Chapter 3, Exercise 14

Certain sets have geometric properties that guarantee they are simply con-
nected.

e A subset Q C C is convex if for any two points in €2, the straight line
segment between them is contained in 2. Prove that a convex open set is
simply connected.

e More generally, an open set ) C C is star-shaped if there exists a point
zo € §2 such that for any z € €2, the straight line segment between z and zg
is contained in €. Prove that a star-shaped open set is simply connected.
Conclude that the slit plane C—{(—o0, 0]} (and more generally any sector,
convex or not) is simply connected.

e What are other examples of open sets that are simply connected?

Solution
Part a

First of all, it is clear that §2 is path-connected: a path connecting z and y in
is given by the straight line segment connecting x and y, which is contained in
Q by convexity. Let z,y € Q, and let v1(¢) and y2(¢) be two curves in Q with
71(0) = 72(0) = z and 1 (1) = 72(1) = y. Then we can define the homotopy

[(s,t) = s72(t) + (1 = s)m ().

This is a continuous function of s and ¢, and each point I'(s, ) lies on the line
segment connecting 71 (t) and v2(t), and is therefore in £ by convexity. Clearly
I'(s,0) = x and I'(s,1) = y for all s. Thus I is a fixed-endpoint homotopy
between the curves 7; and 79, and € is simply connected.

Part b

As in part a, it is clear that Q is path-connected: if z,y € Q, then the con-
catenation of the straight line segment connecting = to zg and the straight line
segment connecting zg to y is contained in 2.

Let z € © and let v be a closed curve with v(0) = v(1) = z. We need to
show that « can be contracted to a point in 2. Defining

[(s,t) = s20 + (1 = 8)7(D),

we have that I'(s,0) = I'(s, 1) for all s, and so the curve I'(s,t) remains closed
for all s. T is clearly continuous, and I'(s, t) € Q for all s and ¢ by the star-shape
of Q. Therefore, €2 is simply connected.

It’s easy to see that the split complex plane is star-shaped: any point on the
real line is a witness. Similarly, any sector of the complex plane is star-shaped,
any point lying along the bisector of the sector in €2 is a witness.



Part c

Answers may vary. I did not award points to students who provided a star-
shaped region as an example.

Chapter 8, Exercise 5

Prove that f(z) = —3(z + 1/2) is a conformal map from the half-disc {z =
x 41y :|z| < 1,y > 0} to the upper half-plane. [Hint: The equation f(z) = w
has two distinct roots in C whenever w # £1. This is certainly the case if
w € H.]

Solution

First, we need to verify that f maps the half-disc into the upper half-plane. Let
z be a point in the upper half-disc. Then z has imaginary part bounded above
by 1 and % has imaginary part bounded above by —1. Thus z+ 1/2 has negative
imaginary part, and —% (z + %) has positive imaginary part.

Next, we verify that f is bijective. Suppose that f(z) = w. Then 22+ 2wz +
1 =0 by an easy algebraic calculation. For any fixed w in the upper half-plane
this equation has exactly two distinct complex roots in C.

Let 21 and 25 be these roots. By Viéta’s formulas, we have that z129 = 1,
and z1 + zo = —2w. Since z129 = 1, we have that either z; and 2z both lie on
the unit circle, or exactly one of z; and z5 lies in the open unit disc. But if z;
lies on the unit disc, then zo = 27, so 21 + 29 is real and cannot be equal to —2w
for any w in the upper half-plane. Thus exactly one of z; and z5 lies in the open
unit disc. Without loss of generality assume it is z;. Notice that we have that
z1 is the only root of z1 + zo = —2w that lies in the unit disc, so it immediately
follows that f(z) is an injective function. If we can show that z; lies in the
upper half of the disc, this will be sufficient to show that f is surjective.

For this we use z1 + 2o = —2w. If 2z lies in the lower half of the disc, then z;
has imaginary part bounded below by —1, and z5 has imaginary part bounded
below by 1. Thus z; 4+ 22 has positive imaginary part, but —2w has negative
imaginary part. This contradiction establishes that z; must not lie in the lower
half of the disc. If z; lies on the real axis, then z; and zo are both real, so their
sum cannot be —2w. Thus z; lies in the upper half-disc, and f(z) is bijective.

Finally, we verify that f is holomorphic in the upper half-disc. But this is
clear because the only pole of f occurs at z = 0. Thus f is conformal.

Chapter 8, Exercise 15

Here are two properties enjoyed by automorphisms of the upper half-plane.

e Suppose ¢ is an automorphism of H that fixes three distinct points on the
real axis. Then ® is the identity.



e Suppose (1,22, z3) and (y1, y2, y3) are two pairs of distinct points on the
real axis with z1 < 9 < x3 and y1 < Y2 < y3. Prove that there exists a
unique automorphism ® of H such that ®(x;) = y;, j = 1,2,3. The same
conclusion holds if y3 < y1 < yz or if y2 < ys3 < yi.

Solution
Part a

We know that each automorphism of the upper half-plane is a Mobius transfor-

mation of the form
az+b

cz+d

a b
c d
can be chosen to have determinant equal to 1. Let 1, x2, x3 be distinct points

on the real axis that are fixed by ®. Then the equation ®(x) = z has 3 real
solutions. But this equation can be rewritten

cx? +(d—a)xr —b=0

f(z) =

where the matrix

which has at most 2 real solutions unless ¢ = b = 0 and d = a. Thus ® is the
identity automorphism.

Part b

The cross-ratio
Z—Z1 22— Z3

Z— 2329 — 21
is a Mobius transformation that maps z; to 0, z2 to 1, and z3 to co. Let ®; be
the cross-ratio for x1, 2, x3 and @5 be the cross-ratio for y1,y2,ys. Then

Dyt oy (2)

is a Mobius transformation that maps z1 to y1, x2 to yo2, and x3 to y3. We need
to verify that this Mobius transformation maps the upper half-plane to itself.

Evidently this transformation maps the real axis to itself: it is a Mobius
transformation so the real axis must map to a line or circle, and 3 points are
sufficient to determine a line or circle. Thus the upper half-plane is mapped
to either the upper or lower half-plane according to the sign of the determi-
nant of the Mobius transformation. This can be determined through either a
direct calculation or common sense: since x7 < 2 < x3, y1 < y2 < y3 and
Mobius transformations preserve “handedness”, it follows that the upper half-
plane maps to the upper half-plane. The same argument works for the case
where y2 < y3 <y or y3 < y1 < yo.

The uniqueness of this automorphism follows from part a and a standard
group-theoretic argument: if two such automorphisms ®; and ®, exist, then
<I>2_1 o ®; is the identity, proving that ®; and ®5 are the same.



