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1. Introduction

A one-dimensional Markov chain is defined by a one-sided, directional conditional
independence property, and a process is Markov in the forward direction if and
only if it is Markov in the backward direction. In two and higher dimensions, this
property is replaced with a conditional independence property that is not associated
with a particular direction. This leads to the notion of a Markov random field
(MRF).

Of course, the definition of MRF makes sense in one dimension as well (see
Section 2), but here the conditional independence is a two-sided property, and this
is not the same as the Markov chain property. It is well known that any one-
dimensional Markov chain is an MRF. However, the converse is not true: there
are counter-examples for non-stationary, finite-valued processes and for stationary
countable-valued processes. The converse does hold (and this is well known) for
finite-valued stationary MRF’s that either have full support or satisfy a certain
mixing condition. In this paper we show that any one-dimensional stationary,
finite-valued MRF is a Markov chain, without any mixing condition or condition
on the support.

Our proof makes use of two properties of the support X of a finite-valued sta-
tionary MRF: 1) X is non-wandering (this is a property of the support of any
finite-valued stationary process) and 2) X is a topological Markov field (TMF) (de-
fined in Section 2). The latter is a new property that sits in between the classes
of shifts of finite type and sofic shifts, which are well-known objects of study in
symbolic dynamics [5]. Here, we develop the TMF property in one dimension, and
we will develop this property in higher dimensions in a future paper.

While we are mainly interested in discrete-time finite-valued stationary MRF’s,
in Section 5 we also consider continuous-time, finite-valued stationary MRF’s, and
show that these are (continuous-time) Markov chains as well.

2. Background

2.1. Basic Probabilistic Concepts. Except for Section 5 (where we consider
continuous-time processes) by a stochastic process we mean a discrete-time, finite-
valued process defined by a probability measure µ on the measurable space (ΣZ,B),
where Σ is a finite set (the alphabet) and B is the product Borel σ-algebra, which
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is generated by the cylinder sets

[a1, . . . , an]j := {x ∈ ΣZ : xk+j = ak for k = 1, . . . , n},
for any ai ∈ Σ and j ∈ Z.

Throughout this paper, we will often use the shorthand notation:

µ(ai1 , . . . , ain) = µ({x ∈ ΣZ : xik = aik for k = 1, . . . , n})
and similarly for conditional measure:

µ(ai1 , . . . , ain | bj1 , . . . , bjm)

= µ({x ∈ ΣZ : xik = aik , k = 1 . . . n} | {xj` = bj` , ` = 1 . . .m}).
In particular,

µ(a1, . . . , an) = µ([a1, . . . , an]0).

Also, for x ∈ ΣZ and a ≤ b ∈ Z, we define x[a,b] = xaxa+1 . . . xb.
A stochastic process is stationary if it satisfies

µ(a1, a2, . . . , an) = µ(aj+1, aj+2, . . . , aj+n)

for all j ∈ Z.
A Markov chain is a stochastic process which satisfies the usual Markov condi-

tion:
µ(a0, . . . , an | a−N , . . . , a−1) = µ(a0, . . . , an | a−1)

whenever µ(a−N , . . . , a−1) > 0.
A Markov random field (MRF) is a stochastic process µ which satisfies

µ(a0, . . . , an | a−N , . . . , a−1, an+1, . . . , an+M )

= µ(a0, . . . , an | a−1, an+1),

whenever µ(a−N , . . . , a−1, an+1, . . . , an+M ) > 0.
Note that the Markov chains that we have defined here are first order Markov

chains. Correspondingly, our MRF’s are first order in a two-sided sense. One
can consider higher order Markov chains and MRF’s, but these can be naturally
recoded to first order processes, and all of our results easily carry over to higher
order processes.

More generally, a Markov random field can be defined on an undirected graph
G = (V,E), where V is a countable set of vertices and E, the set of edges, is a set
of unordered pairs of distinct vertices. Specifically, an MRF on G is a probability
measure µ on ΣV for which µ([aF ] | [b∂F ] ∩ [cG]) = µ([aF ] | [b∂F ]) whenever G and
F are finite subsets of V , G ∩ F = ∅ and µ([b∂F ] ∩ [cG]) > 0; here, the notation
such as [aF ] means a configuration of letters from Σ on the subset F ⊂ V , and ∂F
(the boundary of F ) denotes the set of v ∈ V \ F such that {u, v} ∈ E for some
u ∈ F . It is not hard to see that when the graph is the one-dimensional integer
lattice, this agrees with the definition of MRF given above.

The following is well known. We give a proof for completeness.

Proposition 2.1. Any Markov chain (stationary or not) is an MRF.

