Math 105 Week 6

February 7th, 2011

1. Lesson plan

This week we will look at three different topics: a special type of integral called *improper*; a very important application, *differential equations*; and problems involving *areas between curves*. Unlike in previous weeks, these topics will be accompanied by many word problems, showing them in action in (more or less) real-world situations.

Improper integrals come in two flavors: with infinite intervals, and with unbounded functions. The first look like for instance $\int_0^{\infty} f(x)dx$, and are defined as a limit of a normal integral on a finite interval. If f(x) becomes small enough quickly enough as x goes to ∞ , such an integral can have a finite value – even though it represents the area of an infinitely long region.

Differential equations make up an area of mathematics that has found application in all sciences. They show up whenever the rate of change of a function is connected to the value of the function itself, which happens in many applications.

Differential equations form a very large field, and we will merely see a small sample, in particular the type of differential equation called *separable*.

Areas between curves also show up in many applications. We have already seen these in their simplest form, namely the area between the graph of a function and the *x*-axis (aka a definite integral). But now we see more general areas, which will of course be computed using definite integrals, but they require some extra attention.

2. Learning objectives

By the end of the week and after going through the practice problems, you should be able to:

- 1. distinguish between the different types of improper integrals and explain their definition as limits;
- 2. evaluate the various kinds of improper integrals;
- 3. recognize when the solution to a word problem requires an improper integral;
- 4. explain what a differential equation is;
- 5. solve separable equations;
- 6. set up a differential equation for a word problem and solve it;
- 7. sketch regions between graphs and compute their areas.