# Computing the entropy of two-dimensional shifts of finite type

#### Brian Marcus

University of British Columbia www.math.ubc.ca/~marcus

November 11, 2009, Texas A&M University

Image: A Image: A

э



Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Ronnie Pavlov (Postdoctoral Fellow):



#### Ronnie Pavlov (Postdoctoral Fellow):



Brian Marcus Computing the entropy of two-dimensional shifts of finite type

→ 3 → 4 3

• A finite alphabet A.

4 3 b

- A finite alphabet A.
- A finite set  $\mathcal{F}$  of finite words,

4 3 6 4 3

- A finite alphabet A.
- A finite set  $\mathcal{F}$  of finite words,
- The SFT X is the set of all elements of  $A^{\mathbb{Z}}$  (bi-infinite sequences) which do not contain any of the words from  $\mathcal{F}$ .

- A finite alphabet A.
- A finite set  ${\mathcal F}$  of finite words,
- The SFT X is the set of all elements of  $A^{\mathbb{Z}}$  (bi-infinite sequences) which do not contain any of the words from  $\mathcal{F}$ .
- An SFT is a "constraint" on the set of allowable words.

### Examples

• Example 1: the golden mean shift,  $(G^{(1)})$ ,  $A = \{0, 1\}$ :  $\mathcal{F} = \{11\}.$ 

Typical allowed sequence: ...01000101000010...



- ∢ ≣ ▶

### Examples

• Example 1: the golden mean shift,  $(G^{(1)})$ ,  $A = \{0, 1\}$ :  $\mathcal{F} = \{11\}.$ 

Typical allowed sequence: ...01000101000010...



• Example 2: the **run-length-limited shift** (RLL(*d*, *k*)), *A* = {0,1}



Magnetic recording:

• Magnetic recording:



• Magnetic recording:



• Intersymbol interference:

• Magnetic recording:



#### • Intersymbol interference:



• Magnetic recording:



• Intersymbol interference:



• Hence an RLL constraint on allowed stored sequences.

• Modulation encoder: encodes arbitrary data sequences into X.

Image: Image:

#### • Modulation encoder: encodes arbitrary data sequences into X.



• A word w is **admissible** if it contains no sub-word from  $\mathcal{F}$ .

- A word w is **admissible** if it contains no sub-word from  $\mathcal{F}$ .
- Let  $B_n(X)$  be the set of admissible words of length n.

- A word w is **admissible** if it contains no sub-word from  $\mathcal{F}$ .
- Let  $B_n(X)$  be the set of admissible words of length n.
- Define the **entropy**:  $h(X) = \lim_{n \to \infty} \frac{\log |B_n(X)|}{n}$

ヨッ イヨッ イヨッ

- A word w is **admissible** if it contains no sub-word from  $\mathcal{F}$ .
- Let  $B_n(X)$  be the set of admissible words of length n.
- Define the **entropy**:  $h(X) = \lim_{n \to \infty} \frac{\log |B_n(X)|}{n}$
- The entropy is the maximal rate of encoder from the set of all arbitrary data sequences into X.

• At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.

→ 3 → < 3</p>

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.
- Example:

• • 3 • • 3

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.
- Example:
  - X: the golden mean shift,

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.
- Example:
  - X: the golden mean shift,

• 
$$M = \begin{bmatrix} 11 \\ 10 \end{bmatrix}$$
,  $\lambda = \frac{1+\sqrt{5}}{2}$ , and  $h(X) = \log \frac{1+\sqrt{5}}{2} \approx .69$ .

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.
- Example:
  - X: the golden mean shift,

• 
$$M = \begin{bmatrix} 11\\10 \end{bmatrix}$$
,  $\lambda = \frac{1+\sqrt{5}}{2}$ , and  $h(X) = \log \frac{1+\sqrt{5}}{2} \approx .69$ .

• So, we can compute entropies of 1-dimensional SFT's.

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.
- Example:
  - X: the golden mean shift,

• 
$$M = \begin{bmatrix} 11\\10 \end{bmatrix}$$
,  $\lambda = \frac{1+\sqrt{5}}{2}$ , and  $h(X) = \log \frac{1+\sqrt{5}}{2} \approx .69$ .

- So, we can compute entropies of 1-dimensional SFT's.
- And we can characterize the set of numbers that occur as entropies of 1-dimensional SFT's:

- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of words of length 2, and so the SFT is defined by *nearest neighbours*.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and h(X) = log λ(M), where λ(M) is the largest eigenvalue of M.
- Example:
  - X: the golden mean shift,

• 
$$M = \begin{bmatrix} 11\\10 \end{bmatrix}$$
,  $\lambda = \frac{1+\sqrt{5}}{2}$ , and  $h(X) = \log \frac{1+\sqrt{5}}{2} \approx .69$ .

- So, we can compute entropies of 1-dimensional SFT's.
- And we can characterize the set of numbers that occur as entropies of 1-dimensional SFT's:
  - **Theorem** (Lind, 1983)): A number *h* is the entropy of a one-dimensional SFT if and only if *h* is the log of a root of a Perron number (special kind of algebraic integer).

A B A A B A

• A 2-dimensional shift of finite type (SFT) is defined by:

伺 ト く ヨ ト く ヨ ト

- A 2-dimensional shift of finite type (SFT) is defined by:
  - A finite alphabet A.

伺 ト く ヨ ト く ヨ ト

- A 2-dimensional shift of finite type (SFT) is defined by:
  - A finite alphabet A.
  - $\bullet\,$  A finite set  ${\cal F}$  of finite patterns on rectangles.

伺 ト く ヨ ト く ヨ ト

- A 2-dimensional shift of finite type (SFT) is defined by:
  - A finite alphabet A.
  - $\bullet$  A finite set  ${\cal F}$  of finite patterns on rectangles.
- The SFT X is defined to be all elements of A<sup>Z<sup>2</sup></sup> (i.e., configurations on the entire Z<sup>2</sup> lattice) which do not contain any of the words from *F*.

伺 ト イ ヨ ト イ ヨ ト

- A 2-dimensional shift of finite type (SFT) is defined by:
  - A finite alphabet A.
  - $\bullet\,$  A finite set  ${\cal F}$  of finite patterns on rectangles.
- The SFT X is defined to be all elements of A<sup>Z<sup>2</sup></sup> (i.e., configurations on the entire Z<sup>2</sup> lattice) which do not contain any of the words from *F*.
- Example 1: the two-dimensional golden mean shift  $G^{(2)}$ :  $A = \{0, 1\}, \mathcal{F} = \{\text{any pair of adjacent } 1's\} = \{11, \frac{1}{4}\}.$

伺 ト イ ヨ ト イ ヨ ト
## 2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by:
  - A finite alphabet A.
  - $\bullet\,$  A finite set  ${\cal F}$  of finite patterns on rectangles.
- The SFT X is defined to be all elements of A<sup>ℤ<sup>2</sup></sup> (i.e., configurations on the entire Z<sup>2</sup> lattice) which do not contain any of the words from F.
- Example 1: the two-dimensional golden mean shift  $G^{(2)}$ :  $A = \{0, 1\}, \mathcal{F} = \{\text{any pair of adjacent } 1's\} = \{11, \frac{1}{1}\}.$
- Typical allowed configuration:



# Motivation for 2-dimensional SFT's: Holographic storage



< ∃ >

ъ

• NAK (Non-attacking kings):  $\mathcal{F} = \{11, 1, 1, 1, 1\}$ .

