Math 121 Final Exam - Sample 2

Total time allowed: 3 hours

1. (10 points) Determine whether the following series converges absolutely, converges conditionally, or diverges:

$$\sum \frac{\sin(n+1/2)\pi}{\ln\ln n}$$

2. (10 points) Find the specified Taylor series representation of the following, and determine where the series representation is valid.

$$f(x) = x \ln(x)$$
 in powers of $x - 1$.

- 3. (20 points) Find the Fourier series sine series for $f(t) = \pi t$ on $[0, \pi]$.
- 4. (15 points) Sketch and find the area of the region R bounded by the coordinate axes and the parabolic arc

$$x = \sin^4 t, y = \cos^4 t.$$

- 5. (20 points) Calculate $Pr(|X \mu| \ge 2\sigma)$ for the exponential distribution with density $f(x) = ke^{-kx}$ on $[0, \infty)$.
- 6. (15 points) Find the centre of mass of a semicircular plate occupying the region $x^2 + y^2 \le a^2, y \ge 0$, if the density at distance s from the origin is ks g/cm².
- 7. (15 points) Find the length of the following curve from (-1, 1) to $(0, 1 + \sqrt{2/3})$.

$$2(x+1)^3 = 3(y-1)^2$$

8. (15 points) Find the volume of the solid obtained by rotating the region bounded by the following about the x-axis:

$$y = \frac{1}{1+x^2}$$
, $y = 2$, $x = 0$, and $x = 1$.

9. (10 points) Evaluate the following integral:

$$\int \frac{\ln(\ln x)}{x} \, dx$$

- 10. (5+5+5 points) Determine of the following statements are True or False. If true, prove it. Else give a counterexample to show falsehood.
 - (a) If $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} (-1)^n a_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
 - (b) If $\sum a_n$ and $\sum b_n$ both diverge, then so does $\sum (a_n + b_n)$.
 - (c) If neither $\{a_n\}$ not $\{b_n\}$ converges, then $\{a_nb_n\}$ does not converge.
- 11. (5 points) Test the following series for convergence:

$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$