Multivariable Calculus - Math 253, Section 102

Fall 2006

Solutions for Midterm Review Worksheet

1. If $f(x, y)=\left(x^{3}+y^{3}\right)^{\frac{1}{3}}$, find $f_{x}(0,0)$. (Ans. $f_{x}(0,0)=1$.)

Solution. By the definition of partial derivative,

$$
\begin{aligned}
f_{x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(h^{3}+0\right)^{\frac{1}{3}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h}=1 .
\end{aligned}
$$

2. For each of the following, determine whether the limit exists. If yes, compute the limit.
(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}(1-\cos (2 x))}{x^{4}+y^{2}}
$$

(Ans. limit is 0.)
(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}+(1-\cos (2 x))^{2}}{x^{4}+y^{2}}
$$

(Ans. limit does not exist)

Solution. (a) We use the squeeze theorem to show that the limit exists. Notice that

$$
0 \leq \frac{y^{2}}{x^{4}+y^{2}} \leq 1
$$

Since $(1-\cos (2 x))$ is a nonnegative number, we can multiply all sides of the inequality by it without changing the order of the inequality. This gives

$$
0 \leq \frac{y^{2}(1-\cos (2 x))}{x^{4}+y^{2}} \leq(1-\cos (2 x)) .
$$

Both the left and right hand side approach 0 as $x \rightarrow 0$. Therefore by the squeeze theorem

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}(1-\cos (2 x))}{x^{4}+y^{2}}=0 .
$$

(b) We choose paths of the form $y=m x^{2}$ to show that the limit does not exist. On the path $y=m x^{2}$,

$$
\begin{aligned}
\frac{y^{2}+(1-\cos (2 x))^{2}}{x^{4}+y^{2}} & =\frac{m^{2} x^{4}+\left(2 \sin ^{2} x\right)^{2}}{x^{4}+m^{2} x^{4}} \\
& =\frac{m^{2}+\frac{4 \sin ^{4} x}{x^{4}}}{1+m^{2}}
\end{aligned}
$$

which approaches $\frac{m^{2}+4}{1+m^{2}}$ as $x \rightarrow 0$. Since the limit along a path depends on m, an arbitrary parameter that depends on the path, the limit does not exist.
3. (a) Identify the surface $x^{2}-y^{2}+2 z^{2}=1$.
(b) Find the point(s) on this surface where the direction perpendicular to the tangent plane is parallel to the line joining $(3,-1,0)$ and $(5,3,6)$.

$$
\text { (Ans. } \left.\left(\frac{\sqrt{6}}{3},-\frac{2 \sqrt{6}}{3}, \frac{\sqrt{6}}{2}\right) \text { and }\left(-\frac{\sqrt{6}}{3}, \frac{2 \sqrt{6}}{3},-\frac{\sqrt{6}}{2}\right)\right)
$$

Proof. (a) The surface is an hyperboloid of one sheet with axis along the y-axis.
(b) Set

$$
F(x, y, z)=x^{2}-y^{2}+2 z^{2}-1
$$

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be the point where the direction of the normal vector is parallel to $(2,4,6)$. The normal direction to the surface at $\left(x_{0}, y_{0}, z_{0}\right)$ points along $\left(F_{x}, F_{y}, F_{z}\right)=\left(2 x_{0},-2 y_{0}, 4 z_{0}\right)$. Therefore, there exists a constant k such that

$$
2 x_{0}=2 k, \quad-2 y_{0}=4 k, \quad 4 z_{0}=6 k
$$

Plugging this into the equation of the surface gives $k= \pm \sqrt{6} / 3$, from which we get the coordinates of the point

$$
\begin{array}{r}
\left(x_{0}, y_{0}, z_{0}\right)=k\left(1,-2, \frac{3}{2}\right)=\left(\frac{\sqrt{6}}{3},-\frac{2 \sqrt{6}}{3}, \frac{\sqrt{6}}{2}\right) \\
\text { and }\left(-\frac{\sqrt{6}}{3}, \frac{2 \sqrt{6}}{3},-\frac{\sqrt{6}}{2}\right) .
\end{array}
$$

