Math 253, Section 102, Fall 2006 Practice Midterm

Instructions

- The total time is 50 minutes.
- The total score is 100 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Calculators and cheat sheets are not allowed.

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	10	
6	20	
7	20	
TOTAL	25	

1. Prove that the lines
$x-1=\frac{1}{2}(y+1)=z-2 \quad$ and $x-2=\frac{1}{3}(y-2)=\frac{1}{2}(z-4)$
intersect. Find an equation of the only plane that contains them both.

$$
(7+8=15 \text { points })
$$

2. For each of the following, either compute the limit or show that the limit does not exist.

$$
(7+8=15 \text { points })
$$

(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}},
$$

(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3} y^{2}}{x^{6}+y^{4}}
$$

3. There is only one point at which the plane tangent to the surface

$$
z=x^{2}+2 x y+2 y^{2}-6 x+8 y
$$

is horizontal. Find it.
(10 points)
4. Identify the surface $x=\sin y$ in (x, y, z)-space, and sketch its graph.

$$
(3+7=10 \text { points })
$$

5. You buy a giftbox whose dimensions are 10 cm by 15 cm by 20 cm , but there may be a possible error of 0.1 cm in each. You want to buy just enough gift-wrapping paper to fully cover your box. What is the maximum error you should allow for while purchasing the paper?
(10 points)
6. The sun is melting a rectangular block of ice. When the block's height is 1 m and the edge of its square base is 2 m , its height is decreasing at $20 \mathrm{~cm} / \mathrm{hr}$ and its base edge is decreasing at 30 $\mathrm{cm} / \mathrm{hr}$. How fast is the volume of the ice block shrinking at that instant?
(20 points)
7. Suppose that $w=f(x, y), x=r \cos \theta$ and $y=r \sin \theta$. Show that

$$
\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}=\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial w}{\partial \theta}\right)^{2}
$$

(20 points)