Proof.
µ(a0, . . . , an, an+1, . . . , an+M | a−N , . . . , a−1)

= µ(an+1, . . . , an+M | a−N , . . . , a−1)µ(a0, . . . , an | a−N , . . . , a−1, an+1, . . . , an+M )

Thus,
µ(a0, . . . , an | a−N , . . . , a−1, an+1, . . . , an+M )
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=
µ(a0, . . . , an, an+1, . . . , an+M | a−N , . . . , a−1)

µ(an+1, . . . , an+M | a−N , . . . , a−1)

=
µ(a0, . . . , an, an+1, . . . , an+M | a−1)

µ(an+1, . . . , an+M | a−1)

the latter by Markovity. Since the last expression does not involve a−N , . . . , a−2,
we have

µ(a0, . . . , an | a−N , . . . , a−1, an+1, . . . , an+M ) = µ(a0, . . . , an | a−1, an+1, . . . , an+M )

Since the reverse of a Markov process is Markov, we then have, by symmetry,

µ(a0, . . . , an | a−1, an+1, . . . , an+M ) = µ(a0, . . . , an | a−1, an+1)

Combining the previous two equations, we see that the MRF property holds. �

See [2, Corollary 11.33] for an example of a fully supported stationary MRF on
a countable alphabet that is not a Markov chain. It is easy to construct examples
of non-stationary MRF’s that are not Markov chains (see the remarks immediately
following Proposition 3.6).

2.2. Symbolic Dynamics. In this section, we review concepts from symbolic dy-
namics. For more details, the reader may consult [5, Chapters 1-4].

Let Σ∗ denote the collection of words of finite length over a finite alphabet Σ.
For w ∈ Σ∗, let |w| denote the length of w.

Let σ denote the shift map, which acts on a bi-infinite sequence x ∈ ΣZ by
shifting all symbols to the left, i.e.,

(σ(x))n = xn+1 for all n.

A subset X of ΣZ is shift-invariant if σ(x) ∈ X for all x ∈ X. A subshift or a shift
space X ⊂ ΣZ is a shift-invariant set which is closed with respect to the product
topology on ΣZ. Note that ΣZ itself is a shift space and is known as the full shift.
There is an equivalent way of defining shift spaces by using forbidden blocks: for a
subset F of Σ∗, define

XF = {x ∈ ΣZ | (xixi+1 . . . xi+j) /∈ F for all i ∈ Z and j ∈ N ∪ {0}}.

Then X is a shift space iff X = XF for some F .
The language of a shift space X is

B(X) =

∞⋃
n=1

Bn(X)

where

Bn(X) = {w ∈ Σ∗ : ∃x ∈ X s.t. (x1 . . . xn) = w}.
A sliding block code is a continuous map φ from one shift space X, with alphabet

Σ, to another Y , with alphabet Σ′, which commutes with the shift: φ◦σ = σ◦φ. The
terminology comes from the Curtis-Lyndon-Hedlund Theorem which characterizes
continuous shift-commuting maps as generated by finite block codes, namely: there
exist m,n and a map Φ : Bm+n+1(X) −→ Σ′ such that

(φ(x))i = Φ(xi−mxi−m+1 . . . xi+n)

If m = 0 = n, then φ is called a 1-block map. A conjugacy is a bijective sliding
block code, and a factor map or (factor code) is a surjective sliding block code.
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Figure 1. golden mean shift
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A shift of finite type (SFT) is a shift space X = XF where F can be chosen finite.
An SFT is called k-step if k is the smallest positive integer such that X = XF and
F ⊂ Σk+1. A 1-step SFT is called a topological Markov chain (TMC). Note that
a TMC can be characterized as the set of all bi-infinite vertex sequences on the
directed graph with vertex set Σ and an edge from x to y iff xy 6∈ F . TMC’s
were originally defined as analogues of first-order Markov chains, where only the
transitions with strictly positive transition probability are prescribed [7].

The most famous TMC is the golden mean shift defined over the binary alpha-
bet by forbidding the appearance of adjacent 1’s, equivalently X = Σ{11}. The
corresponding graph is shown in Figure 1.

Just as MRF’s and Markov chains can be recoded to first order processes, any
SFT can be recoded to a TMC; more precisely, any SFT is conjugate to a TMC.

A shift space X is non-wandering if whenever u ∈ B(X), there exists a word v
such that uvu ∈ B(X). The support of a stationary process µ on (ΣZ,B) is the set

supp(µ) = ΣZ \
⋃

[a]n∈N (µ)

[a]n,

where N (µ) is the collection of all cylinder sets with µ([a]n) = 0. TMC’s are exactly
the set of shift-invariant sets that can be the support of a (first-order) Markov chain.
The reason for our interest in the non-wandering property is that the support of any
stationary measure is non-wandering; this follows immediately from the Poincare
Recurrence Theorem (see [8]).

