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1-dimensional Shifts of finite type

A 1-dimensional shift of finite type (SFT) is defined by:

A finite alphabet A.
A finite set F of finite words,

The SFT X is the set of all elements of AZ (bi-infinite
sequences) which do not contain any of the words from F .

An SFT is a “constraint” on the set of allowable words.
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Examples

Example 1: the golden mean shift, (G (1)), A = {0, 1}:
F = {11}.

Typical allowed sequence: . . . 0 1 0 0 0 1 0 1 0 0 0 0 1 0 . . .

1

0

0

Example 2: the run-length-limited shift (RLL(d , k)),
A = {0, 1}

F = {11, 101, 1001, . . . , 10d−11, 0k+1}

�
��0 �
��1 �
��d−1 �
��d �
��d+1 �
��k−1 �
��k-0 0 ··· -0 -0 -0 0 ··· -0 -0

�6 
?1
?1
?1
?1

······
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Motivation for 1-dimensional SFT’s: Constraints on data
sequences recorded in storage devices

Magnetic recording:

Intersymbol interference:

Hence an RLL constraint on allowed stored sequences.
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Encoding

Modulation encoder: encodes arbitrary data sequences into X .
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Topological entropy of 1-D SFT’s ( a.k.a. entropy,
noiseless capacity)

A word w is admissible if it contains no sub-word from F .

Let Bn(X ) be the set of admissible words of length n.

Define the entropy: h(X ) = limn→∞
log |Bn(X )|

n

The entropy is the maximal rate of encoder from the set of all
arbitrary data sequences into X .
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Computation of entropy

At the expense of enlarging the alphabet, we can assume that
F consists of words of length 2, and so the SFT is defined by
nearest neighbours.

In this case, one constructs a 0-1 transition matrix M which
determines the allowed neighbours and h(X ) = log λ(M),
where λ(M) is the largest eigenvalue of M.

Example:

X : the golden mean shift,

M = [ 11
10 ], λ = 1+

√
5

2 , and h(X ) = log 1+
√

5
2 ≈ .69.

So, we can compute entropies of 1-dimensional SFT’s.

And we can characterize the set of numbers that occur as
entropies of 1-dimensional SFT’s:

Theorem (Lind, 1983)): A number h is the entropy of a
one-dimensional SFT if and only if h is the log of a root of a
Perron number (special kind of algebraic integer).
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2-dimensional Shifts of finite type

A 2-dimensional shift of finite type (SFT) is defined by:

A finite alphabet A.
A finite set F of finite patterns on rectangles.

The SFT X is defined to be all elements of AZ2
(i.e.,

configurations on the entire Z 2 lattice) which do not contain
any of the words from F .
Example 1: the two-dimensional golden mean shift G (2):
A = {0, 1}, F = {any pair of adjacent 1′s} = { 11 , 1

1 }.
Typical allowed configuration:

· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· 0 1 0 0 0 0 0 0 1 0 0 0 1 0 ·
· 0 0 1 0 0 1 0 1 0 0 1 0 0 0 ·
· 0 0 0 1 0 0 0 0 0 1 0 1 0 0 ·
· 0 1 0 0 0 1 0 1 0 0 0 0 1 0 ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
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Motivation for 2-dimensional SFT’s: Holographic storage
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More examples of 2-dimensional SFT’s

NAK (Non-attacking kings): F = { 11 , 1
1 ,

1
1 ,

1
1 }.
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More examples of 2-dimensional SFT’s

RWIM (Read/Write Isolated Memory): F = { 11 , 1
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1
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Entropy of 2-dimensional SFT’s

A pattern w on a rectangle of any size is admissible if it
contains no sub-pattern from F .

Let Bn×n(X ) be the set of admissible patterns of size n × n.

Define the entropy h(X ) = limn→∞
log |Bn×n(X )|

n2

At the expense of enlarging the alphabet, we can assume that
F consists of patterns on 1× 2 and 2× 1 rectangles, i.e.
nearest neighbours.

This yields horizontal and vertical transition matrices.

However, there is no known way to compute entropy from
these matrices.

exact value of entropy is known for only a handful of 2-D
SFT’s (unknown even for G (2)).

Even worse: given F , it is algorithmically undecidable whether
or not X = ∅!
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Computing entropy

Holy Grail: an exact formula for the entropy of a
2-dimensional SFT, in particular G (2).

