
Math 421/510, Spring 2009, Midterm
due on Monday March 2

Instructions
• The midtrerm will be collected at the end of lecture on Monday.
• Please do not discuss the questions among yourselves. But feel

free to ask the instructor for hints and clarifications. The writ-
ten solutions that you submit should be entirely your own.

• Answers should be clear, legible, and in complete English sen-
tences. If you need to use results other than the ones discussed
in class, state the result clearly with either a reference or a
self-contained proof.

1. In 1927, Schauder initiated the formal theory of bases in Banach
spaces by offering up a basis for C[0, 1] that now bears his name.
The purpose of this problem is to understand his construction.

Consider the dyadic rationals in [0, 1], i.e., {rjk = k2−j : (j, k) ∈
Z2, j ≥ 0, 0 ≤ k ≤ 2j}. Enumerate these rationals according to the
lexicographic order in (j, k) avoiding repetitions, so that

t0 = 0, t1 = 1, t2 =
1

2
, t3 =

1

4
, t4 =

3

4
, · · · .

Let f0 ≡ 1, f1(t) = t. For n ≥ 2, and tn = kn2−jn with gcd(kn, 2) =
1, define fn to be the continuous, piecewise linear, tent-shaped func-
tion that vanishes outside [tn − 2−jn , tn + 2−jn ], and whose graph
within this interval is given by the two lines joining the points
(tn − 2−jn , 0) with (tn, 1) and (tn, 1) with (tn + 2−jn , 0) respectively.
(Drawing a few pictures may help.)
(a) Show that the set {fn : n ≥ 1} is linearly independent. (Hint :

Observe that fn(tn) = 1 and fk(tn) = 0 for k > n.)
(b) Show that the span{f0, · · · , f2m} is the set of all continuous

piecewise linear or “polygonal” functions with nodes at the dyadic
rationals {k2−m : k = 0, 1, · · · , 2m}.

(c) It remains to check that {fn : n ≥ 1} is a Schauder basis for
C[0, 1]. How does one show that a countably infinite linearly
independent set in a Banach space is a basic sequence? The
following test for Schauder bases, due to Banach, is extremely
useful:

Theorem 1. A sequence {xn : n ≥ 1} of nonzero vectors is a
Schauder basis for the Banach space X if and only if
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(i) {xn : n ≥ 1} has dense linear span in X, and
(ii) there is a constant K > 0 such that∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
∣∣∣∣∣ ≤ K

∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

aixi

∣∣∣∣∣
∣∣∣∣∣

for all scalars {ai} and all n < m.

We will soon be able to prove this result, but assuming it for
now, show that {fn} is a Schauder basis for C[0, 1].

(d) In light of part (c), each f ∈ C[0, 1] can be uniquely written
as a uniformly convergent series f =

∑∞
k=0 akfk. Describe the

approximating polygonal functions, i.e., the partial sums of this
expansion, in terms of f .

(e) It is tempting to wonder whether the monomials {tn : n =
0, 1, 2, · · · } might form a Schauder basis for C[0, 1]. Do they?

2. Next, let us apply ourselves to the task of finding a Schauder basis
for Lp[0, 1], 1 ≤ p < ∞. The Haar system {hn : n ≥ 0} on [0, 1] is
defined by h0 ≡ 1, and

h2k+i(x) =


1 if 2i−2

2k+1 ≤ x < 2i−1
2k+1 ,

−1 if 2i−1
2k+1 ≤ x < 2i

2k+1 ,

0 otherwise,

for k ≥ 0, and 1 ≤ i ≤ 2k. (Again, draw a few pictures.) Let Ak

denote the collection of intervals

Ak =

{[ i− 1

2k+1
,

i

2k+1

)
: 1 ≤ i ≤ 2k+1

}
.

(a) Show that the linear span of {hj : j ≤ 2k+1} is the set of all step
functions based on the intervals in Ak, i.e.,

span {h0, · · · , h2k+1−1} = span {χI : I ∈ Ak}
Deduce from this that {hn} have dense linear span in Lp[0, 1].

(b) It remains to verify part (ii) of Banach’s test. Show that this
would follow if one can prove the inequality

(1) |a + b|p + |a− b|p ≥ 2|a|p for all scalars a and b.

[Hint : Examine the supports of {hn}, noting in particular that∑n
i=0 aihi and

∑n+1
i=0 aihi differ only on the support of hn+1.]

(c) Prove the inequality (1) by showing that f(x) = |x|p satisfies
f(x) + f(y) ≥ 2f(x+y

2
) for all x, y.

3. (a) If n ≥ 1, show that there is a measure µ on [0, 1] such that
p′(0) =

∫
p dµ for every polynomial p of degree at most n.
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(b) Does there exist a measure µ on [0, 1] such that p′(0) =
∫

p dµ
for every polynomial p?

4. In class, we proved that the Fourier transform is an isometric iso-
morphism from L2[0, 2π] onto `2(Z). An ingredient of the proof
was the observation that the space of continuous functions on [0, 2π]
is dense in L2[0, 2π]. In this problem, we investigate this issue in
greater generality.
(a) Let X be a locally compact Hausdorff space equipped with a

Radon measure µ. Recall that Cc(X) is the space of all F-valued
continuous functions on X with compact support. Show that
Cc(X) is dense in Lp(X) for 1 ≤ p < ∞. [Hint: One method
of proof uses the following measure-theoretic result, known as
Lusin’s theorem (look up the proof in Folland’s Real Analysis
or Rudin’s Real and Complex Analysis, if you do not know it
already):

Theorem 2. Let X be as above, A a measurable subset of X with
µ(A) < ∞, and suppose f is an F-valued measurable function
on X such that f(x) = 0 if x 6∈ A. Given any ε > 0, there exists
g ∈ Cc(X) such that

µ ({x : f(x) 6= g(x)}) < ε.

The function g may be chosen to further satisfy

sup
x∈X

|g(x)| ≤ sup
x∈X

|f(x)|.

You may use this result without proof.]
(b) If X = Rd, d ≥ 1, the result above may be strengthened as

follows. Let C∞
c (Rd) denote the space of infinitely differentiable

functions of compact support. Show that C∞
c (Rd) is dense in

Lp(Rd), 1 ≤ p < ∞. Prove this.
(c) The result that we needed for our proof (of the isometry of the

Fourier transform) was that

C = {f ∈ C[0, 2π] : f(0) = f(2π)}
is dense in L2[0, 2π]. Explain why this follows from the results
above.

(d) Do these approximation theorems hold for p = ∞?