A shift space is irreducible if whenever u, v ∈ B(X), there exists w such that
uwv ∈ B(X). Clearly any irreducible shift space is non-wandering. By using the
decomposition of a non-negative matrix into irreducible components, it is easy to
see that a TMC is non-wandering iff it is the union of finitely many irreducible
TMC’s on disjoint alphabets. For a subshift X, the period of x ∈ X is min{i ∈
N | σi(x) = x}. The period of X is defined as the greatest common divisor of the
periods of elements of X. For any irreducible TMC of period p, one can partition Σ
into Σ0,Σ1, . . . ,Σp−1 such that if x ∈ X,x0 ∈ Σj then xi ∈ Σi+j (mod p). The Σi’s
are called the cyclically moving subsets.

In the full shift, any symbol can appear immediately after any other symbol.
Irreducible TMC’s have a related property, described as follows. The index of
primitivity of a TMC X with period p is the smallest positive integer t such that
for any a ∈ Σi, b ∈ Σj , there exists x ∈ X such that x1 = a, xtp+j−i+1 = b.
Every irreducible TMC has a finite index of primitivity. The terminology comes
from matrix theory where, for a primitive matrix A, the index of primitivity is
understood to be the smallest positive integer such that An is strictly positive,
entry by entry. For example, the golden mean shift is irreducible, its period is 1
and its index of primitivity is 2.

A sofic shift is a shift space which is a factor of an SFT. By a recoding argument,
it can be proved that any sofic shift X is a 1-block factor map of a TMC. This
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Figure 2. even shift
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amounts to saying that a shift space X is sofic iff there is a finite directed graph,
whose vertices are labelled by some finite alphabet, such that X is the set of all label
sequences of bi-infinite walks on the graph. Such a labelling is called a presentation.
The most famous sofic shift is the even shift defined by forbidding sequences of the
form 102n+11 for all n ∈ N. A presentation is shown in Figure 2.

The following is one of the many useful characterizations of sofic shifts. Let X
be a shift space. For all w ∈ B(X), the follower set of w is defined as

F (w) = {y ∈ B(X) : wy ∈ B(X)}.

The collection of follower sets is denoted by

F (X) = {F (w) : w ∈ B(X)}.

A shift space X is sofic if and only if F (X) is finite. Similarly, one can define
predecessor sets: P (w) = {y ∈ B(X) : yw ∈ B(X)}, and P (X) denotes the
collection of all predecessor sets. A shift space X is sofic if and only if P (X) is
finite.

One can also work with follower sets of left-infinite sequences. Let B∞(X) denote
the set of all left-infinite sequences x− for which there exists a right-infinite sequence
x+ such that x−x+ ∈ X. Let

F∞(x−) = {y ∈ B(X) : x−y ∈ B∞(X)}.

Note that F∞(x−) is the decreasing intersection of {F (x[−n,−1])}n. It follows that

X is sofic iff the collection of all F∞(x−) is finite [4, Lemma 2.1].
Finally, we state a useful result that is probably well known, but we do not know

of an explicit reference. So, we give a proof for completeness.

Lemma 2.2. Let X be a shift space. If X has dense periodic points, then X is
non-wandering. The converse is true if X is sofic.

Proof. Assume that the periodic points are dense in X. Let u ∈ Bn(X) for some
n ∈ N. Then there exists a periodic point x ∈ X such that x[1,n] = u. Since x is
periodic, there exists r ∈ N and a word v such that x[1,r] = uvu. Thus uvu ∈ B(X),
and so X is non-wandering.

For the converse, assume that X is sofic and is non-wandering. Let Y be a TMC
and φ : Y −→ X a 1-block factor map.

Consider a word u ∈ Bn(X) for some n ∈ N. Since X is non-wandering, for
any M , there exist v1 . . . vM ∈ B(X) such that w = uv1uv2 . . . vMu ∈ B(X). Let
M > |Bn(Y )|. Take z ∈ X such that for some interval I, zI = w. Then there exist
r1 < r2 < . . . < rM such that z[rt,rt+n−1] = u for t = 1, . . . ,M . Let y ∈ Y such
that φ(y) = z. Since M > |Bn(Y )| we can find h < k ∈ N such that

y[rh,rh+n−1] = y[rk,rk+n−1].
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Consider y′ defined by

y′[rh,rk−1] = y[rh,rk−1]

and y′t = y′t+rk−rh

for all t ∈ Z. Clearly y′ is periodic. And y′ ∈ Y since Y is a TMC. Also,

φ(y′)[rh,rh+n−1] = φ(y)[rh,rh+n−1] = u

Since u ∈ B(X) was arbitrary, this proves that periodic points are dense in X. �

3. Topological Markov Fields

Definition 3.1. A shift space X ⊂ ΣZ is a topological Markov field (TMF) if
whenever v, x ∈ Σ, |z| = |w|, and uvwxy, vzx ∈ B(X), then uvzxy ∈ B(X).

