
Lecture 7:

Recall f (x) = sgn(x) =

f (x) =

{
1 x > 0

−1 x < 0

}
Q: Does limx→0 sgn(x) exist?

A: No. Informally, you get a different limit coming from the right

(+1) than coming from the left (−1).

Informal defn: right limit: limx→a+ f (x) = L means that as x

approaches a from the right, then f (x) approaches L.

Formally:

∀ε > 0∃δ > 0 s.t. if 0 < x− a < δ, then |f (x)− L| < ε.

Note: for existence of right limit f needs to be defined only on a

one-sided punctured nbhd. (a, a + δ) for some δ > 0.

Formal Defn: left limit: limx→a− f (x) = L means same thing but

replace 0 < x− a < δ with 0 < a− x < δ.

Theorem 1 (p. 68): limx→a f (x) = L iff limx→a+ = L and

limx→a− = L.

Can prove using δ − ε.
Example:

lim
x→0+

sgn(x) = +1, lim
x→0−

sgn(x) = −1

So, limx→0 sgn(x) does not exist. Can verify with δ − ε.
Example:

lim
x→0+

|x|
x2 + 3x

= lim
x→0+

x

x(x + 3)
= 1/3.
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lim
x→0−

|x|
x2 + 3x

= lim
x→0−

−x
x(x + 3)

= −1/3.

Can verify with δ − ε.
So, limx→0

|x|
x2+3x

does not exist.

Limits at ∞:

Note: in the text ∞ = +∞.

Informally, limx→∞ f (x) = L means that as x gets arbitrarily

large (and positive), f (x) approaches L.

Graphically, this means that y = L is a horizontal asymptote.

Computing these limits:

Example: limx→∞ 1/x = 0.

Example: limx→∞
x+2
x+3 = 1:

x+2
x−3 = 1+2/x

1−3/x → 1 as x→∞.

Defn: polynomial: a function of the form anx
n + . . .+a0, ai ∈ R,

an 6= 0, degree = n

Defn: rational function: R(x) := f(x)
g(x) where f and g are polyno-

mials.

To compute limx→∞R(x) divide numerator and denominator by

highest degree in denominator. This yields:

If deg(num) > deg(denon), then limit is 0.

If deg(num) < deg(denon), then limit does not exist (because it

goes to ∞)

If deg(num) = deg(denon), then limit is ratio of highest coeffi-

cients.

Another Example: limx→∞
√
x2 + x− x = 1/2.
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Rationalize:

√
x2 + x− x =

(
√
x2 + x− x)(

√
x2 + x + x)√

x2 + x + x
=
x2 + x− x2√
x2 + x + x

x√
x2 + x + x

=
1√

1 + 1/x + 1
→ 1/2.

Can also consider limx→−∞ f (x)

Formal Defn: limx→∞ f (x) = L means:

∀ε > 0∃R s.t. if x > R, then |f (x)− L| < ε.

Example: limx→∞
x+2
x−3 = 1.

Let ε > 0.

|x + 2

x− 3
− 1| = | 5

x− 3
| = 5

x− 3
for x > 0

We want 5
x−3 < ε, equivalently, x > 5/ε+ 3 (a very large number).

Choose R := 5/ε + 3. If x > R, then

|x + 2

x− 3
− 1| = 5

x− 3
< ε.

�
Infinite Limits

Informal defn: limx→a f (x) =∞ means that as x gets closer and

closer to a, then f (x) gets arbitrarily large (and positive).

Technically, the limit does not exist (as a real number).

Graphically, this corresponds to a vertical asymptote.

Example: f (x) = 1/x2: limx→0 1/x2 =∞ (but does not exist).

Example: f (x) = 1/x: limx→0 1/x does not exist because

limx→0+ 1/x =∞
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limx→0− 1/x = −∞
Example: limx→2

x−3
x2−4x+4

= −∞ (both one-sided limits yield−∞.

Formal defn: Defn 11, p. 92.
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Lecture 8:

Open interval: (a, b) or (a,∞) or (−∞, a).

Closed interval: (a, b) or (a,∞) or (−∞, a).

Let f be a function. We assume that the domain of f contains a

neighbourhood of a, i.e. (a− α, a + α) for some α > 0.

Defn: f is continuous at a if limx→a f (x) = f (a).

Defn: f (x) is right continuous at a if limx→a+ f (x) = f (a).

Defn: f (x) is left continuous at a if limx→a+ f (x) = f (a).

If a is an endpoint of the domain, we require that the limit holds

only as a one-sided limit.

For example, if the domain is [a, b], then:

f (x) is continuous at a if limx→a+ f (x) = f (a).

