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1. Let Y = L1(µ) where µ is the counting measure on N, and let X = {f ∈ Y :∑∞
n=1 n|f(n)| <∞}, equipped with L1-norm.

(a) X is a proper dense subspace of Y ; hence X is not complete.

Proof. • It is direct to check that X is a subspace of Y .

• X $ Y , since f(n) := n−2 ∈ Y but not in X.

• X is dense in Y . Too see this, let x ∈ Y and ε > 0. Then there is N such
that

∑∞
n=N |f(n)| < ε. But the truncated sequence g(n) := f(n)1(n<N)

clearly lies in X and satisfies
∑∞

n=1 |f(n)− g(n)| < ε.

(b) Define T : X → Y by Tf(n) = nf(n). Then T is closed but not bounded.

Proof. • By definition, T is a closed linear operator (not a closed map!!), if
fm → f in X and Tfm → g in Y implies that g = Tf . In our case, we are
to show

g(n) = nf(n) ∀n ∈ N,
given that

lim
m→∞

∞∑
n=1

|fm(n)− f(n)| = 0, (1)

lim
m→∞

∞∑
n=1

|nfm(n)− g(n)| = 0, (2)

In particular, for any n ∈ N, (1) implies that limm→∞ fm(n) = f(n),
and (2) implies that limm→∞ nfm(n) = g(n). Combining these two gives
g(n) = nf(n), as desired.

Comment. Many of you proved the statement that T is a topologically
closed map. It is an exercise to show that this is stronger than T being a
closed linear operator.
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• Consider fm(n) := em for m ∈ N, where {em}∞m=1 is the canonical basis for
L1(µ). Then ‖Tfm‖1 = m, so

sup
f∈X,‖f‖1=1

‖Tfm‖1
‖fm‖1

≥ m

1
= m.

Since m can arbitrarily large, T is unbounded.

(c) Let S = T−1. Then S : Y → X is bounded and surjective but not open.

Proof. • Clearly, S is well defined by Sf(n) = f(n)/n. It is bounded since

‖Sf‖1 =
∞∑
n=1

|f(n)|
n
≤

∞∑
n=1

|f(n)| = ‖f‖1.

• S is surjective, since given any f ∈ X, we have Tf ∈ Y and S(Tf) = f
by definition.

• S is open if and only if S−1 = T is continuous if and only if T is bounded
since T is linear. But T is unbounded, so S is not open.

2. Let Y = C[0, 1] and X = C1[0, 1], both equipped with the uniform norm.

(a) X is not complete.

Proof. By the Weierstrass approximation theorem, the space of all polynomials
P is dense in Y under the sup-norm. Since P ⊆ X, that means X is also dense
in Y . If X is complete, then X = Y , which is absurd. Thus X cannot be
complete.

(b) The map (d/dx) : X → Y is closed but not bounded.

Proof. • To show the map is closed, let fn → f in X, f ′n → g in Y , and our
goal is to show that g = f ′. This is proved in Problem 3(b) of Homework
1.

• The map is not bounded, as can be seen from the examples xn 7→ nxn−1,
n ∈ N.

3. Let ‖·‖1 and ‖·‖2 be norms on the vector space X such that ‖·‖1 ≤ ‖·‖2. If X is
complete with respect to both norms, then the norms are equivalent.

Proof. Define I : (X, ‖·‖2)→ (X, ‖·‖1) to be the identity map. This maps is clearly
linear and surjective, and (X, ‖·‖1) and (X, ‖·‖2) are both complete by assumption.
Moreover, ‖I‖op ≤ 1. By the open mapping theorem, I is open, which means that

I−1 : (X, ‖·‖1)→ (X, ‖·‖2) is continuous, and hence bounded. Thus there is C with
‖·‖2 ≤ C‖·‖1, so the norms are equivalent.
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4. There is no slowest rate of decay of the terms of an absolutely convergence series;
that is, there is no sequence {an} of positive numbers such that

∑
an|cn| < ∞ if

and only if {cn} is bounded.

Proof. Suppose there is such sequence {an}. Define T : B(N)→ L1(µ) by Tf(n) =
anf(n), where B(N) is the space of all bounded sequences endowed with the sup-
norm. The assumption is to say that T is well defined and invertible, with T−1f(n) =
a−1n f(n).

