
Lecture 11:

Recall examples that are cts. at 0 but not diffble. at 0.

Theorem 1 (p. 109): If f is diffble at x, then f is cts at x.

Proof:

lim
h→0

f (x + h)− f (x) = lim
h→

(
f (x + h)− f (x)

h
)h = f ′(x)0 = 0.

This is equivalent to saying limh→0 f (x + h) = f (x) which is equiv-

alent to continuity of f at x:

Compare with limx→x0 f (x) = f (x0) �

Continuity means the graph is unbroken.

Differentiability means the graph is smooth.

Right and left handed derivatives:

Defn: f ′±(x) = limh→0±
f(x+h)−f(x)

h

Fact: f is diffble. at x iff f ′+(x) = f ′−(x) (exist as a real number).

Defn: If a is an endpoint (say left endpoint) of an interval in the

domain of f , we define f ′(x) = f ′+(x)

Differentiability Rules: Let f and g be diffble. at x.

Constants: f (x) = c, f ′(x) = 0. (already done)

Identity: f (x) = x, f ′(x) = 1. (already done)

Sum/Difference: (f ± g)′(x) = f ′(x)± g′(x)

Product Rule: (fg)′(x) = f ′(x)g(x) + f (x)g′(x).

Proof:

lim
h→0

f (x + h)g(x + h)− f (x)g(x)

h
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= lim
h→0

f (x + h)g(x + h)− f (x)g(x + h) + f (x)g(x + h) + f (x)g(x)

h

= limh→0
f (x + h)− f (x)

h
)g(x+h) + limh→0f (x)

g(x + h)− g(x)

h
)

= limh→0
f (x + h)− f (x)

h
)limh→0g(x+h)+f (x)limh→0

g(x + h)− g(x)

h
= f ′(x)g(x) + f (x)g′(x)

(since diffble ⇒ cts) �
Power Rule: Let f (x) = xn where n is a positive integer. Then

f ′(x) = nxn−1.

Proof: by induction on n. True for n = 0 by derivative of constant.

Assume true for n. Then (xn)′ = nxn−1.

By induction hypoth, (xn+1)′ = (xnx)′ = (nxn−1)x + (xn)1 =

(n + 1)xn. �
You can also start the induction off with n = 1.

Note: we will later prove power rule for all real n.

Reciprocal rule: If f (x) 6= 0, then ( 1
f(x))

′ = −f ′(x)
f(x)2

.

Proof:

(
1

f (x)
)′ = limh→0

1
f(x+h) −

1
f(x)

h

= limh→0
−1

f (x + h)f (x)

f (x + h)− f (x)

h

= (
−1

(f (x))2
)f ′(x)

(again since diffble ⇒ cts) �
Corollary: For a positive integer n, hen (x−n)′ = −nx−n−1.
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(so, (xn)′ = nxn−1 holds for all integers, positive, negative and

zero).

Proof: Let (x−n)′ = ( 1
xn)′ = (−1

x2n
)(nxn−1) = −nx−n−1.

Quotient rule: If g(x) 6= 0, then (f(x)g(x))
′ = g(x)f ′(x)−f(x)g′(x)

g(x)2
.

Proof: Write f(x)
g(x) = f (x)( 1

g(x)) and apply product rule.

(
f (x)

g(x)
)′ = f ′(x)(

1

g(x)
) = f (x)(

−g′(x)

(g(x))2
+ f ′(x)(

1

g(x)
)

�
Examples:

Leibniz notation: If you think of y = f (x), then can write f ′(x),

as a function in many ways:

f ′(x) = dy
dx = d

dxf (x) = Dxf (x) and others.

For the derivative evaluated at a particular value of x = x0, we

write

f ′(x0) =
dy

dx
|x=x0 =

dy

dx
|x0

Example: f (x) = x2; f ′(x) = 2x; f ′(3) = 6.