伺 と く ヨ と く ヨ と

3

٢

• NAK (Non-attacking kings):  $\mathcal{F} = \{ 11, 1, 1, 1, 1 \}$ .

• • . • • • 1 0 0 0 0 n 1 0 0 0 0 0 0 0 .  $\cdot$  0 0 0 0 1 0 1 0 0 0 0 0 0 .  $\cdot$  0 0 0 1 0 0 0 0 0 1 0 1 0 0 . 0 1 0 0 0 1 0 1 0 0 0 0 0 0 • • • •

• RWIM (Read/Write Isolated Memory):  $\mathcal{F} = \{11, 1, 1\}$ .

A B F A B F

٢

• RWIM (Read/Write Isolated Memory):  $\mathcal{F} = \{11, 1, 1, 1\}$ .

• • • • • • 0 0 0 0 n 1 0 0 0 0 0 0 1 0  $\cdot$  0 1 0 1 0 1 0 1 0 1 0 0 0 0  $\cdot$  $\cdot$  0 0 0 1 0 0 0 0 0 1 0 1 0 0 . 0 1 0 0 0 1 0 1 0 0 0 1 0 0 . • • •

• A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .

- \* E > \* E >

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .

- - E - - E

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .
- Define the entropy  $h(X) = \lim_{n \to \infty} \frac{\log |B_{n \times n}(X)|}{n^2}$

伺い イラト イラト

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .
- Define the entropy  $h(X) = \lim_{n \to \infty} \frac{\log |B_{n \times n}(X)|}{n^2}$
- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of patterns on  $1 \times 2$  and  $2 \times 1$  rectangles, i.e. nearest neighbours.

伺 ト イ ヨ ト イ ヨ ト

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .
- Define the entropy  $h(X) = \lim_{n \to \infty} \frac{\log |B_{n \times n}(X)|}{n^2}$
- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of patterns on  $1 \times 2$  and  $2 \times 1$  rectangles, i.e. nearest neighbours.
- This yields horizontal and vertical transition matrices.

ヨッ イヨッ イヨッ

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .
- Define the entropy  $h(X) = \lim_{n \to \infty} \frac{\log |B_{n \times n}(X)|}{n^2}$
- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of patterns on  $1 \times 2$  and  $2 \times 1$  rectangles, i.e. *nearest neighbours*.
- This yields horizontal and vertical transition matrices.
- However, there is no known way to compute entropy from these matrices.

伺 ト イ ヨ ト イ ヨ ト

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from  $\mathcal{F}$ .
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .
- Define the entropy  $h(X) = \lim_{n \to \infty} \frac{\log |B_{n \times n}(X)|}{n^2}$
- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of patterns on  $1 \times 2$  and  $2 \times 1$  rectangles, i.e. *nearest neighbours*.
- This yields horizontal and vertical transition matrices.
- However, there is no known way to compute entropy from these matrices.
- exact value of entropy is known for only a handful of 2-D SFT's (unknown even for  $G^{(2)}$ ).

く 戸 と く ヨ と く ヨ と …

- A pattern *w* on a rectangle of any size is **admissible** if it contains no sub-pattern from *F*.
- Let  $B_{n \times n}(X)$  be the set of admissible patterns of size  $n \times n$ .
- Define the entropy  $h(X) = \lim_{n \to \infty} \frac{\log |B_{n \times n}(X)|}{n^2}$
- At the expense of enlarging the alphabet, we can assume that  $\mathcal{F}$  consists of patterns on  $1 \times 2$  and  $2 \times 1$  rectangles, i.e. nearest neighbours.
- This yields horizontal and vertical transition matrices.
- However, there is no known way to compute entropy from these matrices.
- exact value of entropy is known for only a handful of 2-D SFT's (unknown even for  $G^{(2)}$ ).
- Even worse: given *F*, it is algorithmically undecidable whether or not X = ∅!

伺 と く ヨ と く ヨ と

• Holy Grail: an exact formula for the entropy of a 2-dimensional SFT, in particular  $G^{(2)}$ .

Image: A Image: A

- Holy Grail: an exact formula for the entropy of a 2-dimensional SFT, in particular  $G^{(2)}$ .
- If not an exact formula, try to efficiently estimate  $h(G^{(2)})$ .

- Holy Grail: an exact formula for the entropy of a 2-dimensional SFT, in particular  $G^{(2)}$ .
- If not an exact formula, try to efficiently estimate  $h(G^{(2)})$ .
- Current best estimates (Friedland, 2007): 0.58789116177534  $\leq h(G^{(2)}) \leq 0.58789116177535$ .

• Define  $H_n$  to be the set of configurations on an *n*-high strip which do not include any of the forbidden neighbours in  $\mathcal{F}$ .

| •            | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | · |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\uparrow$   |   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |   |
| п            |   | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |   |
|              |   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |   |
| $\downarrow$ |   | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |   |
|              |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

伺 ト く ヨ ト く ヨ ト

э

• Define  $H_n$  to be the set of configurations on an *n*-high strip which do not include any of the forbidden neighbours in  $\mathcal{F}$ .



• Then  $H_n$  itself can be thought of as a 1-dimensional SFT:

• Define  $H_n$  to be the set of configurations on an *n*-high strip which do not include any of the forbidden neighbours in  $\mathcal{F}$ .

| •            | • | · | · | · | • | • | • | • | • | • | • | · | · | • | • | • |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\uparrow$   |   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |   |
| п            |   | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |   |
|              |   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |   |
| $\downarrow$ |   | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |   |
|              |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

- Then  $H_n$  itself can be thought of as a 1-dimensional SFT:
  - Alphabet  $A_n$ : set of *n*-letter columns  $\vdots$  such that each  $a_{i-1}^{a_i}$  is admissible.

• Define  $H_n$  to be the set of configurations on an *n*-high strip which do not include any of the forbidden neighbours in  $\mathcal{F}$ .

| •            | • | · | · | · | • | • | • | • | • | • | • | · | · | • | • | • |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\uparrow$   |   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |   |
| п            |   | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |   |
|              |   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |   |
| $\downarrow$ |   | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |   |
|              |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

• Then  $H_n$  itself can be thought of as a 1-dimensional SFT:

- Alphabet  $A_n$ : set of *n*-letter columns  $\vdots$  such that each  $a_{i-1}^{a_i}$  is admissible.  $a_n \quad b_n$
- The pair : may appear if and only if each a<sub>i</sub>b<sub>i</sub> is <sup>a2</sup><sub>2</sub> b<sub>2</sub> <sup>b2</sup><sub>1</sub> admissible.

• For any *n*, define  $h_n = h(H_n)$ .

+

• • = • • = •

• For any *n*, define 
$$h_n = h(H_n)$$
.

• Fact: 
$$h(X) = \lim_{n \to \infty} \frac{h_n}{n}$$

+

白 ト ・ ヨ ト ・ ヨ ト

э

- For any n, define  $h_n = h(H_n)$ .
- Fact:  $h(X) = \lim_{n \to \infty} \frac{h_n}{n}$ .

+

• Assume horizontal constraint is *symmetric*: *ab* is allowed if and only if *ba* is allowed.

- For any *n*, define  $h_n = h(H_n)$ .
- Fact:  $h(X) = \lim_{n \to \infty} \frac{h_n}{n}$ .

