r)) d r$, and then changing names to $x_{1}=x, x_{2}=y$ leads to the equivalent problem

$$
\begin{array}{lll}
\operatorname{minimize} & x_{2}(2) & \\
\text { subject to } & \dot{x}_{1}=x_{1}+u, & x_{1}(0)=5 \\
& \dot{x}_{2}=-2 x_{1}+3 u, & x_{2}(0)=0 \\
& u \in[0,2] &
\end{array}
$$

This is a fixed-interval problem of a standard form. Its endpoint cost function is $\ell(x, y)=y$; the pre-Hamiltonian is $H(x, p, u)=p_{1} x_{1}-2 p_{2} x_{1}+\left(p_{1}+3 p_{2}\right) u$. An optimal control \widehat{u} must satisfy the usual conditions of the maximum principle, together with the transversality condition
(d) $\left(-p_{1}(2),-p_{2}(2)\right)=\nabla \ell(x(2))=(0,1)$.

The adjoint equations say
(a) $-\dot{p}_{1}=H_{x_{1}}=p_{1}-2 p_{2}, \quad-\dot{p}_{2}=H_{x_{2}}=0$.

The second of these implies that p_{2} is constant, with the value $p_{2} \equiv-1$ from (d); the first then gives $p_{1}=A e^{-t}-2$ for some A. Recalling (d), we find $p_{1}(t)=-2+2 e^{2-t}$. The maximum condition
requires that

$$
\widehat{u}(t) \in \arg \max _{v \in[0,2]}\left\{\left(p_{1}(t)+3 p_{2}(t)\right) v\right\}=\arg \max _{v \in[0,2]}\left\{\left(2 e^{2-t}-5\right) v\right\} .
$$

The coefficient of v on the right is a decreasing function that changes sign when $2 e^{2-t}=5$, i.e., when $t=\tau \stackrel{\text { def }}{=} 2-\ln (5 / 2)$. Hence the optimal control is given by

$$
\widehat{u}(t)= \begin{cases}2, & \text { if } 0 \leq t<\tau \\ 0, & \text { if } \tau<t \leq 2\end{cases}
$$

The corresponding trajectories can now be obtained by integrating the dynamic equations. The first equation implies that the optimal arc x in the original problem coincides with

$$
x_{1}(t)= \begin{cases}7 e^{t}-2, & \text { if } 0 \leq t \leq 2-\ln (5 / 2) \\ \left(7-5 e^{-2}\right) e^{t}, & \text { if } 2-\ln (5 / 2)<t \leq 2\end{cases}
$$

Although the problem statement does not require it, we may observe that

$$
x_{2}(t)= \begin{cases}10 t-14\left(e^{t}-1\right), & \text { if } 0 \leq t \leq 2-\ln (5 / 2), \\ 30-10 \ln (5 / 2)-2\left(7-5 e^{-2}\right) e^{t}, & \text { if } 2-\ln (5 / 2)<t \leq 2,\end{cases}
$$

so the minimum value in the original problem is $x_{2}(2)=40-10 \ln (5 / 2)-14 e^{2}$.

