
Homework 9 - Math 321, Spring 2015

Due on Wednesday April 8

1. Let f be a differentiable 2π-periodic function with continuous first derivative. Is f the
uniform limit of its partial Fourier sums?

2. Determine whether the following statement is true or false: If f : R→ R is 2π-periodic and
Riemann-integrable on [−π, π], then ||fε− f ||2 → 0 as ε→ 0. Here fε denotes the translated
function fε(x) = f(x+ ε).

3. (a) Obtain the Fourier series of the 2π-periodic function that coincides with f(t) = (π − t)2
on [0, 2π].

(b) Does f match its Fourier series? Give reasons for your answer.

(c) Use your results from above to derive the identity:
∑∞

n=1 n
−2 = π2

6
.

4. (a) Show that the Fourier series of a function f can alternatively be written in the form

∞∑
k=−∞

f̂(k)eikx, where f̂(k) =
1

2π

∫ π

−π
f(t)e−ikt dt

is referred to as the kth Fourier coefficient.

(b) Determine the relation of f̂(k) with ĝ(k) in each of the following cases:

(i) g is a translate of f , namely g(x) = f(x+ α).

(ii) g is a modulation of f , namely g(x) = f(x)e−iαx.

(c) Given two bounded, 2π-periodic functions f and g, both of which are Riemann-integrable
on [−π, π], define their convolution h = f ∗ g as follows,

h(x) = f ∗ g(x) =
1

2π

∫ π

−π
f(x− t)g(t) dt.

Note that the nth partial Fourier sum snf and the nth Cesàro sum σnf are both given

in terms of convolutions of f with appropriate kernels. Find ĥ in terms of f̂ and ĝ.

(d) Use this and the Fourier coefficients of Kn to derive an explicit formula for the nth
Cesàro sum σnf of a Fourier series.

5. Let f ∈ C2π, the class of continuous 2π-periodic functions on [−π, π]. We have seen that
the partial Fourier sums sn(f) are excellent approximations of f in L2 norm, but so far only
have indirect evidence that they may not be very good approximations in the sup norm.
This problem attempts to make this intuition precise.

(a) Show that for every n ≥ 1, there exists fn ∈ C2π such that ||fn||∞ = 1 and supj |sjfn(0)| >
n.

(b) Use the functions fn in part (a) to find a single f ∈ C2π whose Fourier series diverges
at 0.
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(c) Now modifiy your construction in part (b) to create a continuous 2π-periodic function
whose Fourier series diverges at a dense set of points.

6. This exercise is designed to study a curious property of a certain class of Fourier series, known
as Gibbs phenomenon. Discovered by Wilbraham (1849) and studied by Gibbs (1899), this
phenomenon refers to the manner in which the Fourier series of a piecewise continuously
differentiable periodic function behaves at a jump discontinuity. The nth partial Fourier
sums oscillate near the jump point, which is understandable, but the strange thing is that
the oscillation might result in increasing the maximum of the partial sum above that of the
function itself. Even more strange is the fact that the overshoot does not die out as you take
larger and larger sums (i.e. the frequency increases), but approach a finite nonzero limit!
Here is an example where you can see Gibbs phenomenon in action.

Let f(x) = sgn(x), which takes on the value 1, -1 or 0 according as x is positive, negative
or zero.

(a) Show that

f(x) =
4

π

∞∑
n=1

sin(2n− 1)x

(2n− 1)
for every x ∈ [−π, π].

(b) Denote by sn the nth partial sum of the above series. Show that

sn(x) =
2

π

∫ x

0

sin 2nt

sin t
dt.

(c) Examine the local maxima and minima of sn, and deduce that the largest value of sn is
attained at π

2n
.

(d) Interpret sn( π
2n

) as a Riemann sum and prove that

lim
n→∞

sn

( π
2n

)
=

2

π

∫ π

0

sin t

t
dt.

The value of this limit is about 1.179. Thus, although f has a jump equal to 2 at the
origin, the graphs of the approximating curves sn tend to approximate a vertical segment
of length 2.358 in the vicinity of the origin!


