Due on Friday January 27

- 1. Recall that
 - a metric space is separable if it has a countable dense subset, and
 - B[0,1] denotes the space of bounded real-valued functions on [0,1].
 - Is $(B[0,1], ||\cdot||_{\infty})$ separable? Give reasons for your answer.
- 2. Use convergence results proved in class to deduce the following properties of power series:
 - (a) If the power series $\sum_{n=0}^{\infty} a_n x^n$ converges for some $x_0 \neq 0$, show that it converges uniformly and absolutely on every interval [-r, r], where $0 < r < |x_0|$. Deduce that the sum represents a continuous function for $|x| < |x_0|$.
 - (b) Show that term-by-term differentiation or integration works. Formulate mathematically what this statement means, with special attention to the domains where you carry out these operations, and then prove it.
- 3. Let \mathcal{P}_n denote the space of polynomials of degree at most n, and let $\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$. Answer the following questions, with justification:
 - (a) Is \mathcal{P}_n closed in C[0,1]?
 - (b) Is \mathcal{P} equal to, or a strict subset of C[0,1]?
- 4. Remember the Cantor $\frac{1}{3}$ -set Δ ? If not, review its definition on page 41 of the text.

In class, we used the notion of uniform convergence to construct an example of a continuous, nowhere differentiable function on \mathbb{R} . Let us apply the same notion now towards another construction, namely that of a space-filling curve. Follow the steps outlined below to find a pair of continuous functions x(t) and y(t) on [0, 1] such that the curve $t \mapsto (x(t), y(t))$ fills the unit square $[0, 1] \times [0, 1]$; in fact the curve maps Δ onto $[0, 1] \times [0, 1]$.

To begin with, define a map $f : \mathbb{R} \to [0, 1]$ as follows. Let

$$f(t) = \begin{cases} 0 & \text{for } 0 \le t \le \frac{1}{3}, \\ 3t - 1 & \text{for } \frac{1}{3} < t < \frac{2}{3}, \\ 1 & \text{for } \frac{2}{3} \le t \le 1. \end{cases}$$

Extend f to all of \mathbb{R} by taking f to be even and periodic of period 2.

(a) Keeping in mind that any $t \in \Delta$ admits a ternary (in other words base 3) expansion

 $t = 0.(2a_0)(2a_1)(2a_2)\cdots$ (base 3), where each a_k is either 0 or 1,

prove that $f(3^k t) = a_k$ for $t \in \Delta$ and all $k \ge 1$. This will be the basis of our construction. (b) Set

$$x(t) = \sum_{k=0}^{\infty} 2^{-k-1} f(3^{2k}t), \qquad y(t) = \sum_{k=0}^{\infty} 2^{-k-1} f(3^{2k+1}t)$$

Show that x and y are continuous on all of \mathbb{R} , and maps \mathbb{R} into [0,1].

(c) Use part (a) of this problem to show that given $x_0, y_0 \in [0, 1]$, there exists $t_0 \in \Delta$ such that

 $x(t_0) = x_0, \qquad y(t_0) = y_0.$

Thus the curve maps Δ (and hence [0,1]) onto $[0,1] \times [0,1]$.