4. You are standing at the point $(30,20,5)$ on a hill with the shape of the surface

$$
z=\frac{1}{1000} \exp \left(-\frac{x^{2}+3 y^{2}}{700}\right)
$$

(a) In what direction should you proceed in order to climb most steeply?
(Ans. $\left\langle-\frac{60}{7},-\frac{120}{7}\right\rangle$)
(b) At what angle from the horizontal will you initially be climbing in this case?
(Ans. $\left.\arctan \left(\frac{60 \sqrt{5} e^{-3}}{70000}\right)\right)$
(c) If instead of climbing as in part (a), you head directly west, what is your initial rate of ascent? At what angle to the horizontal will you be climbing initially?
(Ans. $\frac{6 e^{-3}}{70000}, \arctan \left(6 e^{-3} / 70000\right)$)
Solution. (a) Set

$$
f(x, y)=\frac{1}{1000} \exp \left(-\frac{x^{2}+3 y^{2}}{700}\right)
$$

Steepest ascent will be in the direction \mathbf{u} along which the directional derivative $D_{\mathbf{u}} f$ will be maximized. We know that this will be in the direction

$$
\mathbf{u}=\frac{\nabla f(30,20)}{|\nabla f(30,20)|}
$$

Now,

$$
\nabla f(x, y)=\frac{1}{1000} \exp \left(-\frac{x^{2}+3 y^{2}}{700}\right)\left(-\frac{2 x}{700}, \frac{6 y}{700}\right)
$$

from which we get the direction to be

$$
\mathbf{u}=(-1,-2) / \sqrt{5}
$$

Note that this has the same direction as the given answer.
(b) When \mathbf{u} is as in part (a),

$$
D_{\mathbf{u}} f=|\nabla f|=\frac{6}{70000} e^{-3} \sqrt{5}
$$

If θ is the angle that the initial climbing direction makes with the horizontal, then $\tan \theta=D_{\mathbf{u}} f$. The angle to the horizontal made while climbing the slope of steepest ascent is therefore

$$
\theta=\arctan |\nabla f|=\arctan \left(\frac{6}{70000} e^{-3} \sqrt{5}\right)
$$

Remark : Note that there was a typo in the answer given in the original worksheet.
(c) Same as parts (a) and (b) but with $\mathbf{u}=$ $(-1,0)$.
5. Suppose that $w=f(x, y), x=r \cos \theta$ and $y=$ $r \sin \theta$. Show that

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}
$$

Solution. We know that

$$
\left\{\begin{array} { l }
{ \frac { \partial x } { \partial r } = \operatorname { c o s } \theta } \\
{ \frac { \partial y } { \partial r } = \operatorname { s i n } \theta }
\end{array} \text { and } \quad \left\{\begin{array}{ll}
\frac{\partial x}{\partial \theta} & =-r \sin \theta \\
\frac{\partial y}{\partial \theta} & =r \cos \theta
\end{array}\right.\right.
$$

By the chain rule we obtain,

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =\frac{\partial w}{\partial x} \cos \theta+\frac{\partial w}{\partial y} \sin \theta \\
\frac{\partial w}{\partial \theta} & =-r \frac{\partial w}{\partial x} \sin \theta+r \frac{\partial w}{\partial y} \cos \theta \\
\frac{\partial^{2} w}{\partial r^{2}}= & \frac{\partial}{\partial r}\left[\frac{\partial w}{\partial x}\right] \cos \theta+\frac{\partial}{\partial r}\left[\frac{\partial w}{\partial y}\right] \sin \theta \\
& =\cos \theta\left[\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial x}\right) \frac{\partial x}{\partial r}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial x}\right) \frac{\partial y}{\partial r}\right]+ \\
& \sin \theta\left[\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial y}\right) \frac{\partial x}{\partial r}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial y}\right) \frac{\partial y}{\partial r}\right] \\
= & \cos \theta\left[\frac{\partial^{2} w}{\partial x^{2}} \cos \theta+\frac{\partial^{2} w}{\partial x \partial y} \sin \theta\right]+ \\
& \sin \theta\left[\frac{\partial^{2} w}{\partial x \partial y} \cos \theta+\frac{\partial^{2} w}{\partial y^{2}} \sin \theta\right] \\
= & \cos ^{2} \theta \frac{\partial^{2} w}{\partial x^{2}}+2 \cos \theta \sin \theta \frac{\partial^{2} w}{\partial x \partial y}+\sin ^{2} \theta \frac{\partial^{2} w}{\partial \theta^{2}}
\end{aligned}
$$

