Homework 2 - Math 541, Fall 2012

Due Wednesday October 17 at the beginning of lecture.

Instructions: Your homework will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

- 1. Determine whether each of the following statements is true or false. Give brief justification for your answers.
 - (a) For any $p \in [1, \infty)$, the set of all functions in $L^p(\mathbb{R}^d)$ whose Fourier transforms have compact support is dense in $L^p(\mathbb{R}^d)$.
 - (b) There exists $p \neq 2$ such that the Fourier transform can be extended as a bounded linear map from $L^p(\mathbb{R}^d)$ to $L^p(\mathbb{R}^d)$.
 - (c) There exists $f \in L^{\infty} \setminus \bigcup_{1 \le p < \infty} L^p$ whose Fourier transform is a function, not merely a distribution.
 - (d) If $f \in C(\mathbb{T}^d)$ satisfies a Hölder condition with exponent α , $0 < \alpha \leq 1$, then $\widehat{f}(n) = O(|n|^{-\alpha})$.
 - (e) There exists a sequence $\epsilon_n \to 0$ with the following property: for every $f \in C(\mathbb{T})$, $|\widehat{f}(n)| < \epsilon_n$ for all sufficiently large n.
- 2. Evaluation of the Fourier transform for some examples. Establish the following identities: (a) For any $\xi \in \mathbb{R}$,

$$[(1+x^2)^{-1}]\hat{}(\xi) = \pi e^{-|\xi|}.$$

(b) For any $\xi \in \mathbb{R}$,

$$\left[e^{-x^2/2}\right] (\xi) = \sqrt{2\pi}e^{-\xi^2/2}.$$

(c) In \mathbb{R}^d ,

$$\left[e^{-|\xi|}\right]^{}(x) = (2\pi)^{d} \Gamma\left(\frac{d+1}{2}\right) \pi^{-\frac{d+1}{2}} \left(1+|x|^{2}\right)^{-\frac{d+1}{2}}$$

As part of the proof of Plancherel's theorem presented in class, we showed that there exists an absolute constant $\beta > 0$ such that $(\widehat{f})^{\vee} = \beta^{-d} f$ almost everywhere for every $d \ge 1$ and $f \in L^1(\mathbb{R}^d)$. Use any subset of the formulae above to find the value of β .

(*Hint for (c):* Start by writing $e^{-|\xi|}$ as

$$e^{-|\xi|} = \pi^{-\frac{1}{2}} \int_0^\infty e^{-\frac{|\xi|^2}{4u}} e^{-u} u^{-\frac{1}{2}} \, du,$$

then evaluate the Fourier transform using (b).)

3. Recall the definition of temperate measure introduced in class.

(a) Given any temperate measure μ and multi-index α , show that φ defined by

$$\langle \varphi, f \rangle := \int_{\mathbb{R}^d} \partial^{\alpha} f(x) \, d\mu(x), \quad f \in \mathcal{S}(\mathbb{R}^d)$$
 (*)

is a tempered distribution.

- (b) Show that every element of $\mathcal{S}'(\mathbb{R}^d)$ is a finite linear combination of distributions of the form (*), for certain temperate measures μ and multi-indices α .
- 4. This problem deals with some more examples of tempered distributions.
 - (a) Show that the principal value 1/x distribution, defined by

$$\operatorname{pv} \int f(x) x^{-1} \, dx := \lim_{\epsilon \to 0} \int_{|x| > \epsilon} f(x) x^{-1} \, dx$$

is tempered.

(b) Show that $\varphi(\cdot)$, defined by

$$\langle \varphi(z), f \rangle = \int_0^\infty x^z f(x) \, dx$$

is a holomorphic S'-valued function of z for $\operatorname{Re}(z) > -1$, which can be continued as a meromorphic S'-valued function on all of \mathbb{C} , with only simple poles at $z = -1, -2, -3, \cdots$.

5. Poisson summation formula. The Fourier transforms for \mathbb{R}^d and \mathbb{T}^d are related. An elegant application of this linkage yields the Poisson summation formula, which states that for every $f \in C_c^{\infty}(\mathbb{R}^d)$,

$$\sum_{n \in \mathbb{Z}^d} f(2\pi n) = (2\pi)^{-d} \sum_{n \in \mathbb{Z}^d} \widehat{f}(n).$$

Follow the steps outlined below to arrive at a proof of this formula.

- (a) Given f, form the $(2\pi\mathbb{Z})^d$ -periodic function $F(x) = \sum_{k \in \mathbb{Z}^d} f(x + 2\pi k)$. Argue that F equals its Fourier series.
- (b) Show that

$$\widehat{F}(n) = (2\pi)^{-d}\widehat{f}(n)$$
 for all $n \in \mathbb{Z}^d$,

where $\widehat{}$ denotes the \mathbb{T}^d Fourier transform on the left and the \mathbb{R}^d Fourier transform on the right.

(c) Set x = 0 and combine the previous steps to arrive at the Poisson summation formula.