+

- Assume horizontal constraint is symmetric: ab is allowed if and only if ba is allowed.
- Transition matrix  $M_n$ , for  $H_n$ , is symmetric.

- For any *n*, define  $h_n = h(H_n)$ .
- Fact:  $h(X) = \lim_{n \to \infty} \frac{h_n}{n}$ .
- Assume horizontal constraint is *symmetric*: *ab* is allowed if and only if *ba* is allowed.
- Transition matrix  $M_n$ , for  $H_n$ , is symmetric.

• 
$$h_n = \log(\lambda(M_n))$$

+

- For any *n*, define  $h_n = h(H_n)$ .
- Fact:  $h(X) = \lim_{n \to \infty} \frac{h_n}{n}$ .
- Assume horizontal constraint is *symmetric*: *ab* is allowed if and only if *ba* is allowed.
- Transition matrix  $M_n$ , for  $H_n$ , is symmetric.
- $h_n = \log(\lambda(M_n))$

+

 λ(M<sub>n</sub>) is lower bounded by Rayleigh quotient: Let 1<sub>n</sub> denote the vector of all 1's. For any p

$$\lambda((M_n)^p) \geq rac{\mathbf{1}_n (M_n)^p \mathbf{1}_n^{\mathtt{t}}}{\mathbf{1}_n \cdot \mathbf{1}_n^{\mathtt{t}}},$$

where numerator is a count of admissible  $n \times p$  patterns.

$$h(X) = \lim_{n \to \infty} \frac{h_n}{n} = \lim_{n \to \infty} \frac{\log(\lambda(M_n))}{n} \ge \lim_{n \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^p \mathbf{1}_n^t}{\mathbf{1}_n \cdot \mathbf{1}_n^t}$$

□ > < E > < E >

۲

$$h(X) = \lim_{n \to \infty} \frac{h_n}{n} = \lim_{n \to \infty} \frac{\log(\lambda(M_n))}{n} \ge \lim_{n \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^p \mathbf{1}_n^t}{\mathbf{1}_n \cdot \mathbf{1}_n^t}$$

| $\uparrow$   | <br>0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  |
|--------------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| п            | <br>0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
|              | <br>0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |  |
| $\downarrow$ | <br>0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |  |

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

۲

$$h(X) = \lim_{n \to \infty} \frac{h_n}{n} = \lim_{n \to \infty} \frac{\log(\lambda(M_n))}{n} \ge \lim_{n \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^p \mathbf{1}_n^t}{\mathbf{1}_n \cdot \mathbf{1}_n^t}$$

|              | $ $ $\leftarrow$ | _ | _ | _ | _ | р | _ | _ | _ | _ | $\longrightarrow$ |  |
|--------------|------------------|---|---|---|---|---|---|---|---|---|-------------------|--|
| $\uparrow$   | 1                | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0                 |  |
| n            | 0                | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0                 |  |
|              | 0                | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1                 |  |
| $\downarrow$ | 0 0 1            | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0                 |  |

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

۲

$$h(X) = \lim_{n \to \infty} \frac{h_n}{n} = \lim_{n \to \infty} \frac{\log(\lambda(M_n))}{n} \ge \lim_{n \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^p \mathbf{1}_n^t}{\mathbf{1}_n \cdot \mathbf{1}_n^t}$$

|              | $ $ $\leftarrow$ | _ | _ | _ | _ | р | _ | _ | _ | _ | $\longrightarrow$ |
|--------------|------------------|---|---|---|---|---|---|---|---|---|-------------------|
| $\uparrow$   | 1                | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0                 |
| n            | 0                | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0                 |
|              | 0                | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1                 |
| $\downarrow$ | 1                | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0                 |

• Letting  $V_p$  denote a vertical transition matrix of width p,

$$\mathbf{1}_n(M_n)^p\mathbf{1}_n^{\mathrm{t}} = \mathbf{1}_p(V_p)^n\mathbf{1}_p^{\mathrm{t}}$$

(can count patterns generated from left to right or patterns generated from bottom to top)

伺 と く ヨ と く ヨ と …

$$h(X) = \lim_{n \to \infty} \frac{h_n}{n} = \lim_{n \to \infty} \frac{\log(\lambda(M_n))}{n} \ge \lim_{n \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^p \mathbf{1}_n^t}{\mathbf{1}_n \cdot \mathbf{1}_n^t}$$

|            | $ $ $\leftarrow$ | — | — | — | — | р | — | — | — | — | $\longrightarrow$ |  |
|------------|------------------|---|---|---|---|---|---|---|---|---|-------------------|--|
| $\uparrow$ | 1                | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0                 |  |
| n          | 0                | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0                 |  |
|            | 0                | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1                 |  |
| Ļ          | 1                | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0                 |  |

• Letting  $V_p$  denote a vertical transition matrix of width p,

$$\mathbf{1}_n(M_n)^p\mathbf{1}_n^{\mathrm{t}} = \mathbf{1}_p(V_p)^n\mathbf{1}_p^{\mathrm{t}}$$

(can count patterns generated from left to right or patterns generated from bottom to top)

• Thus,

۲

$$h(X) \ge (1/p)(\log(\lambda(V_p)) - \log(\lambda(V_0)))$$

$$h(X) \geq \lim_{m \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^{p+2q} \mathbf{1}_n^t}{\mathbf{1}_n (M_n)^{2q} \mathbf{1}_n^t}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$h(X) \geq \lim_{m \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^{p+2q} \mathbf{1}_n^{\mathsf{t}}}{\mathbf{1}_n (M_n)^{2q} \mathbf{1}_n^{\mathsf{t}}}$$

• Thus,

$$h(X) \geq (1/p)(\log(\lambda(V_{p+2q})) - \log(\lambda(V_{2q})))$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

3

$$h(X) \geq \lim_{m \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^{p+2q} \mathbf{1}_n^{\mathsf{t}}}{\mathbf{1}_n (M_n)^{2q} \mathbf{1}_n^{\mathsf{t}}}$$

• Thus,

$$h(X) \geq (1/p)(\log(\lambda(V_{p+2q})) - \log(\lambda(V_{2q})))$$

• Led to Friedland's (2007) lower bound for  $h(G^{(2)})$ .

伺 ト く ヨ ト く ヨ ト

э

$$h(X) \geq \lim_{m \to \infty} \frac{1}{pn} \log \frac{\mathbf{1}_n (M_n)^{p+2q} \mathbf{1}_n^{\mathsf{t}}}{\mathbf{1}_n (M_n)^{2q} \mathbf{1}_n^{\mathsf{t}}}$$

Thus,

$$h(X) \geq (1/p)(\log(\lambda(V_{p+2q})) - \log(\lambda(V_{2q})))$$

- Led to Friedland's (2007) lower bound for  $h(G^{(2)})$ .
- All above used 1<sub>n</sub> so that the limit above may be computed as the log of largest eigenvalue of a vertical transition matrix.
(Louidor and Marcus, 2009) Improved Rayleigh Method: Replace 1<sub>n</sub> with sequence of vectors y<sub>n</sub> such that y<sub>n</sub>(M<sub>n</sub>)<sup>p</sup>y<sup>t</sup><sub>n</sub> represents weighted counts of patterns; incorporate y<sub>n</sub> into a vertical transition matrix V<sub>p</sub> and find x<sub>p</sub> such that

$$\mathbf{y}_n(M_n)^p \mathbf{y}_n^{\mathrm{t}} = \mathbf{x}_p(\tilde{V}_p)^n \mathbf{x}_p^{\mathrm{t}}$$