If not an exact formula, try to efficiently estimate h(G (2)).

Current best estimates (Friedland, 2007):
0.58789116177534 ≤ h(G (2)) ≤ 0.58789116177535.
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Strip systems

Define Hn to be the set of configurations on an n-high strip
which do not include any of the forbidden neighbours in F .

· · · · · · · · · · · · · · · · ·
↑ . . . 0 1 0 0 0 0 0 0 1 0 0 0 1 0 . . .
n . . . 0 0 1 0 0 1 0 1 0 0 1 0 0 0 . . .
| . . . 0 0 0 1 0 0 0 0 0 1 0 1 0 0 . . .
↓ . . . 0 1 0 0 0 1 0 1 0 0 0 0 1 0 . . .

·· · · · · · · · · · · · · · · ·

Then Hn itself can be thought of as a 1-dimensional SFT:

Alphabet An: set of n-letter columns

an
...
a2
a1

such that each ai
ai−1 is

admissible.

The pair

an
...
a2
a1

bn
...
b2

b1

may appear if and only if each aibi is

admissible.
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Lower Bounds on Entropy, via strip systems

For any n, define hn = h(Hn).

Fact: h(X ) = limn→∞
hn
n .

Assume horizontal constraint is symmetric: ab is allowed if
and only if ba is allowed.

Transition matrix Mn, for Hn, is symmetric.

hn = log(λ(Mn))

λ(Mn) is lower bounded by Rayleigh quotient:
Let 1n denote the vector of all 1’s. For any p

λ((Mn)p) ≥ 1n(Mn)p1t
n

1n · 1t
n

,

where numerator is a count of admissible n × p patterns.

+
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(Markley and Paul, 1981)

h(X ) = lim
n→∞

hn

n
= lim

n→∞

log(λ(Mn))

n
≥ lim

n→∞

1

pn
log

1n(Mn)p1t
n

1n · 1t
n

←− − − − − p − − − − −→
↑ 1 0 0 0 0 0 0 1 0 0 0
n 0 1 0 0 1 0 1 0 0 1 0
| 0 0 1 0 0 0 0 0 1 0 1
↓ 1 0 0 0 1 0 1 0 0 0 0

Letting Vp denote a vertical transition matrix of width p,

1n(Mn)p1t
n = 1p(Vp)n1t

p

(can count patterns generated from left to right or patterns
generated from bottom to top)
Thus,

h(X ) ≥ (1/p)(log(λ(Vp))− log(λ(V0)))
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(Calkin and Wilf, 1999)

h(X ) ≥ lim
m→∞

1

pn
log

1n(Mn)p+2q1t
n

1n(Mn)2q1t
n

Thus,

h(X ) ≥ (1/p)(log(λ(Vp+2q))− log(λ(V2q)))

Led to Friedland’s (2007) lower bound for h(G (2)).

All above used 1n so that the limit above may be computed
as the log of largest eigenvalue of a vertical transition matrix.
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Improved Lower bounds

(Louidor and Marcus, 2009) Improved Rayleigh Method:
Replace 1n with sequence of vectors yn such that yn(Mn)pytn
represents weighted counts of patterns; incorporate yn into a
vertical transition matrix Ṽp and find xp such that

yn(Mn)pytn = xp(Ṽp)nxtp

Constraint Old lower bound New lower bound Upper bound
NAK 0.4250636891 0.4250767745 0.4250767997
RWIM 0.5350150 0.5350151497 0.5350428519
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Convergence of entropy approximations

For G (2), hn/n convergence appears to have error Θ( 1
n ).

Computation of hn takes exponential time.

In the 80’s and 90’s, data suggested that
limn→∞ hn+1 − hn = h(G (2)), and that the error is
exponentially small.

However, a proof of convergence of hn+1 − hn for any
nondegenerate Z2 SFT has been an open problem.
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An excellent approximation (but not quite the Holy Grail)

Theorem (Pavlov, 2009): There exist positive constants A
and B so that |hn+1 − hn − h(G (2))| < Ae−Bn for any n.

Corollary (Pavlov, 2009): ∃ a polynomial p(n) so that h(G (2))
can be approximated to within 1

n in p(n) steps.