Similarly, if the domain is [c, a], we require only that limx→a− f (x) =

f (a).

No holes, finite jumps or infinite jumps.

Types of discontinuities:

Removable discontinuity: limit exists but does not equal f (a)

f (x) =

{
x2−9
x−3 x 6= 3

7 x = 3

}
Note that in this case we can always redefine f (a) := limx→a f (x),

and then f becomes continuous at a. In this case, redefine f (3) = 6.

Technically, the redefined function is a different function, called

the continuous extension of f .
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Jump discontinuity: limit does not exist but all one-sided limits

exist.

Example: (extension of sgn(x))

f (x) =

{
1 x ≤ 0

−1 x < 0

}
You cannot redefine f (a) to make f continuous at a.

Infinite discontinuity: at least one one-sided limit is infinite.

f (x) =

{
1/x x 6= 0

0 x = 0

}
You cannot redefine f (a) to make f continuous at a.

At least one one-sided limit does not exist and is not infinite

f (x) =

{
sin(1/x) x > 0

0 x ≤ 0

}
You cannot redefine f (a) to make f continuous at a.

Recall Limit Theorems (limit of sum is sum of limits, etc.). We

get corresponding continuity theorems:

f (x) = c and f (x) = x are continuous,.

If f and g are continuous at a, then so are f + g, f − g, fg and

f/g (for the latter, provided g(a) 6= 0).

So, polynomials are continuous at all a.
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Lecture 9:

Theorem 6 (p. 81): Sum, diff, product, quotient of function conti-

nous at a are continuous at a (except that in the case of a 6= 0 must

assume that denominator is not 0 at a.

Proof of continuity of sum.

Corollary: polynomials are continuous at all a.

Corollary: Rational functions are continuous at all a s.t. denomi-

nator(a) 6= 0.

Will later show that all trig functions, exponential function and

logarithmic function are continuous at all points in their domains.

We will show that they are actually differentiable and that differen-

tiability implies continuity.

Example: f (x) =
√
x is continuous at all a ≥ 0.

Proof: Case 1: a 6= 0.

Let ε > 0. We want: |f (x)− f (a)| < ε.

|f (x)− f (a)| = |
√
x−
√
a| = |(

√
x−
√
a)(
√
x +
√
a)√

x +
√
a

|

= | x− a√
x +
√
a
| ≤ |x− a√

a
|

Want |f (x)− f (a)| < ε. For this, it is enough to have:

|x− a|√
a

< ε

Let δ :=
√
aε. If 0 < |x− a| < δ =

√
aε, then

|f (x)− f (a)| ≤ |x− a|√
a

< ε.

Case 2: a = 0. Let ε > 0. Choose δ = ε2.
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If 0 ≤ x < δ = ε2, then f (x) =
√
x < ε.

Theorem 7 (p. 82): If g is continuous at a and f is continuous at

g(a), then f ◦ g is continuous at a.

Proof: Let ε > 0.

Choose δ > 0 s.t. if 0 < |z−g(a)| < δ, then |f (z)−f (g(a))| < ε.

This can be done because f is continuous at g(a).

Choose γ > 0 s.t. if 0 < |x − a| < γ, then |g(x) − g(a)| < δ.

This can be done because g is continuous at a.

If 0 < |x−a| < γ, then letting z = g(x), we see that |z−g(a)| < δ

and so

|f ◦ g(x))− f ◦ g(a)| = |f (z)− f (g(a))| < ε.

�
Example: f (x) = esin(x) is continuous at all a.

Example: f (x) =
√
x2 + 1 is continuous at all a.

Defn (just terminology): f is continuous on an interval (open,

closed, finite, infinite, etc.) if it is continuous at all points of the

interval.

Remember that continuity at an endpoint of the domain of f

means that it is right- or left-continuous.

Graphically, continuity means on an interval that the graph of

f (x) on the interval is unbroken.

Theorem 9 (the intermediate value theorem (IVT)): Let f be con-

tinuous a continuous function on an interval I . Let a, b ∈ I such that

a < b. Let s be between f (a) and f (b). Then there exists c ∈ [a, b]

s.t. f (c) = s.
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Theorem 9 may seem obvious because the graph is unbroken, but

the proof requires the “completeness” of the real numbers.

IVT is (may be) false if f is not continuous:

Example: consider the function f (x) on [a, b] = [0, 1]:

f (x) =

{
x x 6= 1/2

3/4 x = 1/2

}
Finding roots of equations (Example 11, p. 80): Show that x3 −

x− 1 = 0 for some x ∈ [1, 2].