 (Louidor and Marcus, 2009) Improved Rayleigh Method: Replace 1<sub>n</sub> with sequence of vectors y<sub>n</sub> such that y<sub>n</sub>(M<sub>n</sub>)<sup>p</sup>y<sup>t</sup><sub>n</sub> represents weighted counts of patterns; incorporate y<sub>n</sub> into a vertical transition matrix V<sub>p</sub> and find x<sub>p</sub> such that

$$\mathbf{y}_n(M_n)^p \mathbf{y}_n^{\mathrm{t}} = \mathbf{x}_p(\tilde{V}_p)^n \mathbf{x}_p^{\mathrm{t}}$$

| Constraint | Old lower bound | New lower bound | Upper bound  |
|------------|-----------------|-----------------|--------------|
| NAK        | 0.4250636891    | 0.4250767745    | 0.4250767997 |
| RWIM       | 0.5350150       | 0.5350151497    | 0.5350428519 |

• For  $G^{(2)}$ ,  $h_n/n$  convergence appears to have error  $\Theta(\frac{1}{n})$ .

A B + A B +

- For  $G^{(2)}$ ,  $h_n/n$  convergence appears to have error  $\Theta(\frac{1}{n})$ .
- Computation of  $h_n$  takes exponential time.

- For  $G^{(2)}$ ,  $h_n/n$  convergence appears to have error  $\Theta(\frac{1}{n})$ .
- Computation of  $h_n$  takes exponential time.
- In the 80's and 90's, data suggested that  $\lim_{n\to\infty} h_{n+1} h_n = h(G^{(2)})$ , and that the error is exponentially small.

- For  $G^{(2)}$ ,  $h_n/n$  convergence appears to have error  $\Theta(\frac{1}{n})$ .
- Computation of  $h_n$  takes exponential time.
- In the 80's and 90's, data suggested that  $\lim_{n\to\infty} h_{n+1} h_n = h(G^{(2)})$ , and that the error is exponentially small.
- However, a proof of convergence of  $h_{n+1} h_n$  for any nondegenerate  $\mathbb{Z}^2$  SFT has been an open problem.

Theorem (Pavlov, 2009): There exist positive constants A and B so that |h<sub>n+1</sub> - h<sub>n</sub> - h(G<sup>(2)</sup>)| < Ae<sup>-Bn</sup> for any n.

- **Theorem** (Pavlov, 2009): There exist positive constants A and B so that  $|h_{n+1} h_n h(G^{(2)})| < Ae^{-Bn}$  for any n.
- Corollary (Pavlov, 2009):  $\exists$  a polynomial p(n) so that  $h(G^{(2)})$  can be approximated to within  $\frac{1}{n}$  in p(n) steps.

- **Theorem** (Pavlov, 2009): There exist positive constants A and B so that  $|h_{n+1} h_n h(G^{(2)})| < Ae^{-Bn}$  for any n.
- Corollary (Pavlov, 2009):  $\exists$  a polynomial p(n) so that  $h(G^{(2)})$  can be approximated to within  $\frac{1}{n}$  in p(n) steps.
- 2-dimensional characterization of set of entropies:

- Theorem (Pavlov, 2009): There exist positive constants A and B so that |h<sub>n+1</sub> h<sub>n</sub> h(G<sup>(2)</sup>)| < Ae<sup>-Bn</sup> for any n.
- Corollary (Pavlov, 2009):  $\exists$  a polynomial p(n) so that  $h(G^{(2)})$  can be approximated to within  $\frac{1}{n}$  in p(n) steps.
- 2-dimensional characterization of set of entropies:
  - **Theorem** (Hochman and Meyerovitch, 2007): A number *h* is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals  $\frac{Pn}{q_n}$  which approach *h* from above.

- Theorem (Pavlov, 2009): There exist positive constants A and B so that |h<sub>n+1</sub> h<sub>n</sub> h(G<sup>(2)</sup>)| < Ae<sup>-Bn</sup> for any n.
- Corollary (Pavlov, 2009):  $\exists$  a polynomial p(n) so that  $h(G^{(2)})$  can be approximated to within  $\frac{1}{n}$  in p(n) steps.
- 2-dimensional characterization of set of entropies:
  - **Theorem** (Hochman and Meyerovitch, 2007): A number *h* is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals  $\frac{p_n}{q_n}$  which approach *h* from above.
  - Strikingly different from Lind's 1-dimensional characterization.

通 と イ ヨ と イ ヨ と

- Theorem (Pavlov, 2009): There exist positive constants A and B so that |h<sub>n+1</sub> h<sub>n</sub> h(G<sup>(2)</sup>)| < Ae<sup>-Bn</sup> for any n.
- Corollary (Pavlov, 2009):  $\exists$  a polynomial p(n) so that  $h(G^{(2)})$  can be approximated to within  $\frac{1}{n}$  in p(n) steps.
- 2-dimensional characterization of set of entropies:
  - **Theorem** (Hochman and Meyerovitch, 2007): A number *h* is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals  $\frac{p_n}{q_n}$  which approach *h* from above.
  - Strikingly different from Lind's 1-dimensional characterization.
  - For a typical such entropy,  $p_n/q_n \rightarrow h$  very slowly and there is no indication of error size,  $(p_n/q_n h)$ .

伺い イラト イラト

- Theorem (Pavlov, 2009): There exist positive constants A and B so that |h<sub>n+1</sub> h<sub>n</sub> h(G<sup>(2)</sup>)| < Ae<sup>-Bn</sup> for any n.
- Corollary (Pavlov, 2009):  $\exists$  a polynomial p(n) so that  $h(G^{(2)})$  can be approximated to within  $\frac{1}{n}$  in p(n) steps.
- 2-dimensional characterization of set of entropies:
  - **Theorem** (Hochman and Meyerovitch, 2007): A number *h* is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals  $\frac{Pn}{q_n}$  which approach *h* from above.
  - Strikingly different from Lind's 1-dimensional characterization.
  - For a typical such entropy,  $p_n/q_n \rightarrow h$  very slowly and there is no indication of error size,  $(p_n/q_n h)$ .
  - Thus,  $h(G^{(2)})$  is much "nicer" than the typical entropy.

高 と く ヨ と く ヨ と

• Introduce a stationary process  $\mu_n$  on each  $H_n$  of maximal measure-theoretic (Shannon) entropy:  $h_{\mu_n} = h(H_n)$ .

- Introduce a stationary process  $\mu_n$  on each  $H_n$  of maximal measure-theoretic (Shannon) entropy:  $h_{\mu_n} = h(H_n)$ .
- Decompose h<sub>μn</sub> into a sum of n conditional measure-theoretic entropies, row by row.

