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1. Given any point to € [0,27], show using the uniform boundedness principle that
there exists a continuous 2m-periodic function whose Fourier series diverges at .
We sketched a proof of this result in class. Fill in the details.

Proof. Consider the N-th Dirichlet kernel

It is a fact that the partial sum sequence Sy f(t) = (Dy * f)(t), where the integral
defining the convolution is normalized by a factor 1/27:

Sw f(t) = % /_ Di(t — 5)f(s)ds.

We show this in several steps, using contradiction. Suppose for all f € Cl—m, 7],
we have Sy f(to) = f(to). Then:

(a) The mapping Iy : f — Syf(to) is linear and bounded from C[—m, 7] :=
(Cl=m, 7], |]l,) to C, with a supyl|ln]] < C < oco. This is a result of the
uniform boundedness principle.

(b) We show that this implies that Sy is bounded from C|—m, 7] to C[—m, 7],
with the bound independent of N. Indeed, given f € C|—m, |, suppose | Sy f|
attains its maximum at ¢;. Consider the translated function g(t) := f(t +¢; —
to), which has ||g||., = || fll. and Syg(to) = Sn f(t1). Hence

ISnflloe = 1Snf(t1)] = Sng(to)] < Cligll = Cllf |-

(c) We state a special case of the Young’s convolution theorem:

Theorem 1. Let (X, ) be a measure space, and g be a measurable function.
The convolution operator T': f + f * g is bounded from L*> to L*° if and only
if g € L*. Moreover, ||T|| w_, 0 = llgll,,-

Now in our situation, supy||Sx|| < oo implies that supy||Dn||; < oo.



(d) Lastly, we show the above cannot happen. Direct computation shows that
sin(N + %)a:

sin(%x)
By considering the integral over |z| € [kn/(N + 3), (k+ 1)n/(N + 3)] for each
k, we see || Dyl||, is bounded below by a constant times the first N terms of the

harmonic series. Letting N — oo, we have ||Dyl|, — oo, contradiction to the
conclusion above.
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2. In class, we introduced the concept of a locally convex space, whose topology is
generated by a family of seminorms. When is such a topology equivalent to a
metric topology? A norm topology?

Note: If X is locally convex, it separates points by definition taught in class.

(a) We claim such a topology is a metric topology if and only if it is generated by
a countable family of seminorms.

Proof. (“<=") Let {p;}32, be the countable family of seminorms that gener-
ates a topology on X. Then we define a metric by
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It is direct to check that d is a metric. Indeed, d(z,y) > 0, and if d(x,y) = 0,
then p;(x — y) = 0 for all i. Since {p;} separates points, we have z = y.
Symmetry is trivial. For the triangle inequality, refer to the following question:
https://math.stackexchange.com/questions/309198/if-d-is-a-metric-
then-d-1d-is-also-a-metric.

It remains to show d generates the same topology as {p;}32, does. By transla-
tion invariance, it suffice to consider their neighbourhood bases at 0:

By(e) :=={z € X : d(z,0) < ¢},

mBi(ai) ={reX:p(z)<e VI<i<n}
i=1
o Given ¢ > 0, take N such that ) ° 27" < /2. Take ¢; := /2 for all
1 <i<N. Thus if p;(z) <e/2 for all 1 <i < N, we have
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e On the other hand, given ¢; > 0 for i = 1,2,...,n, then d(z,0) < € :=
min{e; : 1 =1,2,...,n} implies that p;(z) < ;. Hence

By(e) € () Bi(=:).

Therefore they generate the same topology.

(“=") Note that {B4(1/n)}>°, forms a neighbourhood base at 0. For each
n, there is B, ,(gin),7 = 1,2,..., K, such that

1\ _ &
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Relabel the countable collection {p;, : 1 <i < K,,n € N} as {p;}32,. Then
{pj}52, generates the metric topology d.

O

(b) We claim such a topology is a norm topology if and only if it is generated by
a finite collection of seminorms.

Proof. (“ <= ") Let P := {p;}}¥, be the finite collection of seminorms that
generates a topology on X. Then we define a norm by

llz|| :== max{p;(x),i =1,2,...,N}.

