Math 263 Practice Problem Set 1 Solutions

1. Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $4 x^{2}+y^{2}+z^{2}=9$ at the point $(-1,1,2)$.

Solution. Let the parametric representation of the ellipse be given by $(x, y(x), z(x))$, where $y(x)$ and $z(x)$ are given by the two equations

$$
\begin{equation*}
z(x)=x^{2}+y^{2}, \quad 4 x^{2}+y(x)^{2}+z(x)^{2}=9 . \tag{1}
\end{equation*}
$$

The tangent vector at the point $(-1,1,2)$ is given by $\left(1, y^{\prime}(-1), z^{\prime}(-1)\right)$. For this we differentiate the equations in (1) with respect x; this gives

$$
z^{\prime}(x)=2 x+2 y y^{\prime}(x), \quad 8 x+2 y(x) y^{\prime}(x)+2 z(x) z^{\prime}(x)=0 .
$$

Plugging in $x=-1, y(x)=1, z=2$, we obtain

$$
2 z^{\prime}(-1)-4 y^{\prime}(-1)=-4, \quad 2 z^{\prime}(-1)+y^{\prime}(-1)=4 .
$$

Solving the two linear equations give $y^{\prime}(-1)=\frac{8}{5}, z^{\prime}(-1)=\frac{6}{5}$. The direction of the tangent vector is therefore $\left(1, \frac{8}{5}, \frac{6}{5}\right)$, or equivalently $(5,8,6)$. The equation of the tangent line is therefore

$$
x+1=5 t, \quad y-1=8 t, \quad z-2=6 t .
$$

2. Show that the sum of the x, y and z-intercepts of any tangent plane of the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{c}$ is a constant.

Solution. Let us fix any point $\left(x_{0}, y_{0}, z_{0}\right)$ in the first octant. Let us differentiate the equation of the surface with respect to x and y to solve for $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$:

$$
\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{z}} \frac{\partial z}{\partial x}=0, \quad \frac{1}{2 \sqrt{y}}+\frac{1}{2 \sqrt{z}} \frac{\partial z}{\partial y}=0
$$

Therefore $\frac{\partial z}{\partial x}=-\frac{\sqrt{z_{0}}}{\sqrt{x_{0}}}, \frac{\partial z}{\partial y}=-\frac{\sqrt{z_{0}}}{\sqrt{y_{0}}}$. The normal direction to the surface at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is therefore $\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},-1\right)\left(x_{0}, y_{0}\right)=$ $-\left(\sqrt{\frac{z_{0}}{x_{0}}}, \sqrt{\frac{z_{0}}{y_{0}}}, 1\right)$. The equation of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ is then

$$
\begin{gathered}
\sqrt{\frac{z_{0}}{x_{0}}}\left(x-x_{0}\right)+\sqrt{\frac{z_{0}}{y_{0}}}\left(y-y_{0}\right)+\left(z-z_{0}\right)=0, \\
\text { or, } \frac{x}{\sqrt{x_{0}}}+\frac{y}{\sqrt{y_{0}}}+\frac{z}{\sqrt{z_{0}}}=\sqrt{x_{0}}+\sqrt{y_{0}}+\sqrt{z_{0}}=\sqrt{c} .
\end{gathered}
$$

The lengths of the x, y and z-intercepts of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ are therefore $\sqrt{c x_{0}}, \sqrt{c y_{0}}$ and $\sqrt{c z_{0}}$, and the sum of the intercepts is

$$
\sqrt{c}\left(\sqrt{x_{0}}+\sqrt{y_{0}}+\sqrt{z_{0}}\right)=c,
$$

which is independent of $\left(x_{0}, y_{0}, z_{0}\right)$.
3. The radius of a right circular cone is increasing at a rate $1.8 \mathrm{in} / \mathrm{s}$, while its height is decreasing at a rate of $2.5 \mathrm{in} / \mathrm{s}$. At what rate is the volume of the cone changing when the radius is 120 inches and the height is 140 inches?

Solution. The volume of a right circular cone is

$$
V(r, h)=\frac{1}{3} \pi r^{2} h .
$$

Therefore

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{1}{3} \pi\left[2 r h \frac{d r}{d t}+r^{2} \frac{d h}{d t}\right] \\
& =\frac{\pi}{3}\left[240(140)(1.8)-(120)^{2}(2.5)\right]=8160 \pi \mathrm{in}^{3} / s
\end{aligned}
$$

4. Find the directions in which the directional derivative of $f(x, y)=$ $y e^{-x y}$ at the point $(0,2)$ has the value 1 .

Solution. We first compute the gradient vector:
$\nabla f(x, y)=\left\langle-y^{2} e^{-x y}, e^{-x y}-x y e^{-x y}\right\rangle$, hence $\quad \nabla f(0,2)=-4 \mathbf{i}+\mathbf{j}$.
Let $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$ be the unit vector in the direction to be determined. Then $D_{\mathbf{u}} f(0,2)=-4 \cos \theta+\sin \theta=1$. In order to solve this equation for θ, use the half-angle formulas:

$$
\begin{aligned}
& \quad-4\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)+2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}=\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2} \\
& \text { or, } 3 \tan ^{2} \frac{\theta}{2}+2 \tan \frac{\theta}{2}-5=0 \\
& \text { or, } \tan \frac{\theta}{2}=1,-\frac{5}{3} . \\
& \text { Thus, } \frac{\theta}{2}=\frac{\pi}{4} \text { and } \tan ^{-1}\left(-\frac{5}{3}\right) .
\end{aligned}
$$

Check that $2 \tan ^{-1}(-5 / 3)=2 \pi-\cos ^{-1}(8 / 17)$.
5. Near a buoy, the depth of a lake at the point with coordinates (x, y) is $z=200+0.02 x^{2}-0.001 y^{3}$ where x, y, z are in meters. A fisherman starts at $(80,60)$ and moves towards the buoy which is located $(0,0)$. Is the boat getting deeper or shallower when he departs?
(Answer: depth is increasing in the direction toward the buoy)
Solution. The direction of movement of the boat is $\mathbf{u}=-\frac{1}{5}(4 \mathbf{i}+3 \mathbf{j})$. The gradient vector of $z=f(x, y)$ at $(80,60)$ is

$$
0.04(80) \mathbf{i}-0.003(60)^{2} \mathbf{j}=3.2 \mathbf{i}-10.8 \mathbf{j}
$$

Therefore $D_{\mathbf{u}} f(80,60)=-\frac{1}{5}(12.8-32.4)>0$; in other words, the depth is increasing as the boat departs.

