Math 253, Section 102, Fall 2006 Midterm, October 25

Name:

SID:

Instructions

- The total time is 50 minutes.
- The total score is 50 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Calculators and cheat sheets are not allowed.

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
TOTAL	50	

1. Give brief answers to each of the following questions. Please show all your work leading up to the answer.

$$
(2+4+5+4=15 \text { points })
$$

(a) Find the angle between the vectors $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+\mathbf{k}$.
(b) Do the following lines intersect? If yes, find the point of intersection. If not, explain why not.

$$
\left\{\begin{array} { l }
{ x = 1 + t } \\
{ y = 1 - t } \\
{ z = 2 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x & =2-s \\
y & =s \\
z & =2
\end{array}\right.\right.
$$

(c) You are given the equation $r^{2}=r$ in cylindrical coordinates. Describe and sketch the region it represents in 3 -space.
(d) You measure the length, width and height of a box to be 10 cm , 5 cm and 3 cm respectively. The scale you used was off by a cm in each measurement. How much error did you make in computing the volume of the box?
2. All the questions in this item are about the following surface :

$$
\begin{aligned}
& x^{2}+y^{2}+2 z^{2}=1 \\
& \quad(2+8+5=15 \text { points })
\end{aligned}
$$

(a) Identify and sketch the surface.
(b) At which point(s) of the surface does the normal vector point along the direction of the line

$$
\frac{x-1}{\sqrt{2}}=\frac{z}{2}, \quad y=-3 ?
$$

(c) Find the equation of the tangent plane to the surface at the point where $x=\frac{3}{5}, y=\frac{4}{5}$.
(d) (5 extra credit points) An ant lies on the surface at the point $x=y=z=\frac{1}{2}$. In which direction should it go in order to climb the steepest slope?
3. For each question in this item, find the limit, or show that the limit does not exist.

$$
(5+5=10 \text { points })
$$

(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\tan ^{2}\left(\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}}$.
(b) $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{3}}{x^{8}+y^{6}}$.
4. You are given a function $z=f(x, y)$, with

$$
f_{y}(1,0)=0, \quad f_{x y}(1,0)=1 .
$$

Introduce two new variables (r, s) that depend on (x, y) as follows

$$
x=r^{2}+s^{2}, \quad y=2 r s .
$$

Find

$$
\begin{aligned}
\frac{\partial z}{\partial r} \text { and } \frac{\partial^{2} z}{\partial s \partial r} \text { when } r=0, s= & 1 . \\
& (3+7=10 \text { points })
\end{aligned}
$$

