Discrete and continuous random variables

Malabika Pramanik

Math 105 Section 203

2010W T2

• • = • • = •

Review : Discrete Random variable

The probability distribution of a discrete random variable is given by the table

value of X	probability
<i>x</i> ₁	p_1
<i>x</i> ₂	<i>p</i> ₂
•	
X _n	<i>p</i> _n
Total	1

which is interpreted as follows:

 $p_k = \Pr(X = x_k) = \text{probability that } X \text{ takes the value } x_k.$

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Continuous random variable

For a continuous random variable X, the probability distribution is represented by means of a function f, satisfying

$$f(x) \ge 0$$
 for all x , $\int_{-\infty}^{\infty} f(x) dx = 1.$ (1)

Any function f satisfying (1) is called a *probability density function*. The relation between f and X is as follows:

Prob that X takes values in
$$[a, b] = \Pr(a \le X \le b)$$

= $\int_{a}^{b} f(x) dx.$

Continuous random variable

For a continuous random variable X, the probability distribution is represented by means of a function f, satisfying

$$f(x) \ge 0$$
 for all x , $\int_{-\infty}^{\infty} f(x) dx = 1.$ (1)

Any function f satisfying (1) is called a *probability density function*. The relation between f and X is as follows:

Prob that X takes values in
$$[a, b] = Pr(a \le X \le b)$$

= $\int_{a}^{b} f(x) dx.$

For a continuous random variable with density,

$$Pr(X = c) = 0$$
 for any $c!$

Example

Which of the following functions can be probability density functions?

A.
$$f(x) = e^{-x}$$
, $-\infty < x < \infty$.
B. $f(x) = \sin x$, $0 \le x \le 5\pi/2$, 0 otherwise.
C. $f(x) = 2x/3$, $-1 \le x \le 2$, 0 otherwise.
D. $f(x) = e^{-x}$, $0 < x < \infty$, 0 otherwise.
E. $f(x) = \sin x$, $0 \le x \le \pi$, 0 otherwise.

(人間) トイヨト イヨト

Definition

The cumulative distribution function of X is the function F(x) defined by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \Pr(X \le x).$$

< ∃ > <

Definition

The cumulative distribution function of X is the function F(x) defined by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \Pr(X \le x).$$

Remarks:

F(x) is the area under the probability density curve up until the vertical line at x.

Definition

The cumulative distribution function of X is the function F(x) defined by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \Pr(X \le x).$$

Remarks:

F(x) is the area under the probability density curve up until the vertical line at x.

•
$$F'(x) = f(x)$$
. (Fundamental theorem of calculus)

Definition

The cumulative distribution function of X is the function F(x) defined by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \Pr(X \le x).$$

Remarks:

- F(x) is the area under the probability density curve up until the vertical line at x.
- **2** F'(x) = f(x). (Fundamental theorem of calculus)
- F is a non-decreasing function of x.

Definition

The cumulative distribution function of X is the function F(x) defined by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \Pr(X \le x).$$

Remarks:

- F(x) is the area under the probability density curve up until the vertical line at x.
- **2** F'(x) = f(x). (Fundamental theorem of calculus)
- F is a non-decreasing function of x.
- If the random variable X always takes values in the interval [A, B], then F(A) = 0 and F(B) = 1.

• • = • • = •

Example

If X is a continuous random variable with density

$$f(x) = 2(x+1)^{-3}, \qquad x \ge 0$$

then the cumulative distribution function for f is

A.
$$1/(x+1)^2$$
, $x \ge 0$
B. $(x^2+2x)/(x+1)^2$, $x \ge 0$
C. $-1/(x+1)^2$, $x \ge 0$
D. $2-1/(x+1)^2$, $x \ge 0$
E. $1-e^{-x}$, $x \ge 0$.

Image: A Image: A

Example (ctd)

Use the cumulative distribution function from the preceding example to calculate $Pr(X \ge 3)$.

- A. 1/16
- B. 3/16
- **C**. 0
- D. 2/3
- **E**. 15/16

くほと くほと くほと