
Math 320, Fall 2018

Midterm 1 Solution

Name: SID:

Instructions

• The total time is 50 minutes.
• The maximum score is 100 points.
• Use the reverse side of each page if you need extra space.
• Show all your work. A correct answer without intermediate

steps will receive no credit.
• Partial credit will be assigned to the clarity and presentation

style of solutions. Please ensure that your answers are effec-
tively comunicated.
• No clarification will be given for any problems; if you believe

a problem is ambiguous, interpret it as best you can and write
down any assumptions you feel are necessary.

Problem Points Score
1 10× 3 = 30
2 20
3 20
4 30 + 10 (extra credit)

MAX 100
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1. For each term below, give a complete definition and an example.
Prove (or demonstrate) that your example matches the definition
that you give.

(a) Supremum of a set A ⊆ R.
(5 + 5 = 10 points)

Solution. Let A be a nonempty subset of R that is bounded
above. A point a0 ∈ R is said to be the supremum of A,
denoted sup(A) if both of the following conditions hold:

• a ≤ a0 for all a ∈ A
• if b ∈ R is an upper bound of A (i.e., a ≤ b for all a ∈ A),

then a0 ≤ b.

Example: Let A = [0, 1], then sup(A) = 1. �

(b) A limit point of a subset E in a metric space (X, d).
(5+5 = 10 points)

Solution. A point p ∈ X is said to be a limit point ofE ⊂ X if
for every ε > 0, there exists q 6= p, q ∈ E such that d(p, q) < ε.

Example: The origin 0 is a limit point of E = {1/n : n ≥
1} ⊆ R. �
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(c) A countably infinite set.
(5+5 = 10 points)

Solution. A set A is called countably infinite if there exists
a bijection f : N → A, where N denotes the set of natural
numbers.

Example: The set of positive even integers A = {2, 4, · · · }
is countably infinite; f (n) = 2n provides the bijection from N
onto A. �
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2. A number α ∈ R is called algebraic if there exists a non-zero
polynomial P with integer coefficients so that P (α) = 0. A real
number that is not algebraic is called transcendental. Prove that
the set of transcendental numbers is uncountable.

(20 points)

Solution. First, observe that for each n ∈ N, the set of polyno-
mials of degree ≤ n with integer coefficients is countable, since
it can be put in bijective correspondence with Zn+1 via the bi-
jection (a0, ...an) 7→ P (x) = anx

n + . . . + a0. Thus the set
of polynomials with integer coefficients is a countable union of
countable sets, and is thus countable. For each polynomial P , let
SP = {x ∈ R : P (x) = 0}. This set is finite (indeed, it has cardi-
nality at most the degree of P ). Thus A =

⋃
P SP is a countable

union of countable sets, and is thus countable, where the union
is taken over all non-zero polynomials with integer coefficients.
However, the set A is precisely the set of algebraic numbers. We
conclude that A is countable.

Suppose if possible that the set Ac of transcendental numbers is
countable. This would imply that R = A ∪ Ac is the union of
two countable sets, hence countable. But this contradicts the fact
(proved in class and the textbook) that R is uncountable. �
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3. Define C0 = [0, 1]; this is a union of 20 = 1 closed intervals, each
of length 30 = 1. Define C1 = [0, 1

3] ∪ [2
3, 1]; this set contains 21

intervals, each of length 3−1; it is obtained by removing the middle
third of each interval from C0. For each i = 2, 3, . . . , define Ci
to be the union of 2i closed intervals, each of length 3−i, obtained
by removing the middle third of each of the intervals from Ci−1.
Define C =

⋂∞
i=0Ci.

Prove that C does not contain a non-empty open interval.

(20 points)

Solution. We will show that given any x, y ∈ C, x < y,

(1) there exists z ∈ [0, 1] \ C such that x < z < y.

