Math 253, Section 102, Fall 2006 Practice Midterm Solutions Name: SID:

Instructions

- The total time is 50 minutes.
- The total score is 100 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Calculators and cheat sheets are not allowed.

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	10	
6	20	
7	20	
TOTAL	25	

1. Prove that the lines
$x-1=\frac{1}{2}(y+1)=z-2 \quad$ and $x-2=\frac{1}{3}(y-2)=\frac{1}{2}(z-4)$
intersect. Find an equation of the only plane that contains them both.

$$
(7+8=15 \text { points })
$$

Solution. Let us first rewrite the equations of the lines in parametric form :

$$
x-1=\frac{y+1}{2}=z-2=t, \quad \text { or } \quad \begin{cases}x & =1+t \\ y & =2 t-1 \\ z & =2+t\end{cases}
$$

and similarly,

$$
x-2=\frac{y-2}{3}=\frac{z-4}{2}=s, \quad \text { or } \quad \begin{cases}x & =2+s \\ y & =3 s+2 \\ z & =2 s+4\end{cases}
$$

The two lines will intersect if and only if the following system of equations

$$
\begin{aligned}
1+t & =2+s \\
2 t-1 & =3 s+2 \\
2+t & =2 s+4 .
\end{aligned}
$$

has a solution. Solving the first two equations in t and s, we obtain $t=0, s=-1$, which also solves the third equation. Therefore the two lines intersect at the point $(1,-1,2)$.
The two lines are parallel to $\mathbf{v}_{\mathbf{1}}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{v}_{\mathbf{2}}=\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ respectively. Therefore the plane that contains both these lines

- has to pass through $(1,-1,2)$ and
- has normal vector along the direction $\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}=\mathbf{i}-\mathbf{j}+\mathbf{k}$.

The equation of the plane is therefore

$$
(x-1)-(y+1)+(z-2)=0, \quad \text { or } \quad x-y+z=4 .
$$

2. For each of the following, either compute the limit or show that the limit does not exist.

$$
(7+8=15 \text { points })
$$

(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}},
$$

Solution. Use polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$. Note that $r \rightarrow 0$ and $(x, y) \rightarrow(0,0)$. Thus,

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} & =\lim _{r \rightarrow 0} \frac{r^{4}\left(\cos ^{4} \theta+\sin ^{4} \theta\right)}{r^{3}} \\
& =\lim _{r \rightarrow 0} r\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \\
& =0 .
\end{aligned}
$$

The last step follows by squeeze theorem, since $0 \leq \sin ^{4} \theta+$ $\cos ^{4} \theta \leq 2$, and therefore,

$$
0 \leq r\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \leq 2 r \rightarrow 0 .
$$

(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3} y^{2}}{x^{6}+y^{4}} .
$$

Solution. We will show that the limit does not exist by computing the limit along the family of paths $y=m x^{\frac{3}{2}}$, where m is an arbitrary parameter.

$$
\begin{aligned}
\lim _{\substack{y=m x^{\frac{3}{2}} \\
x \rightarrow 0}} \frac{2 x^{3} y^{2}}{x^{6}+y^{4}} & =\lim _{x \rightarrow 0} \frac{2 x^{3} m^{2} x^{3}}{x^{6}+m^{4} x^{6}} \\
& =\frac{2 m^{2}}{m^{4}+1}
\end{aligned}
$$

Since the limit depends on m, we obtain different limits along different paths. Therefore the limit does not exist.
3. There is only one point at which the plane tangent to the surface

$$
z=x^{2}+2 x y+2 y^{2}-6 x+8 y
$$

is horizontal. Find it.
(10 points)
Solution. Let

$$
f(x, y)=x^{2}+2 x y+2 y^{2}-6 x+8 y,
$$

and let $\left(x_{0}, y_{0}, z_{0}\right)$ be the point on the surface where the tangent plane is horizontal. This means that the normal direction to the plane is parallel to \mathbf{k}. Recall that the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by the equation

