Math 253, Section 102, Fall 2006
Sample Problems from Week 4

Example 1 : Determine whether the following limits exist. If yes, find
the limit. If not, justify.
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Solution. (i) Convert to polar coordinates; i.e., set r = /22 4+ y2. Then
r — 0 as (z,y) — 0. Therefore,
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where at the last but one step we have substituted z = —1/r?.
(ii) The substitution y = mx yields
zt—yt , (1 —m?) 1—m!
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Hence if (z,y) — (0,0) along the line y = 0 (where m = 0, then the
limit is 1, whereas if (x,y) — (0,0) along the line y = x (when m = 1),
the limit is 0. Therefore the limit does not exist.

(iii) Using spherical coordinates yields
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Since the graph of sin(1/t) oscillates arbitrarily fast between -1 and 1
near t = 0, the limit does not exist. l

Example 2 : Determine the largest set of points in the zy-plane on
which f(z,y) = tan(1/(x + y)) defines a continuous function.

Solution. Because the tangent function is continuous on the set R\
{£m/2,4£37/2,£57/2---}, the given function f has discontinuities
whenever
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The set of discontinous points is therefore the union of an infinite num-
ber of parallel straight lines, given by

r4+y==+ n=20,1,2,--- and x +y = 0.

(2n+1)n’
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Example 3 : Compute the first-order partial derivatives of the follow-

ing function :
flrs,t) = (1 —r*—s* —t*)e "

Solution.
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= e " (rs*t + rit +rt* — 25 — 1),
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= e " (rst? +1r3s +rs® — 2t —1s).
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Example 4 : Describe the level surface of the fnction f(z,y,z) =
24+ /2% + 92,

Solution. The level surface of f is defined by the equation f(x,y,z) =
k, where k is a constant. This translates to k — z = /22 + y2. The
level surfaces of f are therefore the lower nappes of circular cones with
vertices on the z-axis. U

Example 5 : Discuss the continuity of the function

sin(zy) - f xy #0
= zry
f(@y) {1 if zy = 0.

Solution. The ratio of two continuous functions is always continuous,
as long as the denominator does not vanish. Therefore f is continuous
at every (a,b) such that ab # 0. We therefore only need to verify
continuity at a point where ab = 0. Using the substitution z = xy and
the basic trigonometric limit sint/t — 1 as t — 0, we get
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Therefore f is continuous at all (a,b) € R?. O
Example 6 : Use implicit differentiation to find 0z/0x and 9z/dy.
yz = In(x + z2).
Solution. Differentiating the equation with respect to x we get,
0z 1+ %
Yor ~ x4z
Solving for 0z/0x gives
0z 1
ox ylr+2)—1
Similarly differentiation with respect to y yields
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0z By
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from which we obtain
0z z2(z 4+ 2)

dy  1—ylz+2)



