
Math 321 Assignment 9
Due Wednesday, March 13 at 9AM on Canvas

Instructions

(i) Solutions should be well-crafted, legible and written in complete English sentences. You
will be graded both on accuracy as well as the quality of exposition.

(ii) Theorems stated in the text and proved in class do not need to be reproved. Any other
statement should be justified rigorously.

1. In HW 8 problem 2, you showed that the Fourier series of a twice continuously differentiable
2π-periodic function converges absolutely and uniformly to the function itself. Let us now try
to generalize this result by weakening the smoothness hypotheses on the function a bit more.
Show that if f ∈ C2π is once continuously differentiable, then Snf → f uniformly as n→∞,
where Snf denotes the nth partial Fourier sum. Remark: This result continues to hold even
if f is Hölder-continuous of order α ∈ (0, 1], but you do not need to prove it here.

2. In class, we sketched a proof of Fejér’s theorem: if f ∈ C2π, then σn(f) converges uniformly
to f as n→∞. Fill in the details of the proof. Use Fejér’s theorem to give yet another proof
of Weierstrass’s second theorem.

3. Let f ∈ C2π = the class of continuous 2π-periodic functions on [−π, π]. We have seen that
the partial Fourier sums sn(f) are excellent approximations of f in L2 norm, but so far only
have indirect evidence that they may not be very good approximations in the sup norm. This
problem attempts to make this intuition precise.

(a) Let us start with a small step, namely by finding a bounded function with at least one
large partial Fourier sum. Show that for every n ≥ 1, there exists fn ∈ C2π such that
||fn||∞ = 1 and supj |sjfn(0)| > n.

(b) The functions you found serve as building blocks for the counterexample we seek. Use
the functions fn in part (a) to find a single f ∈ C2π whose Fourier series diverges at 0.

(c) Now modify your construction in part (b) to create a continuous 2π-periodic function
whose Fourier series diverges on a dense set of points.

(d) Why does the divergence of the Fourier series of a continuous function not contradict
Weierstrass’s second approximation theorem?

4. This exercise is designed to study a curious property of a certain class of Fourier series, known
as Gibbs phenomenon. Discovered by Wilbraham (1849) and studied by Gibbs (1899), this
phenomenon refers to the manner in which the Fourier series of a piecewise continuously
differentiable periodic function behaves at a jump discontinuity. The nth partial Fourier
sums oscillate near the jump point, which is understandable, but the strange thing is that
the oscillation might result in increasing the maximum of the partial sum above that of the
function itself. Even more strange is the fact that the overshoot does not die out as you take
larger and larger sums (i.e. the frequency increases), but approaches a finite nonzero limit!
Here is an example where you can see Gibbs phenomenon in action.

Let f denote the 2π-periodic function given by f(x) = sgn(x) on (−π, π], which takes on the
value 1, -1 or 0 according as x is positive, negative or zero.
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(a) Show that the formal Fourier series of f is given by

4

π

∞∑
n=1

sin((2n− 1)x)

(2n− 1)
.

This series in known to converge to f(x) at all points x ∈ (−π, π), but you do not need
to prove this here.

(b) Denote by sn the nth partial sum of the above series. Show that

sn(x) =
2

π

∫ x

0

sin 2nt

sin t
dt.

(c) Examine the local maxima and minima of sn, and deduce that the largest value of sn is
attained at π

2n .

(d) Interpret sn( π2n ) as a Riemann sum and prove that

lim
n→∞

sn

( π
2n

)
=

2

π

∫ π

0

sin t

t
dt.

The value of this limit is about 1.179. Thus, although f has a jump equal to 2 at the
origin, and although the Fourier series of f converges to f at the origin, the graphs of the
approximating curves sn tend to approximate a vertical segment of length 2.358 in the
vicinity of the origin!
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