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1. Let X be an infinite-dimensional Banach space. Show that every Hamel basis of X
is uncountable.

Proof. Our idea is to use the Baire Category theorem.

Suppose there were a countable Hamel basis for X, given by B := {x,zo,...}.
Let X,, := span{zy, xs, ..., x,}, which is closed in X, since it is a finite dimensional
subspace. Furthermore, since X, is a proper subspace of X, it has no interior points.
Therefore X,, is nowhere dense. Since X = U2 ,X,,, the Baire Category theorem
gives rise to a contradiction.
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2. (a) Show that the vector space of polynomials is dense in C|0, 1], but the monomials
{z" : n > 1} do not form a Schauder basis for C[0, 1].

(b) Does C]0, 1] have a Schauder basis?

Proof. (a) That the vector space of polynomials is dense in C0, 1] is exactly the
statement of the Weierstrass approximation theorem.

The monomials {z" : n > 1} do not form a Schauder basis for C[0,1]. Indeed,
if they did, then given any f € C]0, 1], there is a unique representation f =
Y g anx™ as a uniformly convergent power series whose radius of convergence
is at least 1. This implies that f is differentiable at any x € [0, 1), which is not
always the case if we pick, say, f(z) = |z — 3|.

(b) i. Construction of the system:
This is a standard example called the Faber-Schauder system: fo(z) = 1,
and

fin=(0=2z—k/2)*, j>0, 1<k<2, kisodd

We can arrange them in the natural way as {f,,} := (fo, fo1, fi.1, fo1, f23,- -+ ).
You can refer to the following website for some pictures:
https://math.stackexchange.com/questions/667251/example-of-a-basis-of-c0-1


https://math.stackexchange.com/questions/667251/example-of-a-basis-of-c0-1

We present an idea of how we compute the unique expansion

ZE) = + Z Z Cngfj?k(I).

J=0 1<k<27.k odd

We look into the values f (%) at the dyadic integers. This gives rise to the
following system of linear equations:

( f(o) = Co
f(1)=co+con
) =Co + %CO,I +ciafin (%) =Co + lCo 1+ Ci
) =Co+ %00,1 +cifin (i) + a1 /a1 ( ) +c23f23 (i) =Co+ i00,1 + %01,1 + C21
) =Co + %00,1 +cifin (%) + o1 fon ( ) +ca3f23 (%) =cCo+ %Co,l + %Cm +c3
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We can thus solve for all the ¢, ¢, using forward substitutions.

ii. Proof of Convergence:
We constructed for each N, a piecewise (more specifically, in each [QLN, %])
linear function

N
PN = Co + Z Z Cj’kijk(aj).

j=0 1<k<2J k odd

Moreover, py agrees with f at all dyadic integers by construction. We
show that py — f uniformly.

Let € > 0. Since f € 0, 1], it is uniformly continuous. Take Ny € N such
that for |z —y| < 27N |f(x) — f(y)| < e.

Then given = € [0,1] and N > Ny, there are dyadic numbers y := &,
z = % with y < x < z. This choice is made so that [py(z) — py(y)| <

Ipn (y) — pn(2)] since py is piecewise linear.
Thus we have: for all N > Ny and x € [0, 1],

Ipn (@) = f(@)] < lpn(x) = pn ()] + [pn(y) = F@) + 1Y) = [ ()]
< Ipn(y) —pn ()| + o () = F W) + 1 () — f(2)]
(y) = ()|+|f(y)—f( )+ 1f(y) = f2)]

p
p
=|f
< 2e.

iii. Uniqueness of the Representation:
One can see uniqueness trivially holds since the constants c;; are chosen
in a deterministic way. The following is a more rigorous argument:
Suppose there are two different expansions for f: f = > > c,f, =
> o dnfn, given by the Faber-Schauder system. Let N > 0 be the least
integer such that ¢, # d,. Then subtraction gives >~ (¢, — d,) [, = 0.
By evaluating at the dyadic integer 2% where fy = fu for some k, we

see that
Z‘” k

n=N
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which is a contradiction. Hence the representation is unique.

]

Let X be a normed space, and Y be a proper subspace of X (actually, the
following holds trivially if X = Y’). Denote X* the space of all bounded linear
functionals on X. Show that if [ € Y*, then there exists L € X* such that
Lly =land ||L] = [[I]-

Use the above to show that if X is a normed space and x € X, then

|lz|| = sup{|l(z)| : l € X* and ||| < 1}.

Solution. (a) We define a natural sublinear functional ¢ by ¢(z) = ||I||||z||. For

y €Y, we have |l(y)| < [|llllyl]] = ¢(y) by definition of operator norm. By the
Hahn-Banach theorem, ¢ can be extended to X, which we denote as L, and
L(z) < ¢(z) for all z € X.