- 4 E b 4 E b

- Introduce a stationary process  $\mu_n$  on each  $H_n$  of maximal measure-theoretic (Shannon) entropy:  $h_{\mu_n} = h(H_n)$ .
- Decompose h<sub>μn</sub> into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:

- 4 B b 4 B b

- Introduce a stationary process  $\mu_n$  on each  $H_n$  of maximal measure-theoretic (Shannon) entropy:  $h_{\mu_n} = h(H_n)$ .
- Decompose h<sub>μn</sub> into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
  - top n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$

- Introduce a stationary process μ<sub>n</sub> on each H<sub>n</sub> of maximal measure-theoretic (Shannon) entropy: h<sub>μn</sub> = h(H<sub>n</sub>).
- Decompose  $h_{\mu_n}$  into a sum of *n* conditional measure-theoretic entropies, row by row.
- Pair off:
  - top n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$
  - bottom n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$

- Introduce a stationary process μ<sub>n</sub> on each H<sub>n</sub> of maximal measure-theoretic (Shannon) entropy: h<sub>μn</sub> = h(H<sub>n</sub>).
- Decompose h<sub>μn</sub> into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
  - top n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$
  - bottom n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$
  - the middle row of  $h_{\mu_{n+1}}$  remains.

- Introduce a stationary process  $\mu_n$  on each  $H_n$  of maximal measure-theoretic (Shannon) entropy:  $h_{\mu_n} = h(H_n)$ .
- Decompose h<sub>μn</sub> into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
  - top n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$
  - bottom n/2 rows of  $h_{\mu_{n+1}}$  and  $h_{\mu_n}$
  - the middle row of  $h_{\mu_{n+1}}$  remains.



• differences between corresponding rows decay exponentially

→ 3 → < 3</p>

- differences between corresponding rows decay exponentially
- middle row converges exponentially

< ∃ >

- differences between corresponding rows decay exponentially
- middle row converges exponentially
- All exponential decay/convergence statements come from comparison with an associated *percolation process* (vandenBerg-Maes (1994)):

- differences between corresponding rows decay exponentially
- middle row converges exponentially
- All exponential decay/convergence statements come from comparison with an associated *percolation process* (vandenBerg-Maes (1994)):
  - On the  $Z^2$  lattice, a site is "open" with probability p and closed with probability 1 p, independent from site to site.

- differences between corresponding rows decay exponentially
- middle row converges exponentially
- All exponential decay/convergence statements come from comparison with an associated *percolation process* (vandenBerg-Maes (1994)):
  - On the  $Z^2$  lattice, a site is "open" with probability p and closed with probability 1 p, independent from site to site.
  - For  $p < p_c$ , the critical probability, the probability of an "open" path from the origin to the boundary of an  $n \times n$  square decays exponentially fast in n.

伺 ト イ ヨ ト イ ヨ ト

Theorem (Marcus and Pavlov, 2009):

• Exponential approximations (differences of strip entropies) to entropy for a class of 2-dimensional SFT's (generalizing Pavlov's result for  $G^{(2)}$ ).

• • = • • = •

#### Theorem (Marcus and Pavlov, 2009):

- Exponential approximations (differences of strip entropies) to entropy for a class of 2-dimensional SFT's (generalizing Pavlov's result for  $G^{(2)}$ ).
- Exponential approximations (differences of strip entropies) to measure-theoretic entropy for a class of Markov Random Fields (2-dimensional analogue of 1-dimensional Markov chain and probabilistic analogue of 2-dimensional SFT)

伺 ト く ヨ ト く ヨ ト

• A 1 dimensional sofic shift is the set of all bi-infinite sequences obtained from a labelled finite directed graph.

伺 ト く ヨ ト く ヨ ト

- A 1 dimensional sofic shift is the set of all bi-infinite sequences obtained from a labelled finite directed graph.
- Examples: All 1-dimensional SFT's.

同 ト イ ヨ ト イ ヨ ト

- A 1 dimensional sofic shift is the set of all bi-infinite sequences obtained from a labelled finite directed graph.
- Examples: All 1-dimensional SFT's.
- Example: (a sofic, non-SFT shift) <u>The EVEN Shift</u>  $A = \{0, 1\}$ :



### More examples of 1-dimensional sofic, non-SFT, shifts

• The ODD Shift  $A = \{0, 1\}$ :



### More examples of 1-dimensional sofic, non-SFT, shifts

• The ODD Shift  $A = \{0, 1\}$ :





 $w_1 \dots w_m \in B_m(X) \iff \text{for all } 1 \le s \le t \le m, \left| \sum_{i=s}^t w_i \right| \le b$ 

 A 2-dimensional sofic shift is the set of all configurations on the entire Z<sup>2</sup> lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.

- A 2-dimensional sofic shift is the set of all configurations on the entire Z<sup>2</sup> lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:

- A 2-dimensional sofic shift is the set of all configurations on the entire Z<sup>2</sup> lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:
  - All 2-dimensional SFT's.

- A 2-dimensional sofic shift is the set of all configurations on the entire Z<sup>2</sup> lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:
  - All 2-dimensional SFT's.
  - $\mathrm{EVEN}^{\otimes^2}$ : all rows and columns satisfy the 1-dimensional EVEN shift.
- A 2-dimensional sofic shift is the set of all configurations on the entire Z<sup>2</sup> lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:
  - All 2-dimensional SFT's.
  - $EVEN^{\otimes^2}$ : all rows and columns satisfy the 1-dimensional EVEN shift.
  - CHG(b)<sup>⊗<sup>2</sup></sup>: all rows and columns satisfy the 1-dimensional CHG(b) shift.

• (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts  $\mathrm{EVEN}^{\otimes^2}$  and  $\mathrm{CHG}(3)^{\otimes^2}$ :

| Constraint           | Old lower bound | New lower bound | Upper bound  |
|----------------------|-----------------|-----------------|--------------|
| EVEN <sup>⊗2</sup>   | 0.4385027973    | 0.4402086447    | 0.4452873312 |
| CHG(3) <sup>⊗2</sup> | 0.4210209862    | 0.4222689819    | 0.5328488954 |

 (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts EVEN<sup>⊗<sup>2</sup></sup> and CHG(3)<sup>⊗<sup>2</sup></sup>:

| Constraint           | Old lower bound | New lower bound | Upper bound  |
|----------------------|-----------------|-----------------|--------------|
| EVEN <sup>⊗2</sup>   | 0.4385027973    | 0.4402086447    | 0.4452873312 |
| CHG(3) <sup>⊗2</sup> | 0.4210209862    | 0.4222689819    | 0.5328488954 |

• Theorem (Louidor and Marcus, 2009): For all dimensions D,

 (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts EVEN<sup>⊗<sup>2</sup></sup> and CHG(3)<sup>⊗<sup>2</sup></sup>:

| Constraint           | Old lower bound | New lower bound | Upper bound  |
|----------------------|-----------------|-----------------|--------------|
| EVEN <sup>⊗2</sup>   | 0.4385027973    | 0.4402086447    | 0.4452873312 |
| CHG(3) <sup>⊗2</sup> | 0.4210209862    | 0.4222689819    | 0.5328488954 |

• Theorem (Louidor and Marcus, 2009): For all dimensions D,

• 
$$h(ODD^{\otimes^{D}}) = 1/2.$$

• (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts  $\mathrm{EVEN}^{\otimes^2}$  and  $\mathrm{CHG}(3)^{\otimes^2}$ :

| Constraint           | Old lower bound | New lower bound | Upper bound  |
|----------------------|-----------------|-----------------|--------------|
| EVEN <sup>⊗2</sup>   | 0.4385027973    | 0.4402086447    | 0.4452873312 |
| CHG(3) <sup>⊗2</sup> | 0.4210209862    | 0.4222689819    | 0.5328488954 |

• Theorem (Louidor and Marcus, 2009): For all dimensions D,

• 
$$h(\text{ODD}^{\otimes^{D}}) = 1/2.$$

• 
$$h(CHG(2)^{\otimes^{D}}) = 1/2^{d}$$
.

- $X = CHG(2)^{\otimes D}$ .
- D=2. Consider the two "checkerboard" 2×2 arrays,  $\Gamma^{(0)}$ ,  $\Gamma^{(1)}$

$$\Gamma^{(0)} = \begin{pmatrix} + & - \\ - & + \end{pmatrix} \qquad \qquad \Gamma^{(1)} = \begin{pmatrix} - & + \\ + & - \end{pmatrix}$$

• Any tiling consisting of  $n \times n$  copies of  $\Gamma^{(0)}$  or  $\Gamma^{(1)}$  is a  $2n \times 2n$  array that satisfies X.

$$\begin{pmatrix} \Gamma^{(i_{1,1})} & \Gamma^{(i_{1,2})} & \dots & \Gamma^{(i_{1,n})} \\ \Gamma^{(i_{2,1})} & \Gamma^{(i_{2,2})} & \dots & \Gamma^{(i_{2,n})} \\ \vdots & \vdots & \ddots & \vdots \\ \Gamma^{(i_{n,1})} & \Gamma^{(i_{n,2})} & \dots & \Gamma^{(i_{n,n})} \end{pmatrix} , \quad i_{s,t} \in \{0, 1\}$$

• Generally, for arbitrary *D*, consider the two 2×2×...×2 checkerboard arrays:

$$\Gamma_{i_1,...,i_D}^{(0)} = (-1)^{\sum i_j} \qquad \Gamma_{i_1,...,i_D}^{(1)} = (-1)^{1+\sum i_j}$$

• Any tiling of  $n \times n \times ... \times n$  copies of  $\Gamma^{(0)}$  or  $\Gamma^{(1)}$  is a  $2n \times 2n \times ... \times 2n$  array that satisfies X.

$$\implies |B_{2n \times 2n \times ... \times 2n}(X)| \ge 2^{n^{D}}$$
$$\implies \frac{\log |B_{2n \times 2n \times ... \times 2n}(X)|}{(2n)^{D}} \ge \frac{n^{D}}{(2n)^{D}}$$
$$\implies h(X) \ge \frac{1}{2^{D}}.$$

• For *D*=1 every legal word of *X* is essentially such a tiling of checkerboard arrays:

. . .

#### Lemma

$$x_0...x_{n-1}$$
 satisfies CHG(2), iff  
 $x_i=-x_{i+1}$  for all even  $i \in \{0,...,n-2\}$  or  
 $x_i=-x_{i+1}$  for all odd  $i \in \{0,...,n-2\}$ .

| <i>x</i> 0 | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> 3 | <i>x</i> 4 |
|------------|-----------------------|-----------------------|------------|------------|
|            |                       |                       |            |            |

| <i>x</i> <sub><i>n</i>-3</sub> | <i>x</i> <sub><i>n</i>-2</sub> | $x_{n-1}$ |
|--------------------------------|--------------------------------|-----------|
|                                |                                |           |

同 ト イ ヨ ト イ ヨ ト

• For *D*=1 every legal word of *X* is essentially such a tiling of checkerboard arrays:

#### Lemma

$$x_0...x_{n-1}$$
 satisfies CHG(2), iff  
 $x_i=-x_{i+1}$  for all even  $i \in \{0,...,n-2\}$  or  
 $x_i=-x_{i+1}$  for all odd  $i \in \{0,...,n-2\}$ .

| <i>x</i> 0 | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | Х3 | Х4 | <br><i>x</i> <sub><i>n</i>-3</sub> | <i>x</i> <sub><i>n</i>-2</sub> | <i>x</i> <sub><i>n</i>-1</sub> |
|------------|-----------------------|-----------------------|----|----|------------------------------------|--------------------------------|--------------------------------|
|            |                       |                       |    |    |                                    |                                |                                |

/□ ▶ < 글 ▶ < 글

• For *D*=1 every legal word of *X* is essentially such a tiling of checkerboard arrays:

#### Lemma

$$x_0...x_{n-1}$$
 satisfies CHG(2), iff  
 $x_i=-x_{i+1}$  for all even  $i \in \{0,...,n-2\}$  or  
 $x_i=-x_{i+1}$  for all odd  $i \in \{0,...,n-2\}$ .

| <i>x</i> 0 | <i>x</i> 1 | <i>x</i> <sub>2</sub> | <i>x</i> 3 | <i>X</i> 4 | <br><i>x</i> <sub>n-3</sub> | <i>x</i> <sub>n-2</sub> | <i>x</i> <sub><i>n</i>-1</sub> |
|------------|------------|-----------------------|------------|------------|-----------------------------|-------------------------|--------------------------------|
|            |            |                       |            |            |                             |                         |                                |

♬▶ ◀ 늘 ▶ ◀

• For *D*=1 every legal word of *X* is essentially such a tiling of checkerboard arrays:

#### Lemma

$$x_0...x_{n-1}$$
 satisfies CHG(2), iff  
 $x_i=-x_{i+1}$  for all even  $i \in \{0,...,n-2\}$  or  
 $x_i=-x_{i+1}$  for all odd  $i \in \{0,...,n-2\}$ .

| ×o | ×1 | ×2 | X3 | X4 |
|----|----|----|----|----|
|    | •  | °  | 0  | °  |
|    |    |    |    |    |

ゆ ト イヨ ト イヨト

. . .

• For *D*=1 every legal word of *X* is essentially such a tiling of checkerboard arrays:

#### Lemma

$$x_0...x_{n-1}$$
 satisfies CHG(2), iff  
 $x_i=-x_{i+1}$  for all even  $i \in \{0,...,n-2\}$  or  
 $x_i=-x_{i+1}$  for all odd  $i \in \{0,...,n-2\}$ .



Phase-0 sequence 
$$T_0(i) = \begin{cases} i+1 & \text{if } i \text{ is even} \\ i-1 & \text{if } i \text{ is odd} \end{cases}$$

伺 と く ヨ と く ヨ と

• For *D*=1 every legal word of *X* is essentially such a tiling of checkerboard arrays:

#### Lemma

$$x_0...x_{n-1}$$
 satisfies CHG(2), iff  
 $x_i=-x_{i+1}$  for all even  $i \in \{0,...,n-2\}$  or  
 $x_i=-x_{i+1}$  for all odd  $i \in \{0,...,n-2\}$ .



Phase-1 sequence 
$$T_1(i) = \begin{cases} i-1 & \text{if } i \text{ is even} \\ i+1 & \text{if } i \text{ is odd} \end{cases}$$

Image: A Image: A

• Proof:



- 4 同 6 4 日 6 4 日 6

• Proof:



• Unfortunately, the previous Lemma does not generalize to larger dimension:



- Γ∈B<sub>n×n×...×n</sub>(X) iff every row of Γ is either a phase-0 or a phase-1 sequence.
- $\mathbf{r} = (r_i)$ : binary vector with an entry for each row of  $\{0, \dots, n-1\}^D$ .
- $A(\mathbf{r}) = \{\Gamma \in B_{n \times n \times ... \times n}(X) : \text{ row } i \text{ of } \Gamma \text{ has phase } r_i\}$

$$\stackrel{\text{Lemma } 1}{\Longrightarrow} B_{n \times n \times ... \times n}(X) = \bigcup_{\mathbf{r}} A(\mathbf{r}).$$

• Example.D = 2:

| 5 | ۰ | • | ۰ | ۰ | ۰ | • |
|---|---|---|---|---|---|---|
| 4 | ۰ | ۰ | ۰ | • | ۰ | • |
| 3 | ٥ | ۰ | ٥ | ۰ | ۰ | ٥ |
| 2 | 0 | 0 | 0 | 0 | ٥ | 0 |
| 1 | 0 | 0 | 0 | • | 0 | 0 |
| 0 | 0 | • | • | • | • | • |
|   | 0 | 1 | 2 | 3 | 4 | 5 |

- ∢ ≣ ▶

A 10

• Example.D = 2:



- 王

.⊒ . ►

• Example.D = 2:



< ∃ →

3

• Example.D = 2:



P

< ∃ →

3

• Example.D = 2:



P

< ∃ →

-

• Example.D = 2:



∃ → < ∃</p>

• Example.D = 2:



3

э

• Example.D = 2:



• Example.D = 2:



• Example.D = 2:



< ∃ →

э
• Example.D = 2:



 $|A(\mathbf{r})| = 2^{(\# \text{ of connected components})}.$ 

- ₹ 🖬 🕨





- For a site  $\mathbf{x} \in \{0, 1, \dots, n-1\}^D$ :
- $\phi(\mathbf{r}, i, \mathbf{x}) =$  "phase of row passing through  $\mathbf{x}$  in direction *i*."

4 E b



- For a site  $\mathbf{x} \in \{0, 1, ..., n-1\}^D$ :
- $\phi(\mathbf{r}, i, \mathbf{x}) =$  "phase of row passing through  $\mathbf{x}$  in direction *i*."
- D "match" functions  $M_{\mathbf{r},1}, \ldots, M_{\mathbf{r},D}$ .  $M_{\mathbf{r},i} : \{0, 1, \ldots, n-1\}^D \rightarrow \mathbb{Z}^D$ .

$$M_{\mathbf{r},i}(\mathbf{x}) = (x_1, ..., x_{i-1}, T_{\phi(\mathbf{r},i,\mathbf{X})}(x_i), x_{i+1}, ..., x_D), \\ \mathbf{x} = (x_1, ..., x_D).$$

4 E b



- For a site  $\mathbf{x} \in \{0, 1, ..., n-1\}^D$ :
- $\phi(\mathbf{r}, i, \mathbf{x}) =$  "phase of row passing through  $\mathbf{x}$  in direction *i*."
- D "match" functions  $M_{\mathbf{r},1}, \ldots, M_{\mathbf{r},D}$ .  $M_{\mathbf{r},i} : \{0, 1, \ldots, n-1\}^D \rightarrow \mathbb{Z}^D$ .

$$M_{\mathbf{r},i}(\mathbf{x}) = (x_1, ..., x_{i-1}, T_{\phi(\mathbf{r},i,\mathbf{X})}(x_i), x_{i+1}, ..., x_D), \\ \mathbf{x} = (x_1, ..., x_D).$$

• 
$$G_{\mathbf{r}} = (V = \{0, 1, ..., n-1\}^{D}, E).$$
  
**u** - **v**  $\in E$  iff **v** =  $M_{\mathbf{r},i}(\mathbf{u}).$ 

4 E b



- For a site  $\mathbf{x} \in \{0, 1, ..., n-1\}^D$ :
- $\phi(\mathbf{r}, i, \mathbf{x}) =$  "phase of row passing through  $\mathbf{x}$  in direction *i*."
- D "match" functions  $M_{\mathbf{r},1}, \ldots, M_{\mathbf{r},D}$ .  $M_{\mathbf{r},i} : \{0, 1, \ldots, n-1\}^D \rightarrow \mathbb{Z}^D$ .

$$M_{\mathbf{r},i}(\mathbf{x}) = (x_1, \ldots, x_{i-1}, T_{\phi(\mathbf{r},i,\mathbf{X})}(x_i), x_{i+1}, \ldots, x_D),$$
  
$$\mathbf{x} = (x_1, \ldots, x_D).$$

•  $G_{\mathbf{r}} = (V = \{0, 1, ..., n-1\}^{D}, E).$ **u** - **v**  $\in E$  iff **v** =  $M_{\mathbf{r},i}(\mathbf{u}).$ 

•  $|A(\mathbf{r})| = 2^{(\# \text{ of connected components of } G_{\mathbf{r}})}$ .

伺 と く ヨ と く ヨ と

• D=2.

3

- *D*=2.
  - For  $(x, y) \in \{1, 2, \dots, n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

伺 ト イ ヨ ト イ ヨ ト

-

- *D*=2.
  - For  $(x, y) \in \{1, 2, ..., n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

• Are all in the connected component of (x, y).

b) a (B) b) a (B) b)

- *D*=2.
  - For  $(x, y) \in \{1, 2, ..., n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

- Are all in the connected component of (x, y).
- Are all distinct.

伺 と く ヨ と く ヨ と

- *D*=2.
  - For  $(x, y) \in \{1, 2, ..., n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D:
  - For  $\mathbf{x} \in \{1, 2, \dots, n-2\}^D$  (not on the "border"), the  $2^D$  entries:

$$\begin{split} & M_{\mathbf{r},i_1}(M_{\mathbf{r},i_2}(\ldots(M_{\mathbf{r},i_s}(\mathbf{x}))\ldots)),\\ & \text{For each } \{i_1,\ldots,i_s\} \subseteq \{1,2,\ldots,D\}, \ 1 \leq i_1 < i_2 < \ldots < i_s \leq D \end{split}$$

A + + = + + = + - =

- *D*=2.
  - For  $(x, y) \in \{1, 2, ..., n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D:
  - For  $\mathbf{x} \in \{1, 2, \dots, n-2\}^D$  (not on the "border"), the  $2^D$  entries:

$$\begin{split} & M_{\mathbf{r},i_1}(M_{\mathbf{r},i_2}(\dots(M_{\mathbf{r},i_s}(\mathbf{x}))\dots)), \\ & \text{For each } \{i_1,\dots,i_s\} \subseteq \{1,2,\dots,D\}, \ 1 \leq i_1 < i_2 < \dots < i_s \leq D \end{split}$$

• Are all in the connected component of  $\mathbf{x}$ .

伺下 イヨト イヨト ニヨ

- *D*=2.
  - For  $(x, y) \in \{1, 2, \dots, n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D:
  - For  $\mathbf{x} \in \{1, 2, \dots, n-2\}^D$  (not on the "border"), the  $2^D$  entries:

$$\begin{split} & M_{\mathbf{r},i_1}(M_{\mathbf{r},i_2}(\dots(M_{\mathbf{r},i_s}(\mathbf{x}))\dots)),\\ & \text{For each } \{i_1,\dots,i_s\} \subseteq \{1,2,\dots,D\}, \ 1 \leq i_1 < i_2 < \dots < i_s \leq D \end{split}$$

- Are all in the connected component of  $\mathbf{x}$ .
- Are all distinct.