It is direct to check that ||-|| is a norm. Indeed, ||z| > 0, and if ||z|| = 0, then
pi(z) = 0 for all 4. Since {p;} separates points, we have x = 0.

Homogeneity and the triangle inequality follows from the corresponding prop-
erties of the seminorms.

It remains to show ||-|| generates the same topology as {p;}, does. But this
is similar and easier than the countable case.
(“=") This is trivial. O

3. Let (X, Q, i) be a o-finite measure space, 1 < p < co. Suppose that K : X x X — F
is an © x Q-measurable function such that for f € LP(u) and almost every = € X
the function K(z,-)f(-) € L'(u) and

K1) = [ K. widn(y
defines an element Kf € LP(u). Show that K is a bounded operator on LP(u).

Proof. We first prove a lemma:

Lemma 1. Let (X, €, 1) be a measure space, and f be a measurable function. Sup-
pose [ « fg converges absolutely for every f € LP, 1 <p < oo. Then g € L*, where
p’ is the dual exponent of p.



4.

Proof of the Lemma. Suppose, towards contradiction, that g ¢ L?". By duality, this
is to say that there is a sequence f, € L? with [[f,||, = 1 such that UX fng| > 4",
In particular, [, |fn.g| > 4"

Now we define f := 3 7%, 27"(f,|. We have | f|l, < >_72,27"([full, = 1, by the

n=1
triangle inequality. However, we see that
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so fg ¢ L', a contradiction. Hence g € L¥". O

By the lemma, K(z,-) € L” for a.e. x € X. By Holder’s inequality, f — KCf(x) is
a bounded linear functional on LP for a.e. z € X.

We will use the closed graph theorem to show that K is bounded on LP. Let
fo— fin LP, Kf, — g in LP. Since f — Kf(z) is continuous on L? for a.e. x,
Kf.(z) = Kf(x) a.e. By uniqueness of limits, we have g = ICf(z), which completes
the proof.

O

(a) Show that the weak topology on X is the weakest topology for which all [ € X*
is continuous.

Proof. We take the definition of weak topology on X as the topology generated
by the seminorms p(x) := |{(x)| over | € X*.
Recall that a linear functional [ : X — T is continuous if and only if there

exists finitely many seminorms p;, 1 < ¢ < n, and a constant C' such that for
all z € X,

(@) < €Y pio).

Now we take C'= 1 and a single p; = |I| to finish the proof.

On the other hand, given any topology on X such that each [ € X* is contin-
uous. Since taking modulus on the scalar field is continuous, we see that each
x — p(z) = |l(x)| is continuous. Hence the weak topology is weaker than any
topology such that each [ € X* is continuous. Lastly, by taking intersection
of all such topologies, we see that the weak topology on X is unique, so it is
indeed the weakest topology such that each [ € X* is continuous. O]

(b) Show that the weak-star topology is the smallest topology on X* such that for
each € X, the map [ — [(z) is continuous.

Proof. We take the definition of weak-star topology on X* as the topology
generated by the seminorms g, (1) := |l(z)| over z € X.

Recall that a linear functional ¢ : X* — T is continuous if and only if there
exists finitely many seminorms ¢,,, 1 <14 <n, and a constant C such that for
all [ € X,

1) <Y an) = O3 )]
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Now for each x € X, ¢(I) = ¢q.(l) is the mapping | — |l(x)|. We take C' = 1
and a single xy = z to finish the proof.

On the other hand, given any topology on X* such that for each x € X,
[ — [l(x) is continuous. Since taking modulus on the scalar field is continuous,
we see that each [ — ¢, (1) = |[(x)| is continuous. Hence the weak star topology
is weaker than any topology with the aforesaid property. Uniqueness is similar
as the above. O]

If H is a Hilbert space and {h,} C H is a sequence such that h,, — h weakly
and ||h,|| — |||, then show that h, — h strongly.

