Mathe 263 Practice Problem Set 1

1. Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $4 x^{2}+y^{2}+z^{2}=9$ at the point $(-1,1,2)$.
(Answer: $x=-1+5 t, y=1+8 t, z=2+6 t$)
2. Show that the sum of the x, y and z-intercepts of any tangent plane of the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{c}$ is a constant.
3. The radius of a right circular cone is increasing at a rate $1.8 \mathrm{in} / \mathrm{s}$, while its height is decreasing at a rate of $2.5 \mathrm{in} / \mathrm{s}$. At what rate is the volume of the cone changing when the radius is 120 inches and the height is 140 inches?
(Answer: $8160 \pi \mathrm{in}^{3} / \mathrm{s}$)
4. Find the directions in which the directional derivative of $f(x, y)=$ $y e^{-x y}$ at the point $(0,2)$ has the value 1 .
(Answer: $\theta=\frac{\pi}{2}, 2 \pi-\cos ^{-1}\left(-\frac{8}{17}\right)$)
5. Near a buoy, the depth of a lake at the point with coordinates (x, y) is $z=200+0.02 x^{2}-0.001 y^{3}$ where x, y, z are in meters. A fisherman starts at $(80,60)$ and moves towards the buoy which is located $(0,0)$. Is the boat getting deeper or shallower when he departs?
(Answer: depth is increasing in the direction toward the buoy)