- *D*=2.
  - For  $(x, y) \in \{1, 2, \dots, n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D:
  - For  $\mathbf{x} \in \{1, 2, \dots, n-2\}^D$  (not on the "border"), the  $2^D$  entries:

$$\begin{split} & M_{\mathbf{r},i_1}(M_{\mathbf{r},i_2}(\dots(M_{\mathbf{r},i_s}(\mathbf{x}))\dots)),\\ & \text{For each } \{i_1,\dots,i_s\} \subseteq \{1,2,\dots,D\}, \ 1 \leq i_1 < i_2 < \dots < i_s \leq D \end{split}$$

- Are all in the connected component of **x**.
- Are all distinct.
- → Any component having a vertex in the interior has at least 2<sup>D</sup> vertices.

向下 イヨト イヨト ニヨ

- *D*=2.
  - For  $(x, y) \in \{1, 2, \dots, n-2\}^2$  (not on the "border"):

 $(x, y), M_{r,1}(x, y), M_{r,2}(x, y), M_{r,1}(M_{r,2}(x, y))$ 

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D:
  - For  $\mathbf{x} \in \{1, 2, \dots, n-2\}^D$  (not on the "border"), the  $2^D$  entries:

$$\begin{split} & M_{\mathbf{r},i_1}(M_{\mathbf{r},i_2}(\ldots(M_{\mathbf{r},i_s}(\mathbf{x}))\ldots)), \\ & \text{For each } \{i_1,\ldots,i_s\} \subseteq \{1,2,\ldots,D\}, \ 1 \leq i_1 < i_2 < \ldots < i_s \leq D \end{split}$$

- Are all in the connected component of **x**.
- Are all distinct.
- $\implies$  Any component having a vertex in the interior has at least  $2^D$  vertices.
- $\implies$  There are at most  $n^D/2^D$  such components.

医下颌 医下颌

$$\implies \begin{pmatrix} \# \text{ of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq n^D / 2^D$$

伺 ト く ヨ ト く ヨ ト

$$\implies \begin{pmatrix} \# & \text{of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq n^D/2^D$$
$$\begin{pmatrix} \# & \text{of components} \\ \text{not having a vertex} \\ \text{in } \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq \begin{pmatrix} \# & \text{of vertices not in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} = n^D - (n-2)^D$$

伺 ト く ヨ ト く ヨ ト

$$\implies \begin{pmatrix} \# & \text{of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq n^D/2^D$$
$$\begin{pmatrix} \# & \text{of components} \\ \text{not having a vertex} \\ \text{in } \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq \begin{pmatrix} \# & \text{of vertices not in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} = n^D - (n-2)^D$$
$$\implies (\text{Total } \# & \text{of components}) \leq n^D/2^D + n^D - (n-2)^D.$$

伺 ト く ヨ ト く ヨ ト

$$\implies \begin{pmatrix} \# & \text{of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \le n^D/2^D \\ \begin{pmatrix} \# & \text{of components} \\ \text{not having a vertex} \\ \text{in } \{1, 2, \dots, n-2\}^D \end{pmatrix} \le \begin{pmatrix} \# & \text{of vertices not in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} = n^D - (n-2)^D \\ \implies (\text{Total } \# & \text{of components}) \le n^D/2^D + n^D - (n-2)^D. \\ \implies |A(\mathbf{r})| = 2^{(\text{Total } \# & \text{of components})} \le 2^{n^D/2^D + n^D - (n-2)^D}$$

伺 ト く ヨ ト く ヨ ト

$$\Rightarrow \begin{pmatrix} \# & \text{of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq n^D/2^D \\ \begin{pmatrix} \# & \text{of components} \\ \text{not having a vertex} \\ \text{in } \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq \begin{pmatrix} \# & \text{of vertices not in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} = n^D - (n-2)^D \\ \Rightarrow & (\text{Total } \# & \text{of components}) \leq n^D/2^D + n^D - (n-2)^D. \\ \Rightarrow & |A(\mathbf{r})| = 2^{(\text{Total } \# & \text{of components})} \leq 2^{n^D/2^D + n^D - (n-2)^D} \\ \Rightarrow & |B_{n \times n \times \dots \times n}(X)| \leq \sum_{\mathbf{r}} |A(\mathbf{r})| \leq 2^{Dn^{D-1}} 2^{n^D/2^D + n^D - (n-2)^D}$$

伺 ト く ヨ ト く ヨ ト

$$\Rightarrow \begin{pmatrix} \# & \text{of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \le n^D/2^D \\ \begin{pmatrix} \# & \text{of components} \\ \text{not having a vertex} \\ \text{in} \{1, 2, \dots, n-2\}^D \end{pmatrix} \le \begin{pmatrix} \# & \text{of vertices not in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} = n^D - (n-2)^D \\ \Rightarrow & (\text{Total } \# & \text{of components}) \le n^D/2^D + n^D - (n-2)^D. \\ \Rightarrow & |A(\mathbf{r})| = 2^{(\text{Total } \# & \text{of components})} \le 2^{n^D/2^D + n^D - (n-2)^D} \\ \Rightarrow & |B_{n \times n \times \dots \times n}(X)| \le \sum_{\mathbf{r}} |A(\mathbf{r})| \le 2^{Dn^{D-1}} 2^{n^D/2^D + n^D - (n-2)^D} \\ \Rightarrow & |B_{n \times n \times \dots \times n}(X)| \le 2^{n^D/2^D + O(n^{D-1})}$$

伺 ト く ヨ ト く ヨ ト

$$\Rightarrow \begin{pmatrix} \# \text{ of components} \\ \text{having a vertex in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq n^D/2^D \\ \begin{pmatrix} \# \text{ of components} \\ \text{not having a vertex} \\ \text{in } \{1, 2, \dots, n-2\}^D \end{pmatrix} \leq \begin{pmatrix} \# \text{ of vertices not in} \\ \{1, 2, \dots, n-2\}^D \end{pmatrix} = n^D - (n-2)^D \\ \Rightarrow (\text{Total } \# \text{ of components}) \leq n^D/2^D + n^D - (n-2)^D \\ \Rightarrow |A(\mathbf{r})| = 2^{(\text{Total } \# \text{ of components})} \leq 2^{n^D/2^D + n^D - (n-2)^D} \\ \Rightarrow |B_{n \times n \times \dots \times n}(X)| \leq \sum_{\mathbf{r}} |A(\mathbf{r})| \leq 2^{Dn^{D-1}} 2^{n^D/2^D + n^D - (n-2)^D} \\ \Rightarrow |B_{n \times n \times \dots \times n}(X)| \leq 2^{n^D/2^D + O(n^{D-1})} \\ \Rightarrow h(X) \leq 1/2^D \quad \Box$$

伺 ト く ヨ ト く ヨ ト

 $T: \Omega \to \Omega$ :

伺 ト く ヨ ト く ヨ ト



$$T(x) \longleftrightarrow \dots 11.001\dots$$



$$T(x) \longleftrightarrow \dots 11.001\dots$$



$$\begin{array}{cccc} x & \longleftrightarrow & \dots 11.001 \dots \\ T(x) & \longleftrightarrow & \dots 110.01 \dots \end{array}$$

 $\Omega$  replaced by an SFT X



$$\begin{array}{cccc} x & \longleftrightarrow & \dots 11.001 \dots \\ T(x) & \longleftrightarrow & \dots 110.01 \dots \end{array}$$

 $\Omega$  replaced by an SFT X T replaced by the shift mapping.