Due on Friday January 16

1. (a) Does the sequence of functions

$$f_n(x) = \frac{nx}{(1+n^2x^2)}$$

converge pointwise on $[0, \infty)$? Is the convergence uniform on this interval? If yes, give reasons. If not, determine the intervals (if any) on which the convergence is uniform.

(b) Verify that the sequence

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

converges uniformly to $f(x) = e^x$ on every compact interval in \mathbb{R} . How does this explain our findings in class, namely that $f_n \to f$ pointwise but not uniformly on \mathbb{R} , yet

$$\int_0^1 f_n(x) \, dx \longrightarrow \int_0^1 f(x) \, dx?$$

- 2. Suppose that (X, d) and (Y, ρ) are metric spaces, that $f_n : X \to Y$ is continuous for each n and that f_n converges pointwise to a function f on X. If there exists a sequence $\{x_n\}$ in X such that $x_n \to x$ in X but $f_n(x_n) \not\to f(x)$, show that $\{f_n\}$ does not converge uniformly to f on X. This can be used as a negative test for uniform convergence.
- 3. Suppose that $\{f_n\}$ is a sequence of real-valued functions, each having a continuous derivative on [a, b], and suppose that the sequence of derivatives $\{f'_n\}$ converges uniformly to a function g on [a, b]. If $\{f_n(x_0)\}$ converges at any point x_0 in [a, b], then, show that $\{f_n\}$ converges uniformly to a differentiable function f on [a, b], and that in fact f' = g.
- 4. (a) If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n + g_n\}$ converges uniformly on E.
 - (b) If in addition $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.
 - (c) Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E.