
Math 253, Section 102, Fall 2006

Practice Final Solutions
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1. Determine whether the two lines L1 and L2 described below inter-
sect. If yes, find the point of intersection. If not, say whether they
are parallel or skew, and find the shortest distance between them.

The line L1 is described by the equations

x− 1 = 2y + 2, z = 4,

and the line L2 passes through the points P (2, 1,−3) and Q(0, 8, 4).

Solution. We first find two points on L1, say P1(1,−1, 4) and
Q1(3, 0, 4). The direction of L1 is therefore parallel to v1 =

~P1Q1 = (2, 1, 0). Similarly the direction of L2 is parallel to

v2 = ~PQ = (−2, 7, 7). Thus the two lines cannot be parallel.
To determine whether they intersect we write down the paramet-
ric representation of L1, namely

x = 2s + 3, y = s, z = 4.

On the other hand, a parametric representation of of L2 is

(x, y, z) = (2, 1,−1) + t ~PQ = (2− 2t, 1 + 7t,−3 + 7t).

Setting −3 + 7t = 4 we obtain t = 1, while setting 1 + 7t = s
gives s = 8. For these values of s and t, x = 2 − 2t = 0, and
x = 3 + 2s = 19. Therefore the two lines do not intersect, i.e.,
they are skew.

In order to find the distance between the lines, note that c =
~P1P is a connector between the lines and that n = v1 × v2 =

(7,−14, 16) is normal to both lines. Therefore the distance be-
tween the lines is

D =
|n · c|
|n|

=
133√
501

.

�
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2. Find and sketch the largest possible domain of the function

f (x, y, z) = arcsin(3− x2 − y2 − z2).

Solution. The domain of the function is

D =
{
(x, y, z) : 0 ≤ 3− x2 − y2 − z2 ≤ 1

}
=

{
(x, y, z) : 2 ≤ x2 + y2 + z2 ≤ 3

}
.

This describes a hollow spherical shell centered at the origin, whose
inner radius is

√
2 and outer radius is

√
3. �
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3. Find the equation of the tangent plane to the surface

yz = ln(x + z)

at the point (1, 0, 0).

Solution. We use implicit differentiation to compute ∂z
∂x and ∂z

∂y at

(1, 1, 0). Differentiating implicitly with respect to x gives

y
∂z

∂x
=

1

x + z

(
1 +

∂z

∂x

)
, i.e.,

∂z

∂x
(1, 0, 0) = −1.

Similarly,

z + y
∂z

∂y
=

1

x + z

∂z

∂y
, i.e.,

∂z

∂y
(1, 0, 0) = 0.

The equation of the tangent plane is therefore

z = −(x− 1).
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4. The plane 4x + 9y + z = 0 intersects the elliptic paraboloid z =
2x2 + 3y2 in an ellipse. Find the highest and lowest points on this
ellipse.

Solution. We have to optimize the function

f (x, y, z) = z

subject to the two constraints

g(x, y, z) = 4x + 9y + z = 0, h(x, y, z) = 2x2 + 3y2 − z = 0.

Using the method of Lagrange multipliers, we set up the equations

∇f = λ∇g + µ∇h,

which translate to

0 = 4λ + 4µx

0 = 9λ + 6µy, and

1 = λ− µ.

Solve the three above equations together with the two constraints
g = 0 and h = 0. Note first that µ 6= 0, since if it were zero
then λ would also be zero, contradicting the third equation above.
Therefore

36µx = 24µy i.e., y =
3

2
x.

Plugging this into g = 0 given

z = −4x− 27

2
x = −35

2
x.

The constraint h = 0 then translates to

2x2 +
27

4
x2 +

35

2
x = 0, or

35

4
x(x + 2) = 0.

Thus we obtain two solutions for x, namely x = 0 and−2. For x =
0, y = z = 0, while for x = −2, y = −3 and z = 35. Therefore
(0, 0, 0) is the lowest point on the ellipse and and (−2,−3, 35) is
the highest. �
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5. Find the area that is cut from the surface z = x2 − y2 by the
cylinder x2 + y2 = 4.

Proof. The projection of the surface described on the (x, y)-plane
is the disk x2+y2 ≤ 4. The surface area is obtained by integrating√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=
√

1 + 4x2 + 4y2 (since z = x2 − y2)

on this disk. Using cylindrical coordinates to simplify the resulting
integral, we find the area to be

S =

∫∫
x2+y2≤4

√
1 + 4x2 + 4y2 dy dx

=

∫ 2

r=0

∫ 2π

θ=0

√
1 + 4r2 rdθ dr

=
π

6
(17
√

17− 1).