The mapping T is bounded, which we now show. By definition of {an}, if we take
cn = e := (1, 1, 1, . . . ) ∈ B(N), then we get

∑
an <∞. Thus

‖Tf‖1 =
∞∑
n=1

an|f(n)| ≤ ‖f‖∞
∞∑
n=1

an,

so T is bounded. By the open mapping theorem, T is open. Therefore T is a
homeomorphism between the spaces B(N) and L1(µ).

Consider S, the set of f such that f(n) = 0 for all but finitely many n. S is dense in
L1, which is proved in Q1 (a). But S is not dense in B(N). For, consider e ∈ B(N).
If h ∈ S is any finite sequence, then ‖g − h‖∞ ≥ 1.

But T is a homeomorphism between B(N) and L1(µ), and S is dense in L1(µ),
so T−1(S) is dense in B(N). But T−1(S) ⊆ S, so S is dense in B(N), which is a
contradiction. Therefore, such positive sequence {an} does not exist.

5. Let X and Y be Banach spaces. If T : X → Y is a linear map such that f ◦T ∈ X∗
for every f ∈ Y ∗, then T is bounded.

Proof. Since X and Y are Banach spaces, to show that T is bounded, it is equivalent
to showing that T is a closed linear operator.

Let xn → x in X and Txn → y in Y . To show that Tx = y, we claim that it
is equivalent to showing that f(Tx) = f(y) for all f ∈ Y ∗, which is exactly our
assumption. Indeed, by linearity, if Tx − y 6= 0, then by a corollary of the Hahn-
Banach theorem (Q4 of Homework 2), there is f ∈ Y ∗ such that f(Tx − y) = 1,
which is a contradiction. Hence Tx = y and T is closed.

6. Let X and Y be Banach spaces, and let Tn be a sequence in L(X, Y ) such that
limn Tnx exists for every x ∈ X. Let Tx = limn Tnx; then T ∈ L(X, Y ).

Proof. Let x ∈ X. Since Tx = limn Tnx exists, in particular, {Tnx} is bounded
in n. Since X is a Banach space, the uniform boundedness principle implies that
supn‖Tn‖op ≤M <∞. Thus

‖Tx‖ = lim
n→∞
‖Tnx‖ ≤ sup

n
‖Tn‖op‖x‖ ≤M‖x‖.

Since T is obviously linear, T ∈ L(X, Y ).
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7. Let X and Y be Banach spaces and {Tjk : j, k ∈ N} ⊆ L(X, Y ). Suppose that for
each k there exists x ∈ X such that sup{‖Tjkx‖ : j ∈ N} =∞. Then there is an x
such that sup{‖Tjkx‖ : j ∈ N} =∞ for all k.

Proof. We prove it by contradiction. Suppose there is no such x. Then for all x,
there is kx such that the sequence sup{‖Tjkxx‖ : j ∈ N} <∞. Thus we can write

X =
∞⋃
k=1

{
x : sup

j
‖Tjkx‖ <∞

}
:=

∞⋃
k=1

Ek.

Denote Ek,n := {x : supj‖Tjkx‖ ≤ n}, and hence X = ∪∞k=1 ∪∞n=1 Ek,n.

• Each Ek,n is closed: given xm ⊆ Ek,n with xm → x, then for all j we have

‖Tjkx‖ = lim
m
‖Tjkxm‖ ≤ n,

since Tjk is continuous and xm ∈ Ek,n. Hence x ∈ Ek,n.

• Each Ek,n is nowhere dense. To see this, note first it is easy to check that Ek

is a subspace of X; moreover, Ek $ X by the assumption that there is x ∈ X
such that sup{‖Tjkx‖ : j ∈ N} = ∞. Hence Ek is a proper subspace of X, so
Ek is nowhere dense. As a subset of Ek, Ek,n is also nowhere dense.

Since X is a Banach space, we have reached a contradiction to the Baire category
theorem. Hence our assumption is false, that is, there is an x such that sup{‖Tjkx‖ :
j ∈ N} =∞ for all k.
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