
Homework 4 – Math 440/508

Due on Friday November 28

Problem 1. Suppose 0 < a1 < a2 < · · · . Find necessary and sufficient
conditions on {an} for the infinite product

∞∏
n=1

an − z

an + z

to converge on {z : Re(z) > 0}.
[Clarification added on November 15: An infinite product

∏∞
n=1 fn of analytic

functions “converges on G” if it converges in the metric toppology on H(G)
induced by ρ, i.e., if it converges uniformly on compact subsets of G.]

Problem 2. Find a nontrivial entire function f such that f(m+ in) = 0 for all
possible integers m,n. Find the most elementary solution possible.

Problem 3.

(a) Let 0 < |a| < 1 and |z| ≤ r < 1; show that∣∣∣∣ a+ |a|z
(1− āz)

∣∣∣∣ ≤ 1 + r

1− r
.

(b) Let {an} ⊆ C be a sequence with 0 < |an| < 1 and
∑

(1− |an|) <∞. Show
that the infinite product

B(z) =
∞∏

n=1

|an|
an

[
an − z

1− ānz

]
converges in H(B(0; 1)) and that |B(z)| ≤ 1. What are the zeros of B?
(B(z) is called a Blaschke product.)

(c) Find a sequence {an} in B(0; 1) such that
∑

n(1 − |an|) < ∞ and every
point on the unit circle is a limit point of {an}.

Problem 4. There exists an entire function F which is “universal” in the
sense that it approximates every entire function h. (Does this seem surprising?)
More precisely, given any entire function h, there is an increasing sequence
{Nk : k ≥ 1} of positive integers such that

lim
k→∞

F (z +Nk) = h(z)

uniformly on every compact subset of C. Note that the sequence {Nk} depends
only on h and works for every compact subset of C.

Establish the following statements to deduce the existence of such a function
F .
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(a) Let p1, p2, · · · denote an enumeration of the collection of polynomials whose
coefficients have rational real and imaginary parts. Show that it suffices
to find an entire function F and an increasing sequence {Mn} of positive
integers such that

|F (z)− pn(z −Mn)| < 1
n

whenever z ∈ B(Mn;n).

Hint: Given h entire, there exists a sequence {nk} such that limk→∞ pnk
(z) =

h(z) uniformly on every compact subset of C.

(b) Construct F as an infinite series

F (z) =
∞∑

n=1

un(z), where un(z) = pn(z −Mn)e−cn(z−Mn)2 .

Show that for a suitable choice of positive constants cn → 0 and Mn →∞,
the condition mentioned in part (a) holds.

Problem 5. Let r1, r2, R1, R2 be positive numbers. Show that the two an-
nuli Ann(0; ri, Ri), i = 1, 2 are conformally equivalent via a map that extends
continuously up to the boundary if and only if r1/R1 = r2/R2. (Note: The
hypothesis of “continuous extension up to the boundary” is not needed and can
be deduced from conformality. You may however assume this for the problem.)

Problem 6. Can there exist an analytic function f : Ann(0; 0, 1) → B(0, 1)
with f ′(z) 6= 0 for all z ∈ Ann(0; 0, 1) such that f(Ann(0; 0, 1)) = B(0; 1)? If
yes, find such a function. If not, explain why not.

Problem 7. Given a domain G ⊆ C, let {fn} ⊆ H(G). If the sequence
{Re(fn)} converges uniformly on compact subsets of G and there exists z0 for
which {fn(z0)} converges then prove that {fn} converges uniformly on compact
subsets of G.

Problem 8. The aim of this problem is to guide you through a second proof
of the Riemann mapping theorem, one that is due to Koebe. This proof is
“constructive” in a weak sense – it specifies an iterative procedure that in the
limit produces the conformal map required by the statement of the theorem. It
does not invoke any result on normal families. However, the following result on
harmonic functions is needed.
Harnack’s Theorem. Let un be a sequence of harmonic functions in a domain
G.

(i) If un → u uniformly on compact subsets of G, then u is harmonic in G.

(ii) If u1 ≤ u2 ≤ u3 · · · , then either {un} converges uniformly on compact
subsets of G or un(z) →∞ for every z ∈ G.
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Let Ω be a proper simply connected domain in C, a ∈ Ω. Our goal is to
obtain a conformal bijection f from Ω onto D = B(0; 1) such that f(a) = 0
and f ′(a) > 0. Assuming Harnack’s theorem, fill in the details of the following
outline of Koebe’s proof.

(a) Prove that one can assume without loss of generality that Ω ( D, and a = 0.

(b) In the remainder of the problem we will construct domains Ω1, Ω2, · · ·
and conformal maps f1, f2, · · · such that fn(Ωn−1) = Ωn and so that the
functions fn ◦fn−1 ◦ · · · f2 ◦f1 converge to the conformal mapping of Ω onto
D.

Set Ω0 = Ω. Supposing Ωn−1 is constructed, let rn denote the radius of
the largest ball centered at the origin that is contained in Ωn−1. Let αn

be a boundary point of Ωn−1 such that |αn| = rn, choose βn such that
β2

n = −αn, and put
Fn = ϕ−αn

◦ s ◦ ϕ−βn
.

Here ϕα(z) = (z − α)/(1 − ᾱz), and s(w) = w2. Show that Fn has a
holomorphic inverse Gn.

(c) Pick λn ∈ C, |λn| = 1 such that fn = λnGn satisfies f ′n(0) > 0. Verify that

f ′n(0) =
1 + rn
2
√
rn

> 1.

(d) Put ψ0(z) = z and ψn(z) = fn(ψn−1(z)). Show that ψn is an injective
mapping of Ω onto a region Ωn ⊆ D, that {ψ′n(0)} is bounded and

ψ′n(0) =
n∏

k=1

1 + rk
2
√
rk
.

Conclude that rn → 1 as n→∞.

(e) Write ψn(z) = zhn(z) for z ∈ Ω, and show that |hn| ≤ |hn+1|. Deduce
using Harnack’s theorem and Problem 7 that {ψn} converges uniformly on
compact subsets of Ω and show that limn→∞ ψn is the conformal mapping
specified by the Riemann Mapping Theorem.

(f) Let us now work out an example where we can see Koebe’s algortihm in
action. Starting with Ω0 = D \ [− 1

2 ,−1), give an explicit description of the
sets Ωn.

Problem 9. Given an open set G ⊆ C, let Kn denote the sequence of compact
subsets of G given by

Kn = {z : |z| ≤ n} ∩
{
z : d(z,C \G) ≥ 1

n

}
.

Show that every component of C∞ \Kn contains some component of C∞ \G.
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Problem 10. Show that the topology induced on the unit disk by the Poincaré
metric is the usual planar topology. Show also that the unit disk when equipped
with the Poincaré metric is a complete metric space. Thus, a topological space
may be equipped with two equivalent metrics, one of which is complete and the
other is not. Does this seem counter-intuitive? Endow R with two metrics that
generate the same Euclidean topology, one of which is complete and the other
is not.

Problem 11. We have seen in class that any conformal map of the unit disk
is an isometry of the pair (D, ρ), where ρ is the Poincaré metric. Now prove the
following converse: If ρ̃ is a metric on D such that every conformal self-map of
the disk is an isometry of the pair (D, ρ̃), then ρ̃ is a constant multiple of the
Poincaré metric ρ.
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