�



7

6. You are standing at the point where x = y = 100 feet on the side
of a mountain whose height (in feet) above the sea level is given
by

z = f (x, y) =
1

1000
(3x2 − 5xy + y2),

with the x-axis pointing east and the y-axis pointing north.
(a) If you head northeast, will you be ascending or descending?

How fast?

Solution. Northeast is given by the direction v = (i+ j)/
√

2. The
direction derivative along this direction at the point x = y = 100
is given by

Dvf = v · ∇f = v · 1

1000
((6x− 5y)i + (−5x + 2y)j)

=
1

1000
√

2
(x− 3y) = − 1

5
√

2
.

I will therefore be descending at the rate of
√

2/10 feet per second
if I head northeast. �
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(b) In which direction should you head in order to descend the
fastest?

Solution. The fastest increase happens along ∇f . The direction
of fastest decrease is therefore

− ∇f

|∇f |
= − (6x− 5y)i + (−5x + 2y)j√

(6x− 5y)2 + (−5x + 2y)2

= −(100i− 300j)

100
√

10
=

1√
10

(−i + 3j).

�
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(c) Suppose that you decide to move in a direction that makes
an angle of 45◦ with (1,−3). How fast will you be ascending or
descending then?

Solution. Note from part (b) that (1,−3) is the direction of ∇f .
Therefore the direction derivative here is given by

Dwf (100, 100) = w · ∇f = |∇f | cos 45◦

=
1

1000
100

√
10

1√
2

=

√
5

10
feet per second.

�
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(d) In which direction should you be moving in order to remain
at the same altitude?

Solution. We need to move perpendicular to ∇f , i.e., along the
direction

± 1√
10

(3i + j).

�
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7. Compute the value of the triple integral∫∫∫
E

zdV,

where E is the region between the surfaces z = y2 and z = 8− y2

for −1 ≤ x ≤ 1.

Solution. Both the surfaces z = y2 and z = 8 − y2 represent
parabolic cylinders. They intersect along the two lines (x,±, 4).
The region E therefore is bounded by z = 8−y2 on the top, z = y2

on the bottom, and its projection onto the xy-plane is the rectangle
[−1, 1] × [−12] (Draw a picture to verify these statements). The
value of the triple integral is therefore

I =

∫ 1

−1

∫ 2

−2

∫ 8−y2

y2
z dz dy dx

=

∫ 1

−1

∫ 2

−2

(32− 8y2) dy dx

=

∫ 1

−1

256

3
dx =

512

3
.

�
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8. According to van der Waal’s equation, 1 mol of gas satisfies the
equation (

p +
a

V 2

)
(V − b) = cT

where p, V and T denote pressure (in atm), volume (in cm3) and
temperature (in kelvins) respectively, and a, b, c are constants.
Suppose there exists a gas of volume 2 cm3, pressure 1 atm and at
temperature 5K for which a = 16, b = c = 1. Use differentials to
approximate the change in its volume if p is increased 2 atm and
T is increased to 8K.

Solution. We differentiate van der Waal’s equation implicitly with
respect to p and T to determine Vp and VT respectively. Check
that these are

Vp =
V 3(V − b)

aV − 2ab− pV 3
= −1, VT =

cV 3

pV 3 − aV + 2ab
= 1.

Now we use the linear approximation dV = VTdT + Vpdp to get
dV = 3− 1 = 2 cm3. �
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9. Evaluate ∫∫∫
E

xyz dV

where E lies between the spheres ρ = 2 and ρ = 4 and above the
cone φ = π/3. Here ρ and φ have the same interpretation as in
spherical coordinates.

Solution.∫∫∫
E

xyz dV =

∫ π
3

0

∫ 2π

0

∫ 4

2

(ρ sin φ cos θ)(ρ sin φ sin θ)(ρ cos φ)

× ρ2 sin φdρdθdφ

=

∫ π
3

0

sin3 φ cos φdφ

∫ 2π

0

sin θ cos θdθ

∫ 4

2

ρ5dρ

= 0,

since the second integral (in θ) is zero. �
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10. Identify all the local maximum, minimum and saddle points of the
function

f (x, y) = (x2 + y)e
y
2 .

Proof. We find that fx = 2xe
y
2 and fy = e

y
2(2+x2 +y). Therefore

the only critical point of the function is (0,−2). Since D(0,−2) =
e−2 > 0 and fxx(0,−2) > 0, by the second derivative test,
f (0,−2) = −2/e is a local minimum. �


