
Math 421/510, Spring 2009, Homework Set 2
due on Monday March 23

Instructions
• Homework will be collected at the end of lecture on Friday.
• You are encouraged to discuss homework problems among your-

selves. Also feel free to ask the instructor for hints and clarifi-
cations. However the written solutions that you submit should
be entirely your own.

• Answers should be clear, legible, and in complete English sen-
tences. If you need to use results other than the ones discussed
in class, state the result clearly with either a reference or a
self-contained proof.

This homework set will cover different aspects of the general Banach
space results (such as Hahn-Banach, open mapping, closed graph, uni-
form boundedness theorems) that we have been discussing in class and
their applications.

1. Let H be a separable Hilbert space with an orthonormal basis {en :
n ≥ 1}, and M ⊆ N = {1, 2, 3, · · · }. We proved a result in class that
gives a formula for the orthogonal projection operator of H onto
the closed linear span of {em : m ∈ M}. We also know that these
projection operators are continuous, i.e., bounded linear maps. Can
this notion of projection onto coordinate subspaces be generalized
to a Banach space with a Schauder basis (which now provides the
analogue of an orthonormal basis)? The current problem explores
this question.

Given a Schauder basis {xn : n ≥ 1} in a Banach space X, let us
define the coordinate functionals x∗n : X → R by

x∗n(x) = an where x =
∞∑
i=1

aixi.

We also define a sequence of linear maps {Pn : n ≥ 1} on X by

Pn(x) =
n∑

i=1

x∗i (x)xi.

Thus Pn may be viewed as a projection onto the linear span of
{xi : 1 ≤ i ≤ n}. Obviously the maps {x∗n} are all continuous
precisely when the Pn-s are all continuous (why?). The amazing fact
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that all these operations are continuous whenever X is complete is
due to Banach.
(a) Prove that if {xn : n ≥ 1} is a Schauder basis for a Banach space

X, then every Pn (and hence every x∗n) is continuous. Moreoever
K = supn ||Pn|| < ∞. (Hint: Banach’s ingenious idea was to
define a new norm on X by setting

|||x||| = sup
n
||Pnx||.

Check that this is well-defined and a norm, and use it to prove
the result stated above.)

(b) We are now in a position to prove the “test for Schauder basis”
that we used a few times in an earlier problem set. Recall the
result and prove it.

2. (a) If K is the closure of the unit ball in the complex plane and
a ∈ K, find a complex regular Borel measure µ supported on
the boundary of K such that

(1) f(a) =

∫
fdµ

for all functions f that are analytic in the open disk and contin-
uous up to the boundary.

(b) Is the measure that you found in part (a) a probability measure?
(A probability measure is a non-negative measure µ such that
||µ|| = 1.) If not, find a probability measure µ supported on ∂K
with the same property (1). (Hint : A quick review of harmonic
extensions might be useful.) In particular, this shows that the
choice of µ is not unique.

(c) Let’s now try to generalize the two observations above to other
planar domains. Let K be a compact subset of C with nonempty
interior and smooth boundary and define

A(K) = {f ∈ C(K) : f is analytic on the interior of K}.
Here C(K) is the normed space (over C) of continuous (complex-
valued) functions on K. Show that if a ∈ K, then there is a
complex regular Borel measure µ supported on ∂K such that

f(a) =

∫
f dµ

for every f ∈ A(K). Do this in two ways, once by appealing to
Hahn-Banach, and also from standard results in complex func-
tion theory.

(d) Show next that it is possible to choose the measure µ in part (c)
to be a probability measure.
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3. If K is a compact subset of R, Stone-Weierstrass theorem tells us
that the polynomials are dense in C(K). What if we consider the
space C0(R), i.e., the space of all continuous functions on R that
vanish at infinity (equipped with the sup norm of course), and wish
to find a subset of functions of known functional form that has dense
linear span in C0(R)? The following result, which you should prove,
furnishes an answer.

Let w(t) be a given positive function on R that decays exponen-
tially as |t| → ∞,

0 < w(t) < ae−c|t|, c > 0.

Show that the functions {tnw(t) : n ≥ 1} belong to C0(R) and their
closed linear span is all of C0(R).

4. A very important geometric application of the Hahn-Banach the-
orem is to separation results concerning convex sets. Here is an
example. Follow the steps outlined below to prove two versions of
the hyperplane separation theorem.
(a) Let X be a linear space over the reals, K a convex set that has

an interior point, which we take to be the origin. Denote the
gauge pK with respect to the origin as follows:

pK(x) = inf
{

a : a > 0,
x

a
∈ K

}
.

Show that pK is well-defined, positive homogeneous and subad-
ditive.

(b) Show that for any convex set K as in part (a),

pK(x) ≤ 1 if x ∈ K,

pK(x) < 1 if and only if x is an interior point of K.

(c) We turn now to the notion of hyperplane. Suppose that ` is
a linear functional not ≡ 0. The set {x : `(x) = c} is called a
hyperplane. The sets {x : `(x) < c} and {x : `(x) > c} are called
open halfspaces. The sets {x : `(x) ≥ c} and {x : `(x) ≤ c} are
called closed halfspaces. Prove:

Theorem 1 (Hyperplane Separation Theorem). Let K be
a nonempty convex subset of a linear space X over the reals.
Suppose that all points of K are interior. Any point y not in K
can be separated from ` by a hyperplane `(x) = c; that is there
is a linear functional ` depending on y such that

`(x) < c for all x ∈ K, `(y) = c.
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Theorem 2 (Extended Hyperplane Separation). Let X be
a linear space over R; H and M disjoint, convex subsets of X,
at least one of which has an interior point. Then H and M can
be separated by a hyperplane `(x) = c; that is, there is a nonzero
linear functional ` and a number c such that

`(u) ≤ c ≤ `(v)

for all u ∈ H, v ∈ M .

5. (a) We have seen plenty of examples where we have used properties
of a Banach space X to deduce structural properties of its dual
space X∗. Can one use topological information of X∗ to deduce
similar properties of X? Here is a result along these lines. Prove
it.
Let Z be a normed space over C. If Z∗ is separable, so is Z.

(b) We may have briefly touched upon the notion of reflexivity in
class. Recall that a Banach space is called reflexive if X = X∗∗.
(Thus the spaces Lp, 1 < p < ∞ are all reflexive.) Use the result
in part (a) to prove that C[0, 1] is not reflexive.

(c) While we are on the topic of reflexive spaces, here is a result
that is of some interest, and one that we will need to use soon.
Prove it.
A closed linear subspace Y of a reflexive Banach space X is
reflexive.

6. Have you wondered about extending a general linear operator on a
normed linear space, instead of a linear functional? In other words,
is there an analogue of the Hahn-Banach theorem if (instead of the
scalar field) the range space of the operator to be extended is an
arbitrary Banach space? In this problem, we discuss a quantitative
notion connected with extensions of linear operators, called exten-
sion constant.

We say that a Banach space X is injective if for every Banach
space Y , every subspace Z of Y and every operator T : Z → X
there exists an extension T̃ : Y → X. We define the extension
constant e(X) by

e(X) = inf

{
c
∣∣∣ for every Y ⊃ Z and T : Z → X there exists

T̃ : Y → X such that T̃ = T on Z, and ||T̃ || ≤ c||T ||

}
Think about what e(X) measures, and convince yourself that X = F
is injective.
(a) Show that every injective space has e(X) < ∞.
(b) Show that e(`∞) = 1.