Proof. Since H is self dual, h,, — h weakly if and only if for all g € H, we have
(hn,g) — (h,g). Taking g = h, we have (h,, h) — (h, h).
By assumption, (h,, hn) = ||hal|* == ||A||> = (h, h). Therefore

(hyn, — hyhy — h) = (hy, hy) — (B h) — (B, hy) + (B, h)
— (h,h) — (h,h) — (h,h) + (h,h)
= 0.

Prove the same statement for the Lebesgue spaces LP(u), 1 < p < oo.

Proof. We will use the fact that LP(u) is uniformly convex for 1 < p < oo,
that is, for each 0 < e < 1, there is 0 > 0 such that for all || f[|, =1 = [g]],,
|f = gll, > € implies that |[(f +¢)/2|, <1 —4. This is a direct result of the
Clarkson’s inequalities (an elementary calculation with € — § involved):

f—yg
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H 2 < §(||f||§ +lgln), i 2<p<oo; (1)
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where 1/p+1/p' = 1.

For those who are interested in the proof of Clarkson’s inequalities, you can find
one on Page 15 in the following lecture notes: http://www.math.cuhk.edu.
hk./course_builder/1718/math5011/MATH5011_Chapter_4.2017%20.pdf

We still need another tool, namely, Fatou’s lemma on weakly convergent se-
quences:

p

Lemma 2. Let z,, = x in a normed space X. Then ||z| < liminf, |z,

Proof of the Lemma. Using duality, we have |[z| = supy; .1 |f(z)|. Now let

f e X* with || f||x. = 1. We have
R o < T R
£ = | i f(ea)l = lim | (@) < liminf - ool = limint ).
Since f € X* ||f|lx- = 1 is arbitrary, we have ||z|| < liminf, ||z, ]| O
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We now come to the proof of the analogous statement as above. Since f, — f,
(fn+ f)/2 — f. By Fatou’s lemma on weakly convergent sequences, we have

fot f
2

| f]l, <liminf
n—oo

p

On the other hand, we also have

‘fn

which follows from the assumption that || f,.[[, — || f][,- This forces that all the
above inequalites should be equalities, whence we have

Jn

1
S < Sl + 5171, = 151,

lim '
n—oo

= [I/1l,
2 ||, P

Lastly, either using the uniform convexity, or just plugging ¢ = f, in the

Clarkson’s inequality which is simpler in this case, and taking limits n — oo,
we have || f — f.||, — 0. O

6. Suppose that X is an infinite-dimensional normed space. Find the weak closure of
the unit sphere.

Proof. (Credit to Jeffrey Dawson for this solution)

We claim that the weak closure of the unit sphere S is the closed unit ball B :=
{r € X :|z|]| <1}. (Remark: for a normed space, the closed unit ball is equal to
the closure of the (open) unit ball, which is not true for a general metric space.)

We claim that
B= () {z:i(x) <1}.
=1
Indeed, if ||z|| < 1, then |I(z)| < 1 whenever ||/|| = 1; on the other hand, if ||z| > 1,
then by the Hahn-Banach theorem, there is [ € X* such that [|/|| = 1 and I(z) =
|lz|| > 1. This proves the claim above.

Since each {z : |l(x)] < 1} is weakly closed, so is any intersection over ||I|| = 1.
Hence B is a weakly closed set containing S, so B contains the weak closure of S.

On the other hand, let ¢ € B; we want to show that z( is in the weak closure of S.
To do this, let G be a weakly open set containing xy, and without loss of generality,
assume G is a basic weakly open neighbourhood of xy, that is, there are [; € X*,
0; >0, 1 <i < n, such that

Now we take 0 # y € NI Ker(l;); this is possible since the right hand side has
codimension n < oo while X is infinite-dimensional. The functions A — ||[\y + ||
is a continuous function which sends 0 to ||zo]] < 1 and tends to co as A — 0.
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By the intermediate value theorem, there is A > 0 such that ||[A\y + zo|| = 1. Let
x = Ay + xg, then ||z|| = 1 and [;(z — z9) = [;(A\y) = 0 for all i, so x € G, and thus
G NS # @. Since G is arbitrary, z( is in the weak closure of S.

Combining two sides finishes the proof. m