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

therefore the normal direction to the plane lies along the direction $\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right)$. Thus for the tangent plane to be horizontal, we must have

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=2 x_{0}+2 y_{0}-6=0, \\
& f_{y}\left(x_{0}, y_{0}\right)=2 x_{0}+4 y_{0}+8=0 .
\end{aligned}
$$

Solving the two equations we obtain $x_{0}=10, y_{0}=-7, z_{0}=$ -58 .
4. Identify the surface $x=\sin y$ in (x, y, z)-space, and sketch its graph.

$$
(3+7=10 \text { points })
$$

Solution. The surface is a cylinder whose axis is the z-axis. Its projection on the (x, y)-plane is the curve $x=\sin y$.
5. You buy a giftbox whose dimensions are 10 cm by 15 cm by 20 cm , but there may be a possible error of 0.1 cm in each. You want to buy just enough gift-wrapping paper to fully cover your box. What is the maximum error you should allow for while purchasing the paper?
(10 points)
Solution. Let x, y and z denote the length, width and height of the box respectively. The surface area is then given by

$$
S=2(x y+y z+z x)
$$

The error incurred in computing the surface is given in terms of the differential

$$
d S=2(y+z) d x+2(z+x) d y+2(x+y) d z
$$

Substituting $x=10, y=15, z=20$ and $d x=d y=d z=0.1$, we obtain

$$
d S=18 \mathrm{~cm}^{2}
$$

6. The sun is melting a rectangular block of ice. When the block's height is 1 m and the edge of its square base is 2 m , its height is decreasing at $20 \mathrm{~cm} / \mathrm{hr}$ and its base edge is decreasing at 30 $\mathrm{cm} / \mathrm{hr}$. How fast is the volume of the ice block shrinking at that instant?
(20 points)
Solution. Let x denote the sidelength of the square base of the ice block, and let h denote the height. Then the volume is

$$
V=x^{2} h .
$$

We need to compute $\frac{\partial V}{\partial t}$ when $x=2 \mathrm{~m}, h=1 \mathrm{~m}, \frac{\partial x}{\partial t}=-0.3 \mathrm{~m} / \mathrm{hr}$ and $\frac{\partial h}{\partial t}=-0.2 \mathrm{~m} / \mathrm{hr}$. By the chain rule,

$$
\begin{aligned}
\frac{\partial V}{\partial t} & =2 x h \frac{\partial x}{\partial t}+x^{2} \frac{\partial h}{\partial t} \\
& =-2 \mathrm{~m}^{3} / \mathrm{hr} .
\end{aligned}
$$

8
7. Suppose that $w=f(x, y), x=r \cos \theta$ and $y=r \sin \theta$. Show that

$$
\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}=\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial w}{\partial \theta}\right)^{2} .
$$

(20 points)
Solution. By the chain rule,

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r} \\
& =f_{x} \cos \theta+f_{y} \sin \theta, \\
\frac{\partial w}{\partial \theta} & =f_{x} \frac{\partial x}{\partial \theta}+f_{y} \frac{\partial y}{\partial \theta} \\
& =-f_{x} r \sin \theta+f_{y} r \cos \theta .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial w}{\partial \theta}\right)^{2} & =\left(f_{x} \cos \theta+f_{y} \sin \theta\right)^{2}+\left(-f_{x} \sin \theta+f_{y} \cos \theta\right)^{2} \\
& =\left[f_{x}^{2} \cos ^{2} \theta+f_{y}^{2} \sin ^{2} \theta+2 f_{x} f_{y} \sin \theta \cos \theta\right]+ \\
& {\left[f_{x}^{2} \sin ^{2} \theta+f_{y}^{2} \cos ^{2} \theta-2 f_{x} f_{y} \sin \theta \cos \theta\right] } \\
& =f_{x}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+f_{y}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =f_{x}^{2}+f_{y}^{2} \\
& =\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}
\end{aligned}
$$

