$\frac{\text{Math 421/510, Spring 2007, Final}}{(\text{Due date: Friday April 20})}$

Instructions

- The final is due by 10:00 am on Friday April 20, and should be left in the instructor's departmental mailbox. There will be no extensions for the final.
- All pending homework assignments should be turned in along with the final. No submissions will be accepted after 10:00 am on Friday April 20.
- Unlike homework assignments, you must work on the final on your own. If you need hints or clarifications, please feel free to talk to the instructor.
- Answers should be clear, legible, and in complete English sentences. Solutions must be self-contained only results proved in class can be used without proof. Results quoted in class whose verification was left as exercises should be proved in detail.
- 1. (i) We know that weak convergence of a sequence does not imply strong convergence. Show however that the following variant is true. Suppose that $\{x_n\}$ is a sequence in a normed space \mathfrak{X} and $x \in \mathfrak{X}$ such that $\varphi(x_n) \to \varphi(x)$ for all $\varphi \in \mathfrak{X}^*$. Show that for each $\epsilon > 0$ and $m \ge 1$, there exists a convex combination $y = \sum_{n \ge m} \lambda_n x_n$ (i.e., $\lambda_n \ge 0$ and $\sum_{n \ge m} \lambda_n = 1$) such that $||x - y|| < \epsilon$.
 - (ii) Use the result in part (i) to derive the following statement. Let $\{f_n\}$ be a bounded sequence in C(X), such that $f_n(x) \to f(x)$ for every $x \in X$, where $f \in C(X)$. Then for each $\epsilon > 0$ there is a convex combination $g = \sum_n \lambda_n f_n$ such that $||f g||_{\infty} < \epsilon$.
- 2. Let B denote the unit ball in M[0,1], the space of all complex-valued regular Borel measures on [0,1]. For $\mu, \nu \in M[0,1]$, define

$$d(\mu,\nu) = \sum_{n=0}^{\infty} 2^{-n} \left| \int_0^1 x^n d\mu - \int_0^1 x^n d\nu \right|.$$

Show that d is a metric on M[0,1] that describes the weak^{*} topology on B but not on M[0,1].

3. If \mathfrak{X} is a Banach space, show that there is a compact space X such that \mathfrak{X} is isometrically isomorphic to a closed subspace of C(X).