Differentiability on an interval means dibble. at each point of the

interval (remember that diffible at an endpoint means as a one-sided

derivative).

Chain Rule: If g is diffble at x, and f is diffble. at g(x), then f ◦g
is diffble. at x and (f ◦ g)′(x) = f ′(g(x))g′(x).

Example: Find the derivative of (x2 + 1)10.

This function is f ◦g(x) where g(x) = x2 + 1 and f (x) = x10. So,

((x2 + 1)10)′ = (f ′(g(x)))g′(x) = (10(x2 + 1)9)(2x) = 20(x2 + 1)9x
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You could alternatively expand it out and differentiate term by term.

So, chain rule is a labor-saving device. But there are other applica-

tions where there is no alternative.
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Lecture 12:

Chain Rule: If g is diffble at x, and f is diffble. at g(x), then f ◦g
is diffble. at x and (f ◦ g)′(x) = f ′(g(x))g′(x).

Proof of Chain rule: Fix x. Let k(h) = g(x + h)− g(x).

lim
h→0

f (g(x + h))− f (g(x))

h

= lim
h→0

f (g(x + h))− f (g(x))

g(x + h)− g(x)

g(x + h)− g(x)

h

= lim
h→0

f (g(x) + k(h))− f (g(x))

k(h)

g(x + h)− g(x)

h

Use the limit rule for products. Makes some sense since k(h)→ 0 as

h→ 0. Problem: k(h) may be zero.

Instead: fix u in domain of f .

Define E(k) := f(u+k)−f(u)
k − f ′(u) if k 6= 0 and E(0) = 0.

E(k) is the “error” in the approximation of f ′(u) by the difference

quotient.

Note: for all k, (including k = 0),

f (u + k)− f (u) = (f ′(u) + E(k))k

Fix x and let u = g(x).

Let k = k(h) = g(x + h)− g(x). We have

f (g(x + h))− f (g(x)) = (f ′(g(x)) + E(k(h)))(g(x + h)− g(x)).

Now, divide by h:

f (g(x + h))− f (g(x))

h
= (f ′(g(x)) + E(k(h)))

(g(x + h)− g(x))

h
.
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Let h→ 0. Then,

(f ◦ g)′(x) = (f ′(g(x)) + lim
h→0

E(k(h)))g′(x)

So, it suffices to show:

lim
h→0

E(k(h)) = 0.

This follows from:

a) By continuity of g (which we have since g is diffble.), limh→0 k(h) =

0.

b) By diffble. of f , limk→0E(k) = 0. �
Derivatives of Trig functions

Will compute derivatives of all trig functions.

Need some Lemmas:

Theorem 7: sin(x) and cos(x) are cts.

Proof: Exercise 62 of section 2.5.

Theorem 8: limθ→0
sin(θ)
θ = 1.

Note: this follows from LHopital’s Rule once you know (sin(x)′ =

cos(x). But we haven’t prove that yet.

Proof of Theorem 8: Let θ > 0, measured in radians.

Area(∆ OAP) < Area (sector OAP) < Area(∆ OAT)

Thus,
sin(θ)

2
< θ/2 <

tan(θ)

2
=

sin(θ)

2 cos(θ)

1 <
θ

sin(θ)
<

1

cos(θ)

1 >
sin(θ)

θ
> cos(θ)
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Apply Squeeze Theorem. �
Example 1, p. 122: limh→0

cos(h)−1)
h = 0.

Proof: Use half-angle formula: cos(h) = 1− 2 sin2(h/2). Then

lim
h→0

cos(h)− 1)

h
= − lim

h→0

sin2 h/2

h/2

= − lim
h→0

(
sinh/2

h/2
) lim
h→0

sin(h/2) = −1 · 0 = 0, .
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Lecture 13:

Inputs to trig functions are measured in radians, not degrees.

Theorem 9: Let f (x) = sin(x). Then f ′(x) = cos(x).

