Math 320, Fall 2018
Midterm 1 Solution

Name: SID:

Instructions

e The total time is 50 minutes.

e The maximum score is 100 points.

e Use the reverse side of each page if you need extra space.

e Show all your work. A correct answer without intermediate
steps will receive no credit.

e Partial credit will be assigned to the clarity and presentation
style of solutions. Please ensure that your answers are effec-
tively comunicated.

e No clarification will be given for any problems; if you believe
a problem is ambiguous, interpret it as best you can and write
down any assumptions you feel are necessary:.

Problem Points Score

1 10 x 3 = 30

2 20

3 20

4 30 4+ 10 (extra credit)

MAX 100
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1. For each term below, give a complete definition and an example.

Prove (or demonstrate) that your example matches the definition
that you give.

(a) Supremum of a set A C R.
(5 + 5 = 10 points)

Solution. Let A be a nonempty subset of R that is bounded
above. A point ag € R is said to be the supremum of A,
denoted sup(A) if both of the following conditions hold:

ea<aqgpforallae A
e if b € R is an upper bound of A (i.e., a < bforalla € A),
then ag < b.

Ezample: Let A =10,1], then sup(A) = 1. ]

(b) A limit point of a subset E in a metric space (X, d).
(545 = 10 points)

Solution. A point p € X issaid to be a limit pointot E C X if
for every € > 0, there exists ¢ # p, ¢ € E such that d(p, q) < e.

Ezample: The origin 0 is a limit point of £ = {1/n :n >
1} CR. O



(¢c) A countably infinite set.
(5+5 = 10 points)

Solution. A set A is called countably infinite if there exists
a bijection f : N — A, where N denotes the set of natural
numbers.

Ezample: The set of positive even integers A = {2,4,---}
is countably infinite; f(n) = 2n provides the bijection from N
onto A. ]
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2. A number o € R is called algebraic if there exists a non-zero

polynomial P with integer coefficients so that P(a) = 0. A real
number that is not algebraic is called transcendental. Prove that
the set of transcendental numbers is uncountable.

(20 points)

Solution. First, observe that for each n € N, the set of polyno-
mials of degree < n with integer coefficients is countable, since
it can be put in bijective correspondence with Z"™! via the bi-
jection (ag,...a,) — P(x) = a,2” + ... + ag. Thus the set
of polynomials with integer coefficients is a countable union of
countable sets, and is thus countable. For each polynomial P, let
Sp={x € R: P(x) = 0}. This set is finite (indeed, it has cardi-
nality at most the degree of P). Thus A = |J, Sp is a countable
union of countable sets, and is thus countable, where the union
is taken over all non-zero polynomials with integer coefficients.
However, the set A is precisely the set of algebraic numbers. We
conclude that A is countable.

Suppose if possible that the set A° of transcendental numbers is
countable. This would imply that R = A U A€ is the union of
two countable sets, hence countable. But this contradicts the fact
(proved in class and the textbook) that R is uncountable. ]
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3. Define Cj = [0, 1]; this is a union of 2° = 1 closed intervals, each
of length 3 = 1. Define Cy = [0, 5] U [Z,1]; this set contains 2!
intervals, each of length 37!: it is obtained by removing the middle
third of each interval from Cy. For each ¢ = 2,3, ..., define C;
to be the union of 2 closed intervals, each of length 37/, obtained
by removing the middle third of each of the intervals from Cj;_;.

Define C = (.2, Ci.

Prove that C does not contain a non-empty open interval.
(20 points)

Solution. We will show that given any z,y € C, = < v,
(1) there exists z € [0,1] \ C such that x < z < y.

We have been given that

where C),, the set obtained at the n-th step of the Cantor construc-
tion, is a disjoint union of 2" closed intervals (called n-th stage ba-
sic intervals), each of length 37". In particular, the length of an
nth stage basic interval goes to zero as n — oo. Therefore, given
x,y € C, x <y, one can find my > 1 such that 37" < |z — y/| for
all m > my. This means that x and y cannot lie in the same m-th
basic interval for any m > myg. Let n denote the largest positive
integer such that both x and y lie inside a common n-th stage
basic interval, say I = |a,b]. Since n has to be a non-negative
integer smaller than my, such an integer must exist.

At the (n+1)-th step, I is decomposed into three equal and disjoint
pleces

3
b—a b—a
1=\ |1, 'th[:[, } I:[b— ,b}
lej \Wal 1 a,a + 3 3 3



and the middle third portion I is thrown away. In particular,
z=a+(b—a)/2=(a+0b)/2 ¢ C. By the maximality of n, we
also know that z € Iy and y € I3, proving (1). ]
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4. Give brief answers to the questions below. Your answer should be
in the form of a short proof or a counterexample, as appropriate.

(a) Let d be the usual metric on R, ie. d(z,y) = |v —y|. If
E=QnN|0,1] C R, what is its closure E7
(10 points)

Solution. E = [0,1]. This is because rationals are dense; for
any z € [0, 1] and any € > 0, there exists r € EN(z — €, +
€). ]



(b) Determine whether the following statement is true or false. For
sets A, B C R that are bounded above, one always has

sup(A — B) = sup(A) — sup(B).
Here A—B={a—0b:a€ A,be B}.
(10 points)

Solution. The statement is false. Choose A = B = [—1,1].
Then A— B = [—2,2], so sup(A — B) = 2, whereas sup(A) —
sup(B) = 0. ]



(¢) Let di and ds be two metrics on R? given by
di(2,y) = |21 — y1| + w2 — w2l
do(z,y) = [(z1 — y1)° + (22 — 32)°]

for all points x = (z1,%2), ¥y = (y1,%2) € R*. Show that
1

V?2

o=

d1<$7y> < dQ(iU,y) < dl(x7y) for all x,Y € R2'

(10 points)

Proof. Given any two non-negative reals a and b, it is easy to
see that a? +b* < a*+0?+2ab = (a+b)?. It also follows from
the Cauchy-Schwarz inequality that (a + b) < v/2va2 + b2,
Setting @ = |x1 — 1], b = |x2 — yo| leads to the desired
inequalities. [



(d) (Extra credit) Determine whether the following statement is
true or false. There exists an uncountable collection of sets
{S.} such that

e Fach set S, 1s a subset of N
e cach S, is infinite
e For every pair S, and Sg with o # 3, we have that S,NSg
is finite
Here N denotes the set of positive integers.
(10 points)

Solution. Let A denote all infinite binary sequences (whose
entries are either 0 or 1) consisting of infinitely many 1-s. We
know that A is uncountable. Let P = {p; < ps <p3 < ---}
be the set of primes. For each @ = (a1, an, -+ ) € A, set

n
Sa = {p‘f‘l,p‘f”pgz,--- Hpj”} C N.
j=1

Note that elements in the list need not be distinct. How-
ever, each S; is infinite because & contains infinitely many
1-s. Given any &, B € A with a # 3, let j denote the smallest
integer such that o; # ;. Suppose without loss of generality
that a; = 1 and 8; = 0. This means every entry in S5 starting
from the j-th member of its list is a multiple of p;. None of the
corresponding elements of Sz has this property. Thus Sq NS
is the finite set

1
{Hpgk:1§£§j—1}.
k=1



