Problem Set 11 - Math 321, Spring 2012

This homework set is not meant to be turned in.
Use it as review for material covered during last week of classes.

1. Let $\mathcal{R}[-\pi, \pi]$ denote the space of Riemann integrable functions on [a, b]. We introduced the notion of " L^2 norm" in class, namely,

$$||f||_2 = \left[\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx\right]^{\frac{1}{2}}, \qquad f \in \mathcal{R}[-\pi, \pi].$$

This problem is concerned with the modifications necessary to justify this nomenclature.

- (a) If f is Riemann integrable on $[-\pi, \pi]$ and $||f||_2 = 0$, does it follow that $f \equiv 0$?
- (b) If you assume in addition that f is continuous, show that the above implication is true. Use this to verify that the L^2 norm is truly a norm on $C[-\pi, \pi]$. Is $C[-\pi, \pi]$ closed under this norm?
- (c) Define a binary relation \sim on $\mathcal{R}[-\pi,\pi]$ as follows: for $f,g\in\mathcal{R}[-\pi,\pi]$, we say

$$f \sim g$$
 if $\int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx = 0$.

Show that \sim is an equivalence relation, i.e, it is reflexive, symmetric and transitive.

- (d) Given $f \in \mathcal{R}[-\pi, \pi]$, an equivalence class \mathcal{F} of f is the set of all functions g such $f \sim g$. Define $L^2[-\pi, \pi]$ to be the space of equivalence classes of $\mathcal{R}[-\pi, \pi]$. Show that $L^2[-\pi, \pi]$ is a vector space, with the natural extensions of the notions of vector addition and scalar multiplication inherited from $\mathcal{R}[-\pi, \pi]$.
- (e) For any $\mathcal{F} \in L^2[-\pi, \pi]$, define

$$||\mathcal{F}||_2 = \left[\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx\right]^{\frac{1}{2}},$$

where f is any member of the equivalence class \mathcal{F} . Show that $||\mathcal{F}||_2$ is well-defined, i.e., independent of the choice of $f \in \mathcal{F}$, and that $||\cdot||_2$ is a genuine norm on $L^2[-\pi, \pi]$.

- (f) Show that $L^2[-\pi, \pi]$ equipped with $||\cdot||_2$ is a Banach space. (Remark: By a slight abuse of notation, one says $f \in L^2[-\pi, \pi]$ when one really means that the equivalence class of f is in $L^2[-\pi, pi]$.)
- 2. Our proof of the L^2 -convergence of Fourier series relied on the following approximation result. Fill in the details.

Let f be Riemann integrable on $[-\pi, \pi]$, and let $\epsilon > 0$.

- (a) Show that there is a continuous function g on $[-\pi, \pi]$ satisfying $||f g||_2 < \epsilon$.
- (b) Show that there is a continuous, 2π -periodic $h \in \mathcal{C}^{2\pi}$ satisfying $||f h||_2 < \epsilon$.
- (c) Show that there is a trig polynomial T with $||f T||_2 < \epsilon$.
- 3. If two Riemann integrable functions f and g share the same Fourier coefficients, does it follow that $f \equiv g$ as elements of $\mathcal{R}[-\pi,\pi]$? As elements of $L^2[-\pi,\pi]$? What would your answer be if f and g were required to be continuous?
- 4. In class, we dealt mainly with the issue of L^2 -norm convergence of Fourier series. This problem addresses some aspects of Fourier series involving uniform convergence, obtainable as easy consequences of results we have learnt in this course.

- (a) Show that if the Fourier series of a function $f \in \mathcal{C}^{2\pi}$ is uniformly convergent, then the series must actually converge to f.
- (b) If the Fourier coefficients $\{a_n, b_n\}$ for some function $f \in \mathcal{C}^{2\pi}$ satisfy

$$\sum_{n} (|a_n| + |b_n|) < \infty,$$

show that the Fourier series for f converges uniformly to f.

(c) Define $f(x) = (\pi - x)^2$ for $0 \le x \le 2\pi$, and extend f to a 2π -periodic continuous function on \mathbb{R} in the obvious way. Show that

$$f(x) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}.$$

Note that setting x = 0 yields the familiar formula

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- 5. Let $\{a_n(f), b_n(f)\}$ denote the Fourier coefficients of f. Determine whether the mapping $f \mapsto \{a_n(f), b_n(f)\}$ is a surjective isometry of $L^2[-\pi, \pi]$ onto ℓ^2 .
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be 2π -periodic and Riemann integrable on $[-\pi, \pi]$. Prove that

$$\lim_{x \to 0} \int_{-\pi}^{\pi} |f(x+t) = f(t)|^2 dt = 0.$$