2-dimensional characterization of set of entropies:

Theorem (Hochman and Meyerovitch, 2007): A number h is
the entropy of a 2-dimensional SFT if and only if there is a
Turing machine that can generate a list of rationals pn

qn
which

approach h from above.
Strikingly different from Lind’s 1-dimensional characterization.
For a typical such entropy, pn/qn → h very slowly and there is
no indication of error size, (pn/qn − h).
Thus, h(G (2)) is much “nicer” than the typical entropy.
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Outline of Pavlov’s Proof

Introduce a stationary process µn on each Hn of maximal
measure-theoretic (Shannon) entropy: hµn = h(Hn).

Decompose hµn into a sum of n conditional measure-theoretic
entropies, row by row.

Pair off:

top n/2 rows of hµn+1 and hµn

bottom n/2 rows of hµn+1 and hµn

the middle row of hµn+1 remains.
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Percolation Model

differences between corresponding rows decay exponentially

middle row converges exponentially

All exponential decay/convergence statements come from
comparison with an associated percolation process
(vandenBerg-Maes (1994)):

On the Z 2 lattice, a site is “open” with probability p and
closed with probability 1− p, independent from site to site.
For p < pc , the critical probability, the probability of an
“open” path from the origin to the boundary of an n × n
square decays exponentially fast in n.

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Percolation Model

differences between corresponding rows decay exponentially

middle row converges exponentially

All exponential decay/convergence statements come from
comparison with an associated percolation process
(vandenBerg-Maes (1994)):

On the Z 2 lattice, a site is “open” with probability p and
closed with probability 1− p, independent from site to site.
For p < pc , the critical probability, the probability of an
“open” path from the origin to the boundary of an n × n
square decays exponentially fast in n.

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Percolation Model

differences between corresponding rows decay exponentially

middle row converges exponentially

All exponential decay/convergence statements come from
comparison with an associated percolation process
(vandenBerg-Maes (1994)):

On the Z 2 lattice, a site is “open” with probability p and
closed with probability 1− p, independent from site to site.
For p < pc , the critical probability, the probability of an
“open” path from the origin to the boundary of an n × n
square decays exponentially fast in n.

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Percolation Model

differences between corresponding rows decay exponentially

middle row converges exponentially

All exponential decay/convergence statements come from
comparison with an associated percolation process
(vandenBerg-Maes (1994)):

On the Z 2 lattice, a site is “open” with probability p and
closed with probability 1− p, independent from site to site.

For p < pc , the critical probability, the probability of an
“open” path from the origin to the boundary of an n × n
square decays exponentially fast in n.

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Percolation Model

differences between corresponding rows decay exponentially

middle row converges exponentially

All exponential decay/convergence statements come from
comparison with an associated percolation process
(vandenBerg-Maes (1994)):

On the Z 2 lattice, a site is “open” with probability p and
closed with probability 1− p, independent from site to site.
For p < pc , the critical probability, the probability of an
“open” path from the origin to the boundary of an n × n
square decays exponentially fast in n.

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Generalizations

Theorem (Marcus and Pavlov, 2009):

Exponential approximations (differences of strip entropies) to
entropy for a class of 2-dimensional SFT’s (generalizing
Pavlov’s result for G (2)).

Exponential approximations (differences of strip entropies) to
measure-theoretic entropy for a class of Markov Random
Fields (2-dimensional analogue of 1-dimensional Markov chain
and probabilistic analogue of 2-dimensional SFT)

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Generalizations

Theorem (Marcus and Pavlov, 2009):

Exponential approximations (differences of strip entropies) to
entropy for a class of 2-dimensional SFT’s (generalizing
Pavlov’s result for G (2)).

Exponential approximations (differences of strip entropies) to
measure-theoretic entropy for a class of Markov Random
Fields (2-dimensional analogue of 1-dimensional Markov chain
and probabilistic analogue of 2-dimensional SFT)

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



1-dimensional sofic shifts

A 1 dimensional sofic shift is the set of all bi-infinite
sequences obtained from a labelled finite directed graph.

Examples: All 1-dimensional SFT’s.