We have been given that

C =

∞⋂
n=1

Cn,

where Cn, the set obtained at the n-th step of the Cantor construc-
tion, is a disjoint union of 2n closed intervals (called n-th stage ba-
sic intervals), each of length 3−n. In particular, the length of an
nth stage basic interval goes to zero as n→∞. Therefore, given
x, y ∈ C, x < y, one can find m0 ≥ 1 such that 3−m < |x− y| for
all m ≥ m0. This means that x and y cannot lie in the same m-th
basic interval for any m ≥ m0. Let n denote the largest positive
integer such that both x and y lie inside a common n-th stage
basic interval, say I = [a, b]. Since n has to be a non-negative
integer smaller than m0, such an integer must exist.

At the (n+1)-th step, I is decomposed into three equal and disjoint
pieces

I =

3⋃
j=1

Ij, with I1 =
[
a, a +

b− a
3

]
, I3 =

[
b− b− a

3
, b
]
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and the middle third portion I2 is thrown away. In particular,
z = a + (b − a)/2 = (a + b)/2 /∈ C. By the maximality of n, we
also know that x ∈ I1 and y ∈ I3, proving (1). �
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4. Give brief answers to the questions below. Your answer should be
in the form of a short proof or a counterexample, as appropriate.

(a) Let d be the usual metric on R, i.e. d(x, y) = |x − y|. If
E = Q ∩ [0, 1] ⊂ R, what is its closure E?

(10 points)

Solution. E = [0, 1]. This is because rationals are dense; for
any x ∈ [0, 1] and any ε > 0, there exists r ∈ E ∩ (x− ε, x+
ε). �
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(b) Determine whether the following statement is true or false. For
sets A,B ⊆ R that are bounded above, one always has

sup(A−B) = sup(A)− sup(B).

Here A−B = {a− b : a ∈ A, b ∈ B}.
(10 points)

Solution. The statement is false. Choose A = B = [−1, 1].
Then A−B = [−2, 2], so sup(A−B) = 2, whereas sup(A)−
sup(B) = 0. �
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(c) Let d1 and d2 be two metrics on R2 given by

d1(x, y) = |x1 − y1| + |x2 − y2|,

d2(x, y) =
[
(x1 − y1)2 + (x2 − y2)2

]1
2

for all points x = (x1, x2), y = (y1, y2) ∈ R2. Show that

1√
2
d1(x, y) ≤ d2(x, y) ≤ d1(x, y) for all x, y ∈ R2.

(10 points)

Proof. Given any two non-negative reals a and b, it is easy to
see that a2 +b2 ≤ a2 +b2 +2ab = (a+b)2. It also follows from
the Cauchy-Schwarz inequality that (a + b) ≤

√
2
√
a2 + b2.

Setting a = |x1 − y1|, b = |x2 − y2| leads to the desired
inequalities. �
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(d) (Extra credit) Determine whether the following statement is
true or false. There exists an uncountable collection of sets
{Sα} such that
• Each set Sα is a subset of N
• each Sα is infinite
• For every pair Sα and Sβ with α 6= β, we have that Sα∩Sβ

is finite
Here N denotes the set of positive integers.

(10 points)

Solution. Let A denote all infinite binary sequences (whose
entries are either 0 or 1) consisting of infinitely many 1-s. We
know that A is uncountable. Let P = {p1 < p2 < p3 < · · · }
be the set of primes. For each α = (α1, α2, · · · ) ∈ A, set

Sα =
{
pα11 , p

α1
1 p

α2
2 , · · · ,

n∏
j=1

p
αj
j , · · ·

}
⊆ N.

Note that elements in the list need not be distinct. How-
ever, each Sᾱ is infinite because ᾱ contains infinitely many
1-s. Given any ᾱ, β̄ ∈ A with ᾱ 6= β̄, let j denote the smallest
integer such that αj 6= βj. Suppose without loss of generality
that αj = 1 and βj = 0. This means every entry in Sᾱ starting
from the j-th member of its list is a multiple of pj. None of the
corresponding elements of Sβ̄ has this property. Thus Sᾱ ∩ Sβ̄
is the finite set{∏̀

k=1

p
αk
k : 1 ≤ ` ≤ j − 1

}
.

�


