Lecture 11:

Recall examples that are cts. at 0 but not diftble. at 0.
Theorem 1 (p. 109): If f is diffble at z, then f is cts at z.
Proof:

lim f(z+ h) — f(z) = lim(ZET h})L ~ f(@)

h—0 h— )h - f/(CU)O = 0.

This is equivalent to saying limy,_,o f(z + h) = f(x) which is equiv-
alent to continuity of f at x:

Compare with lim,_,,, f(z) = f(xo) O

Continuity means the graph is unbroken.

Differentiability means the graph is smooth.

Right and left handed derivatives:

f(x+h)—f(x)
h

Fact: f is diffble. at  iff f (x) = f.(z) (exist as a real number).

Defn: f!(x) = limy,_,+

Defn: If a is an endpoint (say left endpoint) of an interval in the
domain of f, we define f'(z) = fi(z)

Differentiability Rules: Let f and g be diftble. at x.
Constants: f(x) = ¢, f'(x) = 0. (already done)
Identity: f(z) =z, f'(z) = 1. (already done)

Sum /Difference: (f + g)'(x) = f'(z) £ ¢'(x)
Product Rule: (fg)(x) = f'(z)g(z) + f(z)d ().

Proof:
o fla (e +h) — flx)g(a)
h—0 h




flx+h)glx+h) = flx)g(x+h)+ fx)g(z + h) + fz)g(x)

= -
= im0 rr h})l — f<x))g(x+h) +limh_>0f(x)g(x i hi)l — g(x))
= limn— x+42__fﬁﬂﬂ””me@H40+f@ﬂhnm%&ﬂx+42__g@ﬂ

= [(@)g(x) + f(z)g'(x)
(since diffble = cts) O

Power Rule: Let f(x) = 2" where n is a positive integer. Then
f'(x) = nz" 1,

Proof: by induction on n. True for n = 0 by derivative of constant.

Assume true for n. Then (z") = na"™ 1.

By induction hypoth, (z"™) = (2"z) = (na" Yz + (2")1 =
(n+1)z". O
You can also start the induction off with n = 1.

Note: we will later prove power rule for all real n.
Reciprocal rule: If f(x) # 0, then () = @)

f(x) f(x)?
Proof:
L, f<1h>"f3>
Ty e

-1 flz+h) - f(z)

(again since diffble = cts) O
Corollary: For a positive integer n, hen (z7") = —nz~ " 1.
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(so, (") = nx"! holds for all integers, positive, negative and

7€10).
Proof: Let (z7") = () = (;T%)(nx” N = —pgn-!
Quotient rule: If g(x) # 0, then (%)’ g(f)f’(ﬂ;)<;5f2(x)g’($)
Proof: Write % =f (x)(ﬁ) and apply product rule.
f(.T) / / 1 —g’(aj) p 1
— ) = T)IW—) = €T + ) (——
(g(x)) £ )(g(x)) £l )((g(x))z £ )(g(x))
O
Examples:

Leibniz notation: If you think of y = f(x), then can write f'(z),
as a function in many ways:

fl(x) = Z—z = d% (x) = D, f(x) and others.
For the derivative evaluated at a particular value of z = xy, we
write . ;
/ Y Yy

o) = o=z — 5 |z

J(@o) = = lamsy = = lag

Example: f(z) = 2% f'(z) = 2z; f'(3) = 6.

Differentiability on an interval means dibble. at each point of the
interval (remember that diffible at an endpoint means as a one-sided
derivative).

Chain Rule: If g is diffble at x, and f is diffble. at g(z), then fog
is diffble. at z and (f o g)'(x) = f'(g(x))g (x).

Example: Find the derivative of (z* + 1)1°.
This function is f o g(x) where g(z) = 2°+1 and f(z) = 2'°. So,

((z* + 1)) = (f(g(2))g'(z) = (10(z + 1)°)(22) = 20(z" + 1)’



You could alternatively expand it out and differentiate term by term.
So, chain rule is a labor-saving device. But there are other applica-
tions where there is no alternative.



Lecture 12:

Chain Rule: If g is diffble at x, and f is diffble. at g(z), then fog
is diffble. at x and (f o g)'(z) = f'(g(x))g ().

Proof of Chain rule: Fix z. Let k(h) = g(z + h) — g(z).
flgle +h)) = flg(@))

o P
— lim flglx +h))— flg(x))g(x +h) —g(z)
=0 gzt h) - g(z) h
— lim flg(z) +k(h)) — f(g(x)) g(z +h) — g(x)
h—0 k(h) y

Use the limit rule for products. Makes some sense since k(h) — 0 as
h — 0. Problem: k(h) may be zero.

Instead: fix » in domain of f.