Example: (a sofic, non-SFT shift) The EVEN Shift
A = {0, 1}:

0

0

1
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More examples of 1-dimensional sofic, non-SFT, shifts

The ODD Shift
A = {0, 1}:

0

0

1

The CHG(b) shift
A = {+1,−1}:

0 1 2 . . . b

+1 +1 +1 +1

−1−1−1−1

w1. . .wm∈Bm(X ) ⇐⇒ for all 1≤s≤t≤m,

∣∣∣∣∣
t∑

i=s

wi

∣∣∣∣∣≤b
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2-dimensional sofic shifts

A 2-dimensional sofic shift is the set of all configurations on
the entire Z2 lattice obtained from two (one horizontal and
one vertical) finite directed labelled graphs with the same set
of edges.

Examples:

All 2-dimensional SFT’s.
EVEN⊗

2

: all rows and columns satisfy the 1-dimensional
EVEN shift.
CHG(b)⊗

2

: all rows and columns satisfy the 1-dimensional
CHG(b) shift.
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Computing entropy of 2-dimensional sofic shifts

(Louidor and Marcus, 2009): applied improved Rayleigh

method to estimate entropies of sofic shifts EVEN⊗
2

and
CHG(3)⊗

2
:

Constraint Old lower bound New lower bound Upper bound

EVEN⊗2 0.4385027973 0.4402086447 0.4452873312
CHG(3)⊗2 0.4210209862 0.4222689819 0.5328488954

Theorem (Louidor and Marcus, 2009): For all dimensions D,

h(ODD⊗
D

) = 1/2.

h(CHG(2)⊗
D

) = 1/2d .
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Why is h(CHG(2)⊗D)≥1/2D?

X =CHG(2)⊗D .

D=2. Consider the two “checkerboard” 2×2 arrays, Γ(0), Γ(1)

Γ(0) =

(
+ −
− +

)
Γ(1) =

(
− +
+ −

)
Any tiling consisting of n×n copies of Γ(0) or Γ(1) is a 2n×2n
array that satisfies X .

Γ(i1,1) Γ(i1,2) . . . Γ(i1,n)

Γ(i2,1) Γ(i2,2) . . . Γ(i2,n)

...
...

. . .
...

Γ(in,1) Γ(in,2) . . . Γ(in,n)

 , is,t∈{0, 1}
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Why is h(CHG(2)⊗D)≥1/2D? (cont.)

Generally, for arbitrary D, consider the two 2×2×. . .×2
checkerboard arrays:

Γ
(0)
i1,...,iD

=(−1)
∑

ij Γ
(1)
i1,...,iD

=(−1)1+
∑

ij

Any tiling of n×n×. . .×n copies of Γ(0) or Γ(1) is a
2n×2n×. . .×2n array that satisfies X .

=⇒ |B2n×2n×...×2n(X )|≥2n
D

=⇒ log |B2n×2n×...×2n(X )|
(2n)D

≥ nD

(2n)D

=⇒ h(X )≥ 1

2D
.
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Why is h(CHG(2)⊗D)≤1/2D?

For D=1 every legal word of X is essentially such a tiling of
checkerboard arrays:

Lemma

x0. . .xn−1 satisfies CHG(2), iff
xi=−xi+1 for all even i∈{0, . . ., n−2} or
xi=−xi+1 for all odd i∈{0, . . ., n−2}.

x0 x1 x2 x3 x4 . . . xn−3 xn−2 xn−1
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Why is h(CHG(2)⊗D)≤1/2D?

Proof:

+1 +1

−1−1

Unfortunately, the previous Lemma does not generalize to
larger dimension:

+

+

−
−

−
+

+

−

−
−
+

+

+

−
−
+
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Γ∈Bn×n×...×n(X ) iff every row of Γ is either a phase-0 or a
phase-1 sequence.

r=(ri ): binary vector with an entry for each row of
{0, . . ., n−1}D .

A(r) = {Γ∈Bn×n×...×n(X ) : row i of Γ has phase ri}

Lemma 1
=⇒ Bn×n×...×n(X )=

⋃
r

A(r).
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:

0

1

2

3

4

5

0 1 2 3 4 5

1 1 1 0 1 0

0

1

1

0

1

1
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:

0

1

2

3

4

5

0 1 2 3 4 5

1

1 1 0 1 0

0

1

1

0

1

1
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:

0

1

2

3

4

5

0 1 2 3 4 5

1 1

1 0 1 0

0

1

1

0

1

1
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:

0

1

2

3

4

5

0 1 2 3 4 5

1 1 1

0 1 0

0

1

1

0

1

1
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:

0
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:

0

1

2

3

4

5

0 1 2 3 4 5

1 1 1 0 1 0

0

1

1

0

1

1

− +

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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|A(r)| = 2(# of connected components).