In order to compute $\partial^{2} w / \partial \theta^{2}$, we need to use product rule in conjunction with chain rule.

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial \theta^{2}}= & -r \cos \theta \frac{\partial w}{\partial x}-r \sin \theta \frac{\partial}{\partial \theta}\left(\frac{\partial w}{\partial x}\right) \\
& -r \sin \theta \frac{\partial w}{\partial y}+r \cos \theta \frac{\partial}{\partial \theta}\left(\frac{\partial w}{\partial y}\right) \\
= & -r \cos \theta \frac{\partial w}{\partial x}-r \sin \theta \frac{\partial w}{\partial y}
\end{aligned}
$$

$$
\begin{aligned}
- & r \sin \theta\left[\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial x}\right) \frac{\partial x}{\partial \theta}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial x}\right) \frac{\partial y}{\partial \theta}\right] \\
+ & r \cos \theta\left[\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial y}\right) \frac{\partial x}{\partial \theta}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial y}\right) \frac{\partial y}{\partial \theta}\right] \\
=- & r \cos \theta \frac{\partial w}{\partial x}-r \sin \theta \frac{\partial w}{\partial y} \\
& -r^{2} \sin \theta\left[-\sin \theta \frac{\partial^{2} w}{\partial x^{2}}+\cos \theta \frac{\partial^{2} w}{\partial x \partial y}\right] \\
& +r^{2} \cos \theta\left[-\sin \theta \frac{\partial^{2} w}{\partial x \partial y}+\cos \theta \frac{\partial^{2} w}{\partial y^{2}}\right] \\
=- & r \cos \theta \frac{\partial w}{\partial x}-r \sin \theta \frac{\partial w}{\partial y} \\
& +r^{2} \sin ^{2} \theta \frac{\partial^{2} w}{\partial x^{2}}-2 r^{2} \sin \theta \cos \theta \frac{\partial^{2} w}{\partial x \partial y}+r^{2} \cos ^{2} \theta \frac{\partial^{2} w}{\partial y^{2}} .
\end{aligned}
$$

Now use these to show that the right hand side of the identity given in the problem equals the left hand side.
6. A rectangular block has dimensions $x=3 m, y=$ $2 m$ and $z=1 m$. If x and y are increasing at $1 \mathrm{~cm} / \mathrm{min}$ and $2 \mathrm{~cm} / \mathrm{min}$ respectively, while z is decreasing at $2 \mathrm{~cm} / \mathrm{min}$, are the block's volume and surface area increasing or decreasing? At what rates?
(Ans. volume of box decreases at the rate of $40,000 \mathrm{~cm}^{3} / \mathrm{min}$; surface area increases at the rate of $200 \mathrm{~cm}^{2} / \mathrm{min}$.)

Solution. Let V and S denote the volume and surface area of the rectangular box respectively. Then

$$
V=x y z \quad \text { and } S=2(x y+y z+z x) .
$$

Then,

$$
\begin{aligned}
d V & =y z d x+z x d y+x y d z \\
& =(200)(100)(1)+(300)(100)(2)+(300)(200)(-2) \\
& =-40000 \mathrm{~cm}^{3} / \mathrm{min}, \text { and } \\
d S & =2(y+z) d x+2(z+x) d y+2(x+y) d z \\
& =2(300)(1)+2(400)(2)+2(500)(-2) \\
& =200 \mathrm{~cm}^{2} / \mathrm{min} .
\end{aligned}
$$

