
Math 421/510, Spring 2008
Homework Set 4

due on Monday February 25

Instructions
• You are encouraged to discuss homework problems among your-

selves. Also feel free to ask the instructor for hints and clarifi-
cations. However the written solutions that you submit should
be entirely your own.

• Answers should be clear, legible, and in complete English sen-
tences. If you need to use results other than the ones discussed
in class, state the result clearly with either a reference or a
self-contained proof.

1. Find an example of a linear functional on a normed vector space
that is not continuous. Find an example of a discontinuous linear
operator between two normed spaces X and Y , where dim(Y ) > 1.

2. Recall the multiplication operator we discussed in class. We will
study this operator in a bit more detail. Let (X, Ω, µ) be a σ-finite
measure space. For any Ω-measurable function φ, define

Mφ(f) = φf.

(a) If φ ∈ L∞(µ), we have seen that Mφ ∈ B(Lp(µ)), with ||Mφ|| ≤
||φ||∞. Prove that in fact ||Mφ|| = ||φ||∞.

(b) Conversely, if for some p ∈ [1,∞],

φf ∈ Lp(µ) whenever f ∈ Lp(µ),

then show that φ ∈ L∞(µ).
3. Let us consider another example in our list of continuous linear op-

erators. Namely, if X and Y are compact Hausdorff spaces and
τ : Y → X a continuous map, let A ∈ B(C(X), C(Y )) denote the
operator that is “composition with τ”.
(a) Show that ||A|| = 1.
(b) Give a necessary and sufficient condition on τ so that A is in-

jective.
(c) Give such a condition for A to be surjective.
(d) Give such a condition for A to be an isometry.

4. Let X be a normal locally compact space and F a closed subset of
X. If M = {f ∈ C0(X) : f

∣∣
F
≡ 0}, then C0(X)/M is isometrically

isomorphic to C0(F ).
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5. Let T : X → U and S : U → W be linear operators on normed
spaces. If X, U and W are vector spaces of finite and equal dimen-
sion, and ST is invertible, prove that S and T are both invertible.
Give an example to show that the result is false if at least one of the
vector spaces is infinite-dimensional.

6. We used the Baire Category Theorem in class to deduce that any
Hamel basis of an infinite-dimensional vector space must be uncount-
able. We will sketch a proof of the theorem in this exercise.

Theorem 1 (Baire Category Theorem). A complete metric space is
of the second category. That is, if M is a complete metric space and
if we write M =

⋃∞
n=1 En, then the closure of some En contains an

open ball. Equivalently, if {Gn} is a sequence of dense, open sets in
M , then

⋂∞
n=1 Gn 6= ∅; in fact,

⋂∞
n=1 Gn is dense in M .

(a) Prove that any complete metric space satisfies the “nested set
property”, namely if F1 ⊃ F2 ⊃ F3 ⊃ · · · is a decreasing se-
quence of nonempty closed sets in M with diam(Fn) → 0, then⋂∞

n=1 Fn 6= ∅, and consists exactly of one point. Incidentally,
the nested set property is equivalent to completeness, though
you will probably not need the converse statement for this prob-
lem.

(b) Prove the Baire Category Theorem. (Hint: Start with a collec-
tion {Gn} of dense open sets in M . Fix any x0 ∈ M and any
open ball B0 containing x0. You should prove that

⋂∞
n=1 Gn ∩

B0 6= ∅ (why?). Using the properties of G1, find an open ball B1

of diameter no more than 1 such that B̄1 ⊂ B0∩G1. Repeat the
same argument to find an open ball B2 with diam(B2) ≤ 1

2
such

that B̄2 ⊂ B1 ∩ G2. Iterate the process, and apply the nested
set property on the B̄j-s.)

7. We stated in class that C[0, 1] has a Schauder basis. The goal of this
exercise is to find one. Enumerate the dyadic rationals (i.e. rationals
of the form k

2m , where k,m are non-negative integers, and k is odd)
in the usual way, as follows :

t0 = 0, t1 = 1, t2 =
1

2
, t3 =

1

4
, t4 =

3

4
, · · · .

Set f0 ≡ 1, f1(x) = x. If tn = kn/2
mn for mn ≥ 1, and gcd(kn, 2) =

1, define the function fn : [0, 1] → R as the one that satisfies fn(0) =
fn(1) = 0, fn(tn) = 1, fn(tn − 2−mn) = fn(tn + 2−mn) = 0, and fn

interpolates linearly in between.
(a) Show that the functions fn are linearly independent.
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(b) Show that span{f0, · · · , f2m} is the space of all continuous,
piecewise linear functions with “nodes” at the dyadic rationals
r2−m, r = 0, 1, · · · , 2m.

(c) Show that the functions {fn} have dense linear span in C[0, 1].
(d) Show that {fn} is a Schauder basis for C[0, 1].
(e) Given f ∈ C[0, 1], give a geometric description of its Schauder

approximations
∑n

k=1 akfk.
Remark : We proved in class that the collection of monomials is
not a Schauder basis for C[0, 1]. However, C[0, 1] does admit a basis
consisting entirely of polynomials (do you find this surprising?). We
may come back to this later in the semester.

8. Show that the class of continuous functions on [0, 1] is dense in
L2[0, 1]. Can you replace “continuous” by “infinitely smooth”? How
about [0, 1] by Rn?