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Why is h(CHG(2)⊗D)≤1/2D? (cont.)

Example.D = 2:
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For a site x∈{0, 1, . . ., n−1}D :

φ(r, i , x)=“phase of row passing
through x in direction i .”

D “match” functions Mr,1, . . .,Mr,D .
Mr,i : {0, 1, . . ., n−1}D→ZD .

Mr,i (x)=(x1, . . ., xi−1,Tφ(r,i,x)(xi ), xi+1, . . ., xD),
x=(x1, . . ., xD).

Gr = (V ={0, 1, . . ., n−1}D ,E ).
u v∈E iff v=Mr,i (u).

|A(r)| = 2(# of connected components of Gr).
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)
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Why is h(CHG(2)⊗D)≤1/2D? (cont.)
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Max # of Connected Components in Gr.

D=2.

For (x , y)∈{1, 2, . . ., n−2}2 (not on the “border”):

(x , y), Mr,1(x , y), Mr,2(x , y), Mr,1(Mr,2(x , y))

Are all in the connected component of (x , y).
Are all distinct.

For general D:
For x∈{1, 2, . . ., n−2}D (not on the “border”), the 2D entries:

Mr,i1 (Mr,i2 (. . .(Mr,is (x)). . .)),

For each {i1, . . ., is}⊆{1, 2, . . .,D}, 1≤i1<i2<. . .<is≤D

Are all in the connected component of x.
Are all distinct.

=⇒ Any component having a vertex in the interior has at
least 2D vertices.

=⇒ There are at most nD/2D such components.
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Max # of Connected Components in Gr (cont.).

=⇒

(
# of components
having a vertex in
{1, 2, . . ., n−2}D

)
≤ nD/2D

(
# of components
not having a vertex
in {1, 2, . . ., n−2}D

)
≤
(

# of vertices not in
{1, 2, . . ., n−2}D

)
= nD−(n−2)D

=⇒ (Total # of components) ≤ nD/2D + nD − (n − 2)D .

=⇒ |A(r)| = 2(Total # of components) ≤ 2n
D/2D+nD−(n−2)D

=⇒ |Bn×n×...×n(X )|≤
∑

r

|A(r)|≤2DnD−1
2n

D/2D+nD−(n−2)D

=⇒ |Bn×n×...×n(X )|≤2n
D/2D+O(nD−1)

=⇒ h(X )≤1/2D
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Max # of Connected Components in Gr (cont.).
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Max # of Connected Components in Gr (cont.).
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Max # of Connected Components in Gr (cont.).
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Max # of Connected Components in Gr (cont.).

=⇒

(
# of components
having a vertex in
{1, 2, . . ., n−2}D

)
≤ nD/2D(

# of components
not having a vertex
in {1, 2, . . ., n−2}D

)
≤
(

# of vertices not in
{1, 2, . . ., n−2}D

)
= nD−(n−2)D

=⇒ (Total # of components) ≤ nD/2D + nD − (n − 2)D .

=⇒ |A(r)| = 2(Total # of components) ≤ 2n
D/2D+nD−(n−2)D

=⇒ |Bn×n×...×n(X )|≤
∑

r

|A(r)|≤2DnD−1
2n

D/2D+nD−(n−2)D

=⇒ |Bn×n×...×n(X )|≤2n
D/2D+O(nD−1)

=⇒ h(X )≤1/2D

Brian Marcus Computing the entropy of two-dimensional shifts of finite type



Max # of Connected Components in Gr (cont.).
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Motivation for 1-dimensional SFT’s: Modelling dynamical
systems

T : Ω→ Ω:

x

T−1(x)

T (x)

T 2(x)

T−2(x)

q q
q
q
q

0 1

Represent x ∈ Ω by binary itinerary sequence:

x ←→ . . . 11.001 . . .
T (x) ←→ . . . 110.01 . . .

Ω replaced by an SFT X
T replaced by the shift mapping.
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