It suffices to show that ||L|| = ||I]|. Indeed, as an extension, it is obvious that
IL|| > ||Z|l- On the other hand, since L(x) < ¢(x) = ||I||||=], and —L(x) =
L(—x) < ¢(—x) = ||l]|||=|| for all x € X, the definition of operator norm shows
that || L] < ||{||. Therefore ||L| = |||

By definition of operator norm, it is trivial that
loll > sup{li(x)] 1€ X*  and 1] <1},

To show the reverse inequality, given z, we let Y := span{z}, which is a
subspace of X. Define a linear operator on Y by k(y) := c||z| where y = cx.
Since z # 0 and dim(Y) < 1, k is well defined and linear. It is bounded since
|k(y)| = |c|l|z|| = |ly|| for all y € Y, and thus || k|| < 1.

By the first part of the question, we can extend k to [ € X* with ||{|| = ||k|| < 1.
Moreover, since « € Y, we have |l(z)| = |k(z)| = ||=|. This shows that

|z|| <sup{|l(z)]:le X" and || <1}.

4. Let Y be a proper closed subspace of X, u € X\Y and p = dist(u,Y). Show that

there exists a linear functional I € X* such that l(u) =1,l=0onY, and ||I|| = p~".

Proof. Let v € X\Y. Then u # 0 and p = dist(u,Y) > 0. Define a linear

functional & : span{u} — F by k(cu) = c¢. This map is well defined and linear, since
dim(span{u}) = 1.

Consider the function p(x) := p~'dist(z,Y). It is sublinear, and for all cu € Y,

pleu) = p~'dist(cu,Y) > p~|e| dist(u,Y) > p~*|clp = |e] = [k(cu)].

Hence we can apply the Hahn-Banach theorem to extend k to [ € X*, with |I(x)| <
p(z). We can check that |I(y)] < p(y) =0 for all y € Y. Since [(u) = 1, it remains
to show ||I|| = p~ .



On one hand, since 0 € Y, dist(z,Y) < ||z, and so

()| < p(x) < p~ |-
Thus ||I]] < p~'. On the other hand, by definition of the distance, there exists a
sequence y, € Y such that ||u — y,|| < 4+p+ 1/n. Noticing that
1w = ynll = 1w = yn) = 1(u) = U(ya) =1 =0 =1,

we have ||I|| > ||u — yn| " Letting n — oo, we have ||I|| > p~'. O

. Show that there exists a linear functional [ of norm 1 on the space of real bounded
sequences that generalises the concept of limits, in the following sense:

e [ is shift invariant, that is, {(z1, 29, ...,) = (29, x3,...).
e [(x) = lim, . x, for convergence sequences x = (z1,zs,...),

e [ is nonnegative for nonnegative sequences.
A linear functional of this type is called a Banach limit.

Proof. Consider the shift operator S on (> (R) defined by S(x1, 23, ...) = (29, x3,...).
Then S is linear. Let Y := {z — Sz : x € [*}. Then Y is a subspace of [*. If
we write u := (1,1,1,...) then we claim that dist(u,Y) = 1. Indeed, since 0 € Y/,
dist(u,Y) < ||ul]| = 1. On the other hand, suppose ||u — y|| < 1 — € for some € > 0
and y € Y. Then we have, for some x € [*°,

sup{|z1 —x2 — 1], |22 — 23 — 1|, |23 — 24 — 1],... } <1 —e.

Thus x1 — x9 > €, 9 — x3 > €, etc. This shows that the sequence z,, — —oo, which
is a contradiction to the assumption that = € [*°. Thus dist(u,Y") = 1.

Consider the closure of Y in [*°, denoted by Y. We can check Y is a proper subspace
of [*°, with dist(u, Y) = 1. By the resglt in Question 4, we can find a linear functional
[ € X* such that [(u) =1,l=0o0nY, and ||I|| = dist(u,Y)™! = 1.

It remains to check the required properties.

e Since [ is linear, it suffices to show [(x; — x9, 29 — x3,...) = 0 for z € [*.
But then (r; — 9,29 — x3,...) € Y C Y on which [ vanishes, and hence
l($1 — X2, T2 —373,...) = 0.

o If lim, ,o T, = o, then given € > 0, there is N € N with |z, — x| < € for
all n > N. Denoting y := (Zso, Too, - - - ) and using the shift invariant property
repeatedly, we have

[z — )| = 1(21 = Too, T2 — T, ... )|
= |10 — Toos Tng1 — Tooy - - - )]
< U0 = oo, Tng1 = Toos -+ )l
< E.

Thus
|l(:E) - 5EOO| < |l<x - y)| +|1(y) — 7] <€+ |xool(u> - x00| =&

But since € > 0 is arbitrary, we have [(2) = Too.
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o We write [(x) = I(||z||u) — I(||z||u — z). Note
l[zllu — ) = U([le]] = 2, 2] = 22, ) < [l sup [[[z]] = 2n] < [l]),

since z,, > 0. Hence

() = U(llzlw) = U([lzlu = =) = ([Jx]lu) = |lz] = |l2[|(((u) = 1) = 0.

Idea for an alternative proof:

Proof. Define [ on Y := the space of sequences such that the following limit exists.

1 n
l(x) = lim —Zxk.
k=1

n—oo N,

Then [ extends to [* by the Hahn-Banach Theorem. To show [ is shift invariant,
note that (x; — xg, 9 — x3,...) is such that the above limit exists. O