Define E(k) := =10 g1(y)) if | £ 0 and E(0) = 0.

E(k) is the “error” in the approximation of f’(u) by the difference
quotient.

Note: for all k, (including k = 0),

flutk) = fu) = (f'(u) + E(k))k

Fix x and let u = g(z).
Let k =k(h) = g(x + h) — g(x). We have

flg(x+h)) = flg(x)) = (f'(g(x)) + E(k(h)))(g(x + h) — g(x)).
Now, divide by A:
flg(z+h)) — flg(x))




Let A — 0. Then,
(fog)(z)=(f(g(x)) + lim E(k(h)))g (x)

h—0

So, it suffices to show:

lim E(k(h)) = 0.

This follows from:

a) By continuity of g (which we have since g is diffble.), lim;, g k(h) =
0.

b) By diffble. of f, limy_,o E(k) =0. O

Derwatives of Trig functions

Will compute derivatives of all trig functions.

Need some Lemmas:
Theorem 7: sin(z) and cos(z) are cts.

Proof: Exercise 62 of section 2.5.

sin(f)
©) -1,

Note: this follows from LHopital’s Rule once you know (sin(x)" =

Theorem 8: limg_,

cos(z). But we haven’t prove that yet.
Proof of Theorem 8: Let 8 > 0, measured in radians.
Area(A OAP) < Area (sector OAP) < Area(A OAT)
Thus,

sin(0) tan(f)  sin(6)
> ° 02 < 2 2 cos(6)
1 < / < :
Si.n(ﬁ) cos(6)
1> sin(9) > cos(0)

0



Apply Squeeze Theorem. [
cos(i;b)—l) 0

Proof: Use half-angle formula: cos(h) = 1 — 2sin*(h/2). Then

_ in2
i cos(h) — 1) T h/2
h—0 h h—0 h/2

. sinh/2 .
__}Lli%( e )}llg%sm(h/Q)——l'O—O,-

Example 1, p. 122: limy_y




Lecture 13:
Inputs to trig functions are measured in radians, not degrees.
Theorem 9: Let f(x) = sin(x). Then f'(z) = cos(z).
Proof: Use trig addition formula:
sin(z + h) = sin(z) cos(h) 4 cos(z) sin(h)
sin(z + h) — sin(x)

/ T
fla) = Jim h
_ sin(z) cos(h) + cos(z) sin(h) — sin(x)
= h
. sin(x)(cos(h) — 1) + cos(x) sin(h)
= lim
h—0 h
, . cos(h) —1) . sin(h)
sin(z) llzl—>r% , + cos(x) }LIL% 7
= cos(x)
]
Theorem 10 (p. 123): L cos(z) = — sin(z).
Proof:

Use fact: cos(z) = sin(7/2 — ) and sin(z) = cos(7w/2 — x).

Reason: say for an acute angle x; look at a right triangle, with
angles x, /2 — x,m. Then “opposite” for x is adjacent for 7/2 — x
and vice versa.

Now apply chain rule:
d d

. cos(z) = . sin(m/2 — x) = —cos(m/2 — x) = —sin(x).

Examples using chain rule:



1. Let f(z) = (sin(z))™.
f(z) = 10(sin(z))” cos(x).
2. Let f(z) = sin(cos(z)). Then,
f'(z) = cos(cos(z))(—sin(x)) = — cos(cos(x))(sin(z))

Derivatives of other trig functions are given on top of p. 125. For

instance,
d
o tan(x) = sec?(z)
Proof: Apply quotient rule:
d d sin(z), cos(x)cos(z) — ((sin(x))(—sin(x) 1
— 1 — - =
dx an(z) dx(cos(a:)) cos?(x) cos?(x)
= sec?(x).

Higher order derivatives

A diffble. function f(z) gives rise to a new function f’(x). So,
why not differentiate again?

The 2nd derivative of f(x) is defined:
f(z) = (f'(z))

Other notation: »
(@) = o ()
Can consider 3rd derivative

f (@) = (f"(@))

Other notation:



For even higher derivatives, the “prime” notation gets too cumber-
some. The n-th derivative is denoted:

d" d"
) = ——fla) =

the latter if y is understood as f(x).

Major motivation: if f(¢) represents distance of a moving particle
as a function of time ¢, then f'(¢) represents the (instantaneous)
velocity of the particle.

And f"(t) denotes acceleration.

Example: f(z) = 3x° — Tz + 13.

f'(x) = 15z — 7.

fO)(z) = (3)(5!) = 360 and for all m > 5, f™)(z) = 0.

In general, for a polynomial of degree n, f™(x) = 0 for allm > n.

