Solutions to MATH 300 Homework 8

EXERCISES 5.3

3. (e) Using the results of Prob. 2, the radius of convergence of the power
series is R = 1/L, where
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So the circle of convergence is |z + 2| = 1//10.
5. (b) In the circle {z € C: |z| = 1},
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6. (a) We know from Sec. 5.2 Example 2 that the Maclaurin expan-

sion for sin z is

2 22 27

Slnz:z_§+§_ﬂ+""

Then
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for all z € C.
(b) Clearly, f(z) has derivative for any z # 0. At z =0,
£(0) = lim (222 — 1) = lim (22 "2 = lim(cos 2 — 1) = 0,
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where the 3" equality results from Maclaurin expansion of sin z and cos z at
z = 0. Therefore, f has derivative in a neighbourhood of the origin, hence is
analytic there.
(c) f®(0) = 3laz = 0.
(d) f@(0) = 4lay = 4!(1/5!) = 1/5.
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10. Applying Prob. 2, hmk_m| \ = R =limj_, |k+1—
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EXERCISES 5.5

2. (b) No. Recall that the principal branch of y/z is analytic in the slit do-
main D* = C\ (—o0, 0]. Thus, the condition of Theorem 14 does not satisfy.

3. (b)
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6. As we already know,
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for all (finite) w. Therefore, the Laurent series for 22 cos(s5) is
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7. (b) As we know,
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where



Therefore, comparing the coefficients gives us
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9. Consider the cases j > 0 and j < 0. Then the series can be written as
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Then in order that these geometric series converge, we need ‘%‘ < 1 and
|2] < 1, whence 1 < |2] < 2.



