
Chapter 3, Exercise 14

Certain sets have geometric properties that guarantee they are simply con-
nected.

• A subset Ω ⊂ C is convex if for any two points in Ω, the straight line
segment between them is contained in Ω. Prove that a convex open set is
simply connected.

• More generally, an open set Ω ⊂ C is star-shaped if there exists a point
z0 ∈ Ω such that for any z ∈ Ω, the straight line segment between z and z0
is contained in Ω. Prove that a star-shaped open set is simply connected.
Conclude that the slit plane C−{(−∞, 0]} (and more generally any sector,
convex or not) is simply connected.

• What are other examples of open sets that are simply connected?

Solution

Part a

First of all, it is clear that Ω is path-connected: a path connecting x and y in Ω
is given by the straight line segment connecting x and y, which is contained in
Ω by convexity. Let x, y ∈ Ω, and let γ1(t) and γ2(t) be two curves in Ω with
γ1(0) = γ2(0) = x and γ1(1) = γ2(1) = y. Then we can define the homotopy

Γ(s, t) = sγ2(t) + (1− s)γ1(t).

This is a continuous function of s and t, and each point Γ(s, t) lies on the line
segment connecting γ1(t) and γ2(t), and is therefore in Ω by convexity. Clearly
Γ(s, 0) = x and Γ(s, 1) = y for all s. Thus Γ is a fixed-endpoint homotopy
between the curves γ1 and γ2, and Ω is simply connected.

Part b

As in part a, it is clear that Ω is path-connected: if x, y ∈ Ω, then the con-
catenation of the straight line segment connecting x to z0 and the straight line
segment connecting z0 to y is contained in Ω.

Let x ∈ Ω and let γ be a closed curve with γ(0) = γ(1) = x. We need to
show that γ can be contracted to a point in Ω. Defining

Γ(s, t) = sz0 + (1− s)γ(t),

we have that Γ(s, 0) = Γ(s, 1) for all s, and so the curve Γ(s, t) remains closed
for all s. Γ is clearly continuous, and Γ(s, t) ∈ Ω for all s and t by the star-shape
of Ω. Therefore, Ω is simply connected.

It’s easy to see that the split complex plane is star-shaped: any point on the
real line is a witness. Similarly, any sector of the complex plane is star-shaped,
any point lying along the bisector of the sector in Ω is a witness.
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Part c

Answers may vary. I did not award points to students who provided a star-
shaped region as an example.

Chapter 8, Exercise 5

Prove that f(z) = − 1

2
(z + 1/z) is a conformal map from the half-disc {z =

x + iy : |z| < 1, y > 0} to the upper half-plane. [Hint: The equation f(z) = w
has two distinct roots in C whenever w 6= ±1. This is certainly the case if
w ∈ H.]

Solution

First, we need to verify that f maps the half-disc into the upper half-plane. Let
z be a point in the upper half-disc. Then z has imaginary part bounded above
by 1 and 1

z
has imaginary part bounded above by −1. Thus z+1/z has negative

imaginary part, and − 1

2

(

z + 1

z

)

has positive imaginary part.
Next, we verify that f is bijective. Suppose that f(z) = w. Then z2+2wz+

1 = 0 by an easy algebraic calculation. For any fixed w in the upper half-plane
this equation has exactly two distinct complex roots in C.

Let z1 and z2 be these roots. By Viéta’s formulas, we have that z1z2 = 1,
and z1 + z2 = −2w. Since z1z2 = 1, we have that either z1 and z2 both lie on
the unit circle, or exactly one of z1 and z2 lies in the open unit disc. But if z1
lies on the unit disc, then z2 = z1, so z1+ z2 is real and cannot be equal to −2w
for any w in the upper half-plane. Thus exactly one of z1 and z2 lies in the open
unit disc. Without loss of generality assume it is z1. Notice that we have that
z1 is the only root of z1 + z2 = −2w that lies in the unit disc, so it immediately
follows that f(z) is an injective function. If we can show that z1 lies in the
upper half of the disc, this will be sufficient to show that f is surjective.

For this we use z1+z2 = −2w. If z1 lies in the lower half of the disc, then z1
has imaginary part bounded below by −1, and z2 has imaginary part bounded
below by 1. Thus z1 + z2 has positive imaginary part, but −2w has negative
imaginary part. This contradiction establishes that z1 must not lie in the lower
half of the disc. If z1 lies on the real axis, then z1 and z2 are both real, so their
sum cannot be −2w. Thus z1 lies in the upper half-disc, and f(z) is bijective.

Finally, we verify that f is holomorphic in the upper half-disc. But this is
clear because the only pole of f occurs at z = 0. Thus f is conformal.

Chapter 8, Exercise 15

Here are two properties enjoyed by automorphisms of the upper half-plane.

• Suppose Φ is an automorphism of H that fixes three distinct points on the
real axis. Then Φ is the identity.
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• Suppose (x1, x2, x3) and (y1, y2, y3) are two pairs of distinct points on the
real axis with x1 < x2 < x3 and y1 < y2 < y3. Prove that there exists a
unique automorphism Φ of H such that Φ(xj) = yj , j = 1, 2, 3. The same
conclusion holds if y3 < y1 < y2 or if y2 < y3 < y1.

Solution

Part a

We know that each automorphism of the upper half-plane is a Möbius transfor-
mation of the form

f(z) =
az + b

cz + d

where the matrix
(

a b
c d

)

can be chosen to have determinant equal to 1. Let x1, x2, x3 be distinct points
on the real axis that are fixed by Φ. Then the equation Φ(x) = x has 3 real
solutions. But this equation can be rewritten

cx2 + (d− a)x− b = 0

which has at most 2 real solutions unless c = b = 0 and d = a. Thus Φ is the
identity automorphism.

Part b

The cross-ratio
z − z1
z − z3

z2 − z3
z2 − z1

is a Möbius transformation that maps z1 to 0, z2 to 1, and z3 to ∞. Let Φ1 be
the cross-ratio for x1, x2, x3 and Φ2 be the cross-ratio for y1, y2, y3. Then

Φ−1

2
◦ Φ1(z)

is a Möbius transformation that maps x1 to y1, x2 to y2, and x3 to y3. We need
to verify that this Möbius transformation maps the upper half-plane to itself.

Evidently this transformation maps the real axis to itself: it is a Möbius
transformation so the real axis must map to a line or circle, and 3 points are
sufficient to determine a line or circle. Thus the upper half-plane is mapped
to either the upper or lower half-plane according to the sign of the determi-
nant of the Möbius transformation. This can be determined through either a
direct calculation or common sense: since x1 < x2 < x3, y1 < y2 < y3 and
Möbius transformations preserve “handedness”, it follows that the upper half-
plane maps to the upper half-plane. The same argument works for the case
where y2 < y3 < y1 or y3 < y1 < y2.

The uniqueness of this automorphism follows from part a and a standard
group-theoretic argument: if two such automorphisms Φ1 and Φ2 exist, then
Φ−1

2
◦ Φ1 is the identity, proving that Φ1 and Φ2 are the same.
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