Proof: Use trig addition formula:

sin(x + h) = sin(x) cos(h) + cos(x) sin(h)

f ′(x) = lim
h→0

sin(x + h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= lim
h→0

sin(x)(cos(h)− 1) + cos(x) sin(h)

h

sin(x) lim
h→0

cos(h)− 1)

h
+ cos(x) lim

h→0

sin(h)

h
= cos(x)

�
Theorem 10 (p. 123): d

dx cos(x) = − sin(x).

Proof:

Use fact: cos(x) = sin(π/2− x) and sin(x) = cos(π/2− x).

Reason: say for an acute angle x; look at a right triangle, with

angles x, π/2− x, π. Then “opposite” for x is adjacent for π/2− x
and vice versa.

Now apply chain rule:

d

dx
cos(x) =

d

dx
sin(π/2− x) = − cos(π/2− x) = − sin(x).

Examples using chain rule:
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1. Let f (x) = (sin(x))10.

f ′(x) = 10(sin(x))9 cos(x).

2. Let f (x) = sin(cos(x)). Then,

f ′(x) = cos(cos(x))(− sin(x)) = − cos(cos(x))(sin(x))

Derivatives of other trig functions are given on top of p. 125. For

instance,
d

dx
tan(x) = sec2(x)

Proof: Apply quotient rule:

d

dx
tan(x) =

d

dx
(
sin(x)

cos(x)
) =

cos(x) cos(x)− ((sin(x))(− sin(x)

cos2(x)
=

1

cos2(x)

= sec2(x).

Higher order derivatives

A diffble. function f (x) gives rise to a new function f ′(x). So,

why not differentiate again?

The 2nd derivative of f (x) is defined:

f ′′(x) := (f ′(x))′

Other notation:

f ′′(x) =
d2

dx2
f (x)

Can consider 3rd derivative

f ′′′(x) := (f ′′(x))′

Other notation:

f ′′′(x) =
d3

dx3
f (x)
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For even higher derivatives, the “prime” notation gets too cumber-

some. The n-th derivative is denoted:

f (n)(x) =
dn

dxn
f (x) =

dny

dxn

the latter if y is understood as f (x).

Major motivation: if f (t) represents distance of a moving particle

as a function of time t, then f ′(t) represents the (instantaneous)

velocity of the particle.

And f ′′(t) denotes acceleration.

Example: f (x) = 3x5 − 7x + 13.

f ′(x) = 15x4 − 7.

f (5)(x) = (3)(5!) = 360 and for all m > 5, f (m)(x) = 0.

In general, for a polynomial of degree n, f (m)(x) = 0 for allm > n.

Note that the domain of f (n)(x) may depend on n:

Example:

f (x) =
x2 x ≥ 0

−x2 x < 0

Then f ′(x) = 2|x|. So, the domain of both f and f ′ is all of R. But

f ′ is not diffble. at x = 0 and so f ′′ does not exist at x = 0.

Example (special case of Example 5, p. 129): Let f (x) = sin(x).

What is f (n)(x)?

Claim: For n even, f (n)(x) = (−1)n/2 sin(x).

For n odd, f (n)(x) = (−1)(n−1)/2 cos(x).

Proof: by induction.

For n = 1, f (n)(x) = f ′(x) = (−1)(n−1)/2 cos(x).
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Assume true for n even. Then n + 1 is odd.

f (n+1)(x) = (−1)n/2 cos(x) = (−1)((n+1)−1)/2 cos(x) and so the

result holds for n + 1.

Assume true for n odd. Then n + 1 is even.

f (n+1)(x) = (−1)(n−1)/2+1 sin(x) = (−1)(n+1)/2+1 sin(x) and so

the result holds for n + 1. �
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Lecture 14:

Angles are in radians!

MVT: Given a function f (x) and a < b such that f continuous on

[a, b] and f differentiable on (a, b), there exists c such that a < c < b

and

f ′(c) =
f (b)− f (a)

b− a
.

