Math 321 Assignment 11 Due Wednesday, April 3 at 9AM on Canvas

Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- 1. Let $\mathbf{f} = (f_1, f_2)$ be the mapping of \mathbb{R}^2 to \mathbb{R}^2 given by

$$f_1(x,y) = e^x \cos y,$$
 $f_2(x,y) = e^x \sin y.$

- (a) What is the range of **f**?
- (b) Show that **f** is locally injective at every point in \mathbb{R}^2 , but not globally injective on \mathbb{R}^2 .
- (c) The inverse function theorem ensures that \mathbf{f} has a continuous inverse \mathbf{g} near every point \mathbf{a} . Find an explicit formula for \mathbf{g} with $\mathbf{a} = (0, \pi/3)$. Compute $\mathbf{f}'(\mathbf{a})$ and $\mathbf{g}'(\mathbf{b})$, where $\mathbf{b} = \mathbf{f}(\mathbf{a})$.
- 2. Show that the system of equations

$$3x + y - z + u2 = 0$$
$$x - y + 2z + u = 0$$

$$2x + 2y - 3z + 2u = 0$$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

3. Define $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2.$$

Show that there exists a differentiable function g in some neighbourhood of (1, -1) in \mathbb{R}^2 such that g(1, -1) = 0 and $f(g(y_1, y_2), y_1, y_2) = 0$. Find the first partial derivatives of g at (1, -1).

- 4. The contraction mapping principle, explicitly stated in Banach's thesis in 1922, has featured prominently in our discussions this past week, as a tool in the proof of the inverse function theorem. This result has a number of interesting implications beyond the ones we have seen in class, some of which we will explore in this problem set.
 - (a) Let us start by proving the principle itself: Let (M,d) be a complete metric space, and let $f: M \to M$ be a strict contraction, i.e., there exists a constant $\alpha < 1$ such that

$$d(f(x), f(y)) \le \alpha d(x, y)$$
 for all $x, y \in M, x \ne y$.

Show that f has a unique fixed point. Moreover, given any point $x_0 \in M$, the sequence of functional iterates $\{f^n(x_0): n \geq 1\}$ (also called the orbit of x_0 under f) always converges to the fixed point for f. Here f^n denotes the composition of f with itself n times.

1

(b) Is the converse of the contraction mapping principle true, namely, does the existence of a fixed point force the function to be a contraction, at least locally? The answer is no, as the following example illustrates.

The function $f(x) = x^2$ has two obvious fixed points: $p_0 = 0$ and $p_1 = 1$. Show that there is a $0 < \delta < 1$ such that

$$|f(x) - p_0| < |x - p_0|$$
 whenever $|x - p_0| < \delta$, $x \neq p_0$.

Conclude that $f^n(x) \to p_0$ for all such x. We say that p_0 is an attracting fixed point for f; every orbit that starts out near p_0 ends at p_0 .

In contrast, find a $\delta > 0$ such that

$$|f(x) - p_1| > |x - p_1|$$
 whenever $|x - p_1| < \delta, x \neq p_1$.

This means that p_1 is a repelling fixed point for f; orbits that start out near p_1 are pushed away from p_1 . In fact, show that $f^n(x) \not\to 1$ as $n \to \infty$, for any real x with $|x| \neq 1$.

- (c) The intuition gathered from the preceding example can be used to prove the more general result. Suppose that $f:(a,b)\to(a,b)$ has a fixed point p in (a,b) and that f is differentiable at p. If |f'(p)| < 1, prove that p is an attracting fixed point for f. If |f'(p)| > 1, prove that p is a repelling fixed point for f.
- (d) The findings in (c) lead to the natural question: can we say anything about the nature of a fixed point p if |f'(p)| = 1? Apparently not, as the following examples show:

$$f_1(x) = \arctan x, \ p_1 = 0, \qquad f_2(x) = x^3 + x, \ p_2 = 0 \qquad f_3(x) = x^2 + \frac{1}{4}, \ p_3 = \frac{1}{2}.$$

Show that for each j = 1, 2, 3, the point p_j is a fixed point for f_j , with $f'_j(p_j) = 1$. Then show that p_1 is an attracting fixed point, p_2 is repelling and p_3 is neither.

(e) Now put your knowledge to the test. First justify that the cubic $x^3 - x - 1$ has a unique real root $x_0 \in (1,2)$. Our goal is to devise an iterative algorithm for finding this root numerically. Find a function f, on which the contraction mapping principle can be applied, so that for any $x \in [1,2]$, the sequence of approximations $x_n = f^n(x) \to x_0$ as $n \to \infty$. (Hint: The obvious choice of f does not work, so proceed with caution.)