Proof: f (1) = −1, f (2) = 5. Since −1 ≤ 0 ≤ 5, there exists

c ∈ [1, 2] s.t. f (c) = 0 (by IVT; here s = 0).

Theorem 8 (Max-Min Theorem): Let f be continuous on a closed

finite interval [a, b]. Then f has an absolute maximum and an abso-

lute minimum on [a, b]. That is, there exist p, q ∈ [a, b] s.t. for all

x ∈ [a, b], we have

f (p) ≤ f (x) ≤ f (q).

Max-Min theorem is (may be) false on open intervals (a, b): con-

sider f (x) = x on (a, b) = (0, 1).

Max-Min theorem is (may be) false on infinite intervals [a,∞):

consider f (x) = x on [a,∞) = [0,∞) (has an absolute min but not

an absolute max).

Max-Min theorem is (may be) false for discontinuous functions on

closed intervals [a, b]:

Example: consider the function f on [−1, 1] defined by

f (x) =

{
|x| x 6= 0

1/2 x = 0

}
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Lecture 10:

Which of the following functions are cts. at 0?

1. f (x) = |x|
Yes: limx→0+ |x| = limx→0+ x = 0

limx→0− |x| = limx→0−−x = 0

So, right and left hand limits agree and equal f (0). So, limx→0 f (x) =

f (0).

2. f (x) = sin(1/x), x 6= 0.

No: No matter how f (0) is defined, f is not cts at 0 because

limx→0 sin(1/x) d.n.e.

3. f (x) = x sin(1/x), x 6= 0?

If we define f (0) = 0, limx→0 f (x) = 0 = f (0) and so f is contin-

uous at 0.

For x0 be an interior point of the domain of f . We say that f is

differentiable at x0 if

lim
x→x0

f (x)− f (x0)

x− x0
exists (and is finite). And the limit is called f ′(x0).

What does this mean?

1. The slope of the chord from (x, f (x)) to (x0, f (x0)) converges

(to a finite number f ′(x0)).

Equivalently,

2. There is a “good” linear approximation to f (x) in a neighbour-

hood of x0, more precisely, there is a linear function L(x) = mx+ b

such that

lim
x→x0

f (x)− L(x)

x− x0
= 0.
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Namely, L(x) = f (x0) + f ′(x0)(x− x0) works:

lim
x→x0

f (x)− L(x)

x− x0
= lim

x→x0

f (x)− f (x0)− f ′(x0)(x− x0)
x− x0

= f ′(x0)− f ′(x0) = 0.

The graph of y = L(x) is the tangent line to y = f (x) at the point

(x0, f (x0)).

Note: not only is limx→x0 f (x)−L(x) = 0, but it approaches zero

“faster” than x− x0 approaches zero.

Linear functions are “simple.” So, differential calculus is largely

about approximating complicated functions by simple functions.

If y = f (x) is interpreted as position and x as time, then f ′(x0)

can be interpreted as velocity at time x0; many other interpretations

depending on application.

Equivalent notation:

f ′(x) = limh→0
f(x+h)−f(x)

h

Here, we are letting x0 vary and calling it x, so that we get a new

function f ′ whose domain is contained in the domain of f .

Examples: (in these computations we use the limit theorems, in-

stead of δ − ε proofs)

1. f (x) = c.

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0
0 = 0.

2. f (x) = x.

f ′(x) = lim
h→0

(x + h)− x
h

= lim
h→0

h

h
= lim

h→0
1 = 1.

3. f (x) = x2.
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f ′(x) = lim
h→0

(x + h)2 − x2

h
= lim

h→0

2xh + h2

h
lim
h→0

2x + h = 2x.

For the following functions, we are interested in differentiability at

x = 0.

4. f (x) = |x|. Right-hand derivative:

lim
h→0+

|h|
h

= lim
h→0

1 = 1.

Lert-hand derivative:

f ′(x) = lim
h→0−

|h|
h

= lim
h→0
−1 = −1.

These do not agree, and so f is not diffble. at 0.

5. f (x) = x sin(1/x).

f ′(0) = lim
h→0

h sin(1/h)

h
= lim

h→0
sin(1/h)

d.n.e. So, f (x) is not diffble. at x = 0.

(we will later see that f (x) is diffble. at all x 6= 0).

If x0 is an endpoint of the domain of f (say a left endpoint), we

say that f is diffble at x0 if f ′+(x0) exists and is finite.

6. f (x) =
√
x, x = 0.

f ′+(0) = lim
h→0

√
h

h
= lim

h→0

1√
h

=∞

So, f is not diffble. at x = 0.

Note that the graph y = f (x) has a vertical tangent line at the

origin.

Examples 4,5,6 are cts. but not diffble. at x = 0.
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