Note that the domain of f™(x) may depend on n:

Example:

2 x>0
fla) = —z? <0

Then f'(x) = 2|z|. So, the domain of both f and f’ is all of R. But
f" is not diffble. at x = 0 and so f” does not exist at x = 0.

Example (special case of Example 5, p. 129): Let f(z) = sin(x).
What is f)(x)?

Claim: For n even, f(z) = (—=1)"/?sin(x).
For n odd, f™(z) = (=1)"=D/2 cos(x).

Proof: by induction.

Forn=1, f"(z) = f'(z) = (=1)""D/2 cos(x).
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Assume true for n even. Then n + 1 is odd.

FOrD () = (=1)"2cos(x) = (=1)+D=D/2cos(z) and so the
result holds for n + 1.

Assume true for n odd. Then n + 1 is even.

fOrD () = (=1)=D/24gin(z) = (=1)™+ D2 gin(z) and so
the result holds for n + 1. [
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Lecture 14:
Angles are in radians!

MVT: Given a function f(x) and a < b such that f continuous on
la, b] and f differentiable on (a, b), there exists ¢ such that a < ¢ < b

and o) f
o = HO =10

You are travelling on a toll road, which has a maximum speed
limit of 120km/hour. The time and location that you entered the
road are recorded on your toll ticket. A policeman stops you and

asks to see your toll ticket, which shows that you entered the road 2
hours earlier. The policeman notes that you are exactly 242 km from
where you entered. He then gives you a traffic ticket. You protest
because you know that in the last several minutes you were driving
well under the speed limit. The policeman replies: “Your average
speed was 121 km /hour. Therefore by the Mean Value Theorem, at
some point in your trip you were traveling at 121 km /hour.”

— MVT does not tell you an exact value of c.
— There may be more than one ¢ that works.
What hypotheses are needed?

MVT hypotheses:

Give pictorial examples why these hypotheses are needed:
— discts at endpoint

— discts at interior point

~ not diffble at interior point: f(z) = 23 on [—1, 1].

Proof of MV'T postponed.

Example of MVT: Show that the MVT holds for f(z) = y/x and
any 0 < a < b.
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— so differentiability at an endpoint is not needed.
Proof:
FB) = fla) Vi—va (Vb= vab+a)
b=a b-a  (b-a(bta
B 1
Vb +\/a
1
/ —_
So, for the MV'T to hold with intermediate point ¢, we would have
1 1

2V Vb++/a

equivalently,

Vb +\/a
2

C =

So, define ¢ as

Vb +/a,
c:(T).

[t remains to check that a < ¢ < b:

Varva, (Wb, (hevh

a=(" 5 5

]
— Note: In this example, we get an explicit value of ¢ and it is
unique.

— Note: When a = 0,c=b/4.
Application of MVT: sin(x) < x for all z > 0.
Draw graph.
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Proof: For x > 2, this clearly holds.

So assume 0 < z < 2.

. . ~ sin(0 g
Smaga:) _ sm(a:a): - zm( ) _ dx|x:6 sin(x) = cos(c)
for some 0 < ¢ < x < 27 and so cos(c) < 1.
S0, w < 1. 0
In fact, one can show in the same way that: —sin(z) < x for all

x > 0 and so
|sin(x)| < x for all x > 0.

Corollary: For all z # 0, cos(z) > 1 — x*/2.
Draw graph.

Proof: Since cos(x) and 2% are even functions, it suffices to prove
then when x > 0.

From |sin(z)| < x, we get
sin(x/2) < 2% /4

But by double angle formula,

1 —
sin?(z/2) = cos(z)
2
Thus,
1—
o) _

which is equivalent to the claim of the corollary. [
In Math 121, you will study infinite series and derive the formulas:
for all x,

sin(z) =2 —2°/(31) + 2°/(5!) — 27 /(7)) + . ..
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cos(z) =1—a?/2+ 2 /(4) — 2°/(6)) + ...
The preceding results are consistent with this.
Defn: Let f be defined on an interval I.

f is increasing (or strictly increasing) if whenever 1, xs € I and
Ty > T, then f(z2) > f(z1).

— Note: I could be R.

Another application of MVT:

Theorem 12, p. 140:

If fis cts. on [a,b] and diffble. on (a,b) and f'(z) > 0 for all

x € (a,b), then f is increasing on |a, b).

Proof: Let a < x1 < 29 < b. By MVT, there exists ¢ s.t.
r1 < ¢ < x9 and

f(x2) — f(x1)

Lo — X1

= f'(c) > 0.

Since x5 — x1 > 0, we have f(z3) — f(z1) > 0. O

Q: If f is differentiable and (strictly) increasing on an interval, is
f'(x) > 0 for all z in the interval?
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