You are travelling on a toll road, which has a maximum speed

limit of 120km/hour. The time and location that you entered the

road are recorded on your toll ticket. A policeman stops you and

asks to see your toll ticket, which shows that you entered the road 2

hours earlier. The policeman notes that you are exactly 242 km from

where you entered. He then gives you a traffic ticket. You protest

because you know that in the last several minutes you were driving

well under the speed limit. The policeman replies: “Your average

speed was 121 km/hour. Therefore by the Mean Value Theorem, at

some point in your trip you were traveling at 121 km/hour.”

– MVT does not tell you an exact value of c.

– There may be more than one c that works.

What hypotheses are needed?

MVT hypotheses:

Give pictorial examples why these hypotheses are needed:

– discts at endpoint

– discts at interior point

– not diffble at interior point: f (x) = x2/3 on [−1, 1].

Proof of MVT postponed.

Example of MVT: Show that the MVT holds for f (x) =
√
x and

any 0 ≤ a < b.
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– so differentiability at an endpoint is not needed.

Proof:

f (b)− f (a)

b− a
=

√
b−
√
a

b− a
=

(
√
b−
√
a)(
√
b +
√
a)

(b− a)(
√
b +
√
a)

=
1√

b +
√
a

f ′(x) =
1

2
√
x

So, for the MVT to hold with intermediate point c, we would have

1

2
√
c

=
1√

b +
√
a

equivalently,
√
c =

√
b +
√
a

2
So, define c as

c = (

√
b +
√
a

2
)2.

It remains to check that a < c < b:

a = (

√
a +
√
a

2
)2 < (

√
b +
√
a

2
)2 < (

√
b +
√
b

2
)2 = b.

�
– Note: In this example, we get an explicit value of c and it is

unique.

– Note: When a = 0, c = b/4.

Application of MVT: sin(x) < x for all x > 0.

Draw graph.

13



Proof: For x > 2π, this clearly holds.

So assume 0 < x ≤ 2π.

sin(x)

x
=

sin(x)− sin(0)

x− 0
=

d

dx
|x=c sin(x) = cos(c)

for some 0 < c < x ≤ 2π and so cos(c) < 1.

So, sin(x)
x < 1. �

In fact, one can show in the same way that: − sin(x) < x for all

x > 0 and so

| sin(x)| < x for all x > 0.

Corollary: For all x 6= 0, cos(x) > 1− x2/2.

Draw graph.

Proof: Since cos(x) and x2 are even functions, it suffices to prove

then when x > 0.

From | sin(x)| < x, we get

sin2(x/2) < x2/4

But by double angle formula,

sin2(x/2) =
1− cos(x)

2

Thus,
1− cos(x)

2
< x2/4

which is equivalent to the claim of the corollary. �.

In Math 121, you will study infinite series and derive the formulas:

for all x,

sin(x) = x− x3/(3!) + x5/(5!)− x7/(7!) + . . .
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cos(x) = 1− x2/2 + x4/(4!)− x6/(6!) + . . .

The preceding results are consistent with this.

Defn: Let f be defined on an interval I .

f is increasing (or strictly increasing) if whenever x1, x2 ∈ I and

x2 > x1, then f (x2) > f (x1).

– Note: I could be R.

Another application of MVT:

Theorem 12, p. 140:

If f is cts. on [a, b] and diffble. on (a, b) and f ′(x) > 0 for all

x ∈ (a, b), then f is increasing on [a, b].

Proof: Let a ≤ x1 < x2 ≤ b. By MVT, there exists c s.t.

x1 < c < x2 and

f (x2)− f (x1)

x2 − x1
= f ′(c) > 0.

Since x2 − x1 > 0, we have f (x2)− f (x1) > 0. �

Q: If f is differentiable and (strictly) increasing on an interval, is

f ′(x) > 0 for all x in the interval?
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