Math 421/510, Spring 2008, Final Exam (Due date: Monday April 21)

Instructions

- The final exam should be submitted to the instructor's mailbox by 5 pm on Monday April 21. There will be no extensions for the final.
- Unlike homework assignments, you must work on the final on your own. If you need hints or clarifications, please feel free to talk to the instructor.
- Answers should be clear, legible, and in complete English sentences. Solutions must be self-contained only results proved in class can be used without proof.
- 1. Let \mathfrak{X} be a closed subspace of the Hilbert space $L^2[0,1]$, and assume that every element of \mathfrak{X} is essentially bounded (i.e., belongs to $L^{\infty}[0,1]$). Prove that dim $\mathfrak{X} < \infty$.
- 2. An important class of bounded linear operators on Hilbert spaces that arises in the study of integral equations is the class of compact operators. Given two Hilbert spaces \mathbb{H}_1 and \mathbb{H}_2 , an operator $K : \mathbb{H}_1 \to \mathbb{H}_2$ is said to be *compact* if the image under K of the unit ball in \mathbb{H}_1 has compact closure in \mathbb{H}_2 . Let $\mathcal{K}(\mathbb{H}_1, \mathbb{H}_2)$ denote the class of compact operators.
 - (a) Show that $\mathcal{K}(\mathbb{H}_1, \mathbb{H}_2)$ is a closed subset of $\mathcal{B}(\mathbb{H}_1, \mathbb{H}_2)$.
 - (b) Given a complex valued function a(t) which is continuous on [a, b], let $A : L^2[a, b] \to L^2[a, b]$ be the bounded linear operator given by

$$(Af)(t) = a(t)f(t).$$

Characterize all functions $a \in C[a, b]$ for which A is compact.

3. Let \mathfrak{X} be a normed space. Recall that the *convex hull* of any subset of \mathfrak{X} is the smallest convex set containing the given set. Show that the norm closure of the convex hull of any subset S of \mathfrak{X} contains the weak sequential closure of S. (An equivalent way of formulating this result is as follows: Let $\{\mathbf{x}_n\}$ be a sequence in a normed vector space \mathfrak{X} that converges weakly to \mathbf{x} . Show that for every $\epsilon > 0$ and $m \in \mathbb{N}$, there is a convex combination $\mathbf{y} = \sum_{n \ge m} \lambda_n \mathbf{x}_n$, i.e., a finite sum with non-negative coefficients and $\sum_{n \ge m} \lambda_n = 1$, such that $||\mathbf{x} - \mathbf{y}|| < \epsilon$.)