Math 320, Fall 2018
Midterm 2 Solutions

Name: SID:

Instructions

e The total time is 50 minutes.

e The maximum score is 100 points.

e Use the reverse side of each page if you need extra space.

e Show all your work. A correct answer without intermediate
steps will receive no credit.

e Partial credit will be assigned to the clarity and presentation
style of solutions. Please ensure that your answers are effec-
tively comunicated.

e No clarification will be given for any problems; if you believe
a problem is ambiguous, interpret it as best you can and write
down any assumptions you feel are necessary:.

Problem Points Score
1 35

2 25

3 25

4 15
MAX 100
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1. a) State the Heine-Borel Theorem, and give an exam-
ple.
(10 points)

Solution. Let (X, d) denote the metric space R" equipped with
the standard Euclidean metric. The Heine-Borel theorem states
that a set is compact in (X, d) if and only if it is closed and
bounded.

For example, the unit interval [0, 1] is compact in R. ]

b) State the definition for what it means for a set E
in a metric space X to be connected, and give an
example.

(10 points)

Solution. Let (X, d) be a metric space. We say that a set E C
X admits a nontrivial separation if there exist sets nonempty
sets A and B such that

E=AUB, AnB=0, AnB=1.

A set E is said to be connected in it does not admit any non-
trivial separation.

The unit interval [0, 1] is connected in R. ]
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c) Let {p,} be a sequence of real numbers. State the
definition of

lim sup p,.
n—oo

Give an example of a sequence that is not eventually
constant, and compute limsup for that sequence.
(15 points)

Solution.

limsup p, = sup{oz -« is a limit point of {pn}}
n—oo

Example 1: The lim sup of any convergent sequence is its

limit. Thus !
limsup — = 0.
n
Ezxample 2: Another example of the lim sup of a non-convergent

sequence 1s

: : 1
limsup p,, = lim sup(—l)”(l + —) = 1.
n

n—oo n—oo
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2. Let X be the set of all infinite binary strings (i.e. the

set of all infinite sequences whose entries are either 0
or 1). Given elements b = (by,bs,...) and b’ = (b}, 05, .. .)
of X, define

d(b,¥) = sup { zn:r’f\bk —H|ine N} — f:ﬂybk — Y.
k=1 k=1

(X, d) is a metric space (you do not need to prove this).
Is this metric space complete? Prove that your an-
swer is correct.

(25 points)

Solution. We argue that X is complete, i.e., every Cauchy se-
quence in X converges.

Let {b*) : k > 1} denote a Cauchy sequence in X i.e.,
d(® b)) =Y 27 bl — b = 0 as k, £ — oo.
n=1
We need to determine the limit of this sequence.

For each n > 1,

275 — b0 < d (8™ b) = 0 as k, £ — oo

In other words, for each n > 1, the sequence {bg{) k>1}isa
Cauchy sequence consisting only of two elements 0 or 1. Hence it
must be eventually constant, hence

b, = lim b¥)  exists.
k—ro0

We now proceed to show that b € X given by b := (by, bo, -+ , by, -+
is the limit of the Cauchy sequence {b*) : k > 1}. Fix e > 0.



Choose N, K > 1 so that

(1) Z 27 =2 < %, and
n=N+1
(2) 6% —b,| < €e/2foralln < N and k > K.

Combining (1) and (2) with the fact that \by(@k) — b,| < 1 leads to
the following estimate: for all k£ > K,

d(b™ b) = 27" — b,
n=1

N %9
<> 2P — b+ Y 27"
n=1

n=N-+1

N
N U
§;2 §+2 <§—|—§—E.

Thus b = limy_, 8% as claimed. []
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3. Prove that every uncountable subset of R has a limit
point.
Hint: If S C R is uncountable, it might be helpful to consider
SNl—n,n|.
(25 points)

Proof. We know that a countable union of countable sets is count-
able. Since S can be written as the countable union

0.
S = U SN |—n,n,
n=1
at least one of the sets S N [—n,n| must be uncountable. This is
an infinite subset of the compact set [—n, n], and thus has a limit
point. [
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4. Let (X, d) be a metric space and let {p,} be a sequence
in X. Consider the set of subsequences of {p,}, i.e.
the set

{{¢.} a sequence in X, {¢,} is a subsequence of {p,}}.

Prove that this set cannot be countably infinite, i.e.
it must either be finite or uncountable.

Hint: it might be helpful to consider the following two cases:
either {p, } is eventually constant, or it isn’t.

(15 points)

Solution. Case 1: {p,} is eventually constant. Let us say that
pn, = p for all n > N. Thus the distinct elements in the sequence
can occur only in the first IV slots, and are therefore at most /N in
number. A subsequence of {p, } is obtained by choosing an ordered
subset (which could be empty) out of these first N elements, and
adding a constant string of p. Thus the possible number of distinct
subsequences is at most 2V, which is finite.

Case 2: {p,} has infinitely many distinct elements. Without
loss of generality (after passing to a subsequence if necessary), we
may assume that no element in {p,} is repeated. Let A denote
the collection of all infinite binary strings that contain infinitely
many 1-s. We know that A is uncountable. Further, each a =
(a1, a9, ) € A generates a subsequence {q,} of {p,} as follows:

dn = Pa,-
This gives rise to uncountably many distinct subsequences.

Case 3: {pn,} has finitely many distinct elements, but is not
eventually constant. In this case, one can find two numbers «
and (8 that occur in the sequence {p,} infinitely often. Then all
possible binary strings consisting of a and [ are subsequences of
{pn}. The collection of such strings is of uncountable cardinality,
completing the proof. [