We have defined TMF’s as “1-step” objects, in that v, x are required to be letters
of the alphabet, i.e., words of length one. One can naturally extend the definition
to “k-step” objects, by requiring v, x to be words of the same length k, and results
of this section extend easily to this class.

The defining property for TMF’s is equivalent to another property, which appears
stronger, and is suitable for generalization to higher dimensions. For this, recall
that the boundary of C, denoted ∂C, denotes the set of integers in Z \ C that are
adjacent to an element of C.

Proposition 3.2. A shift space X is a TMF if and only if it satisfies the following
condition:

For all x, y ∈ X and finite C ⊂ Z such that x = y on ∂C, the point z ∈ ΣZ

defined by

z =

{
x on C ∪ ∂C
y on (C ∪ ∂C)c

belongs to X.

Proof. The “if” direction is trivial. For the “only if” direction, we use the fact that
any finite subset of Z is a disjoint union of finitely many intervals (of integers). If
C consists of only one interval, then we get the condition immediately from the
definition of TMF. Now, proceed by induction on the number of intervals. �

The reason for our interest in TMF’s is the following simple result.

Lemma 3.3. The support of a stationary MRF is a TMF.

Proof. Let µ be an MRF, X = supp(µ) and uvwxy, vzx ∈ B(X) with |z| = |w| and
v, x ∈ Σ. By definition of X, µ(uvwxy) > 0, and so µ([uv]0 ∩ [xy]|uvw|) > 0. Since
µ is an MRF,

(1) µ([z]|uv| | [uv]0 ∩ [xy]|uvw|) = µ([z]|uv| | [v]|u| ∩ [x]|uvw|).

Since by the definition of X, µ(vzx) > 0, it follows that the right hand side of (1)
is positive. Thus µ(uvzxy) > 0, and so uvzxy ∈ B(X) as desired. �

For a shift space X and w ∈ B(X), let

C(w) = {(x, y) : xwy ∈ B(X)} and C(X) = {C(w) : w ∈ B(X)}.
The following is a simple restatement of the definition of TMF in terms of the sets
C(w):
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Proposition 3.4. A shift space X is a TMF iff for all n ∈ N and for all w, u ∈
Bn(X),

(2) (w1 = u1 and wn = un)⇒ C(w) = C(u).

Proposition 3.5. Any TMF is sofic.

Proof. Let X ⊂ ΣZ be a shift space that is not sofic. We will prove that X is not
a TMF.

Since X is not sofic, there are infinitely many left-infinite sequences with distinct

follower sets. Thus there exist distinct left-infinite sequences w1, w2, . . . , w|Σ|
2+1

with distinct follower sets. Note

F∞(wi) =
⋂
n∈N

F ((wi)[−n,−1])

and F ((wi)[−n−1,−1]) ⊂ F ((wi)[−n,−1]) for all 1 ≤ i ≤ |Σ|2 + 1 and n ∈ N. If,

for each n, the F ((wi)[−n,−1]) are not distinct, then there exist i1 6= i2 such that

F∞(wi1) = F∞(wi2), contradicting the assumption. Therefore there exists an n0 ∈
N such that the F ((wi)[−n0,−1]) are all distinct. Hence we can choose u, u′ ∈ Bn0(X)
such that u1 = u′1 and un0

= u′n0
but F (u) 6= F (u′). Hence there exists b ∈ B(X)

such that exactly one of ub and u′b is an element of B(X). It follows that there
exists a ∈ B(X) such that exactly one of aub and au′b is an element of B(X).
Therefore C(u) 6= C(u′). By Proposition 3.4, X is not a TMF.

�

It is clear that any TMC is a TMF. The following example shows that a TMF
need not be a TMC. In fact, this TMF is not even an SFT. This is an elaboration
of an example given in [1]. Let

Xnot = {0∞, 0∞1∞, 1∞, 1∞02∞, 2∞};

to clarify the notation, 1∞02∞ refers to the point x such that

xi =


1 if i < 0

0 if i = 0

2 if i > 0

and all its shifts.

Proposition 3.6. Xnot is a TMF but not an SFT (and in particular is not a
TMC).

Proof. Xnot is not an SFT since for all n, 01n, 1n0 ∈ B(Xnot) but 01n0 /∈ B(Xnot).
We will check that the restriction of any configuration on the positions 0 and

n + 1 uniquely determines the configuration on either [1, n] or [0, n + 1]c. This
clearly implies condition (2) and thus, by Proposition 3.4, Xnot is a TMC.

To see this, first observe that for n > 2,

Bn(Xnot) = {0n, 0k1n−k, 1n, 1m02n−m−1, 1n−10, 02n−1, 2n | 0 < k < n, 0 < m < n−1}.

Among these, the only pairs