
Math 321 Assignment 3
Due Wednesday, January 23 at 9AM on Canvas

Instructions

(i) Solutions should be well-crafted, legible and written in complete English sentences. You
will be graded both on accuracy as well as the quality of exposition.

(ii) Theorems stated in the text and proved in class do not need to be reproved. Any other
statement should be justified rigorously.

1. In our proof of Weierstrass approximation theorem in class, we used the following identity
concerning the binomial expansion: for x ∈ [0, 1], and any integer n ≥ 1,
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Prove this identity.

2. In Math 320 we learnt about the property of total boundedness in a metric space, which was
intricately connected with the important notion of compactness. Recall that a subset of a
metric space is said to be totally bounded if it can be covered by finitely many ε-balls, for every
ε > 0. Let us revisit this property in the context of the continuous function spaces that we
are exploring now.

Determine whether the following statements are true or false, with adequate justification.

(a) Every totally bounded subset of C[0, 1] is equicontinuous.

(b) Every equicontinuous family of functions in C[0, 1] is totally bounded.

3. The notion of uniform convergence is a powerful tool in constructing functions with esoteric
properties that are not readily obtainable by standard methods. You saw an example of this
in the last homework set (HW 2, Problem 4), where we constructed a space-filling curve.
Here is another application of uniform convergence. We will use it to find a function that is
continuous everywhere but differentiable nowhere!

(a) Let g denote the function that represents “distance to the nearest integer”, i.e.

g(x) = min{|x− n| : n ∈ Z}, x ∈ R.

(You may want to plot g to find out what it looks like. It is a periodic function with
period 1. Between two consecutive integers, its graph looks like an isosceles triangle, with
the peak of height 1/2 attained at the midpoint). Set

f(x) =

∞∑
n=0

2−ng(2nx), x ∈ R.

Prove that the function f is well-defined, and continuous on R.

(b) Now fix any x ∈ R and any integer n ≥ 1. Set un = i/2n and vn = (i+ 1)/2n, where i is
the unique integer such that un ≤ x < vn. Show that for every integer 0 ≤ k < n, the two
numbers 2kun and 2kvn must lie in the same half-period for g, i.e., there is some m ∈ Z
for which

either both 2kun, 2
kvn ∈

[
m,m+ 1/2

]
, or both 2kun, 2
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.



(c) Use properties of the function g and the observation in part (b) to show that for every
n ≥ 1, the quantity

dn =
f(vn)− f(un)

vn − un
is a sum of n integers, with each summand being either 1 or -1.

(d) Show that the sequence {dn : n ≥ 1} cannot converge. Use this fact to show that f ′(x)
cannot exist for any x ∈ R.

Remark: Our textbook has a different construction of a continuous but nowhere differentiable
function (Theorem 7.18). You may want to compare the construction there wth the one above.
Look for common features as well as distinguishing ones.

4. Weierstrass approximation theorem says that polynomials are dense in C[a, b]. Are there other
useful function classes that enjoy the same property of being dense in C[a, b]? In fact, there
are many. Let us explore one of them.

(a) Show that L[a, b], the space of continuous and piecewise linear functions on [a, b], is dense
in C[a, b]. Recall that a function f is piecewise linear on [a.b] if there exist finitely many
points a = x0 < x1 < x2 < · · · < xn = b such that f is linear on each interval [xj , xj+1],
0 ≤ j < n.

(b) Use part (a) to give yet another proof that C[a, b] is separable, i.e., admits a countable
dense subset.


