$\frac{\text{Math 421/510, Spring 2008, Midterm}}{(\text{Due date: Wednesday March 12})}$

Instructions

- The midterm will be collected at the end of lecture on Wednesday. There will be no extensions for the midterm.
- Unlike homework assignments, you must work on the midterm on your own. If you need hints or clarifications, please feel free to talk to the instructor.
- Answers should be clear, legible, and in complete English sentences. Solutions must be self-contained only results proved in class can be used without proof.
- 1. The closed span of an orthonormal system in a Hilbert space remains stable under small perturbations, in the following sense. Let $\{\varphi_n : n \ge 1\}$ be an orthonormal basis of a Hilbert space \mathbb{H} . If $\{\psi_n : n \ge 1\}$ is an orthonormal system in \mathbb{H} such that

$$\sum_{n} ||\varphi_n - \psi_n||^2 < \infty,$$

then $\{\psi_n : n \ge 1\}$ is an orthonormal basis for \mathbb{H} . Prove this.

2. Let $(X, || \cdot ||)$ be a normed linear space over \mathbb{R} such that

 $||\mathbf{x} + \mathbf{y}|| < ||\mathbf{x}|| + ||\mathbf{y}||$ if $\mathbf{x} \neq \alpha \mathbf{y}$ for any $\alpha \ge 0$.

Such a norm is said to be *strictly subadditive*. Show that any isometry of X into itself that fixes the origin is linear. Use this to characterize all isometries of X into itself.

Remark: This is a special case of the following more general result due to Mazur and Ulam. Let X and X' be two normed linear spaces over the reals, φ an isometric mapping of X onto X' that carries **0** to **0**. Then φ is linear.

- 3. Identify all linear isometries of a Hilbert space \mathbb{H} .
- 4. Consider the sequence space $c_0(\mathbb{N})$.
 - (i) Let $p: \mathbb{N} \to \mathbb{N}$ be a permutation (i.e. a bijection) of the positive integers. Check that the map

$$\{a_n : n \ge 1\} \mapsto \{a_{p(n)} : n \ge 1\}$$

is an isometry on c_0 .

(ii) Let $\{b_n : n \ge 1\}$ be an arbitrary sequence of complex numbers such that $|b_n| = 1$ for all n. Check that

$$\{a_n : n \ge 1\} \mapsto \{b_n a_n : n \ge 1\}$$

is an isometry on c_0 .

(iii) Show that every linear isometry of c_0 onto itself is a composition of the types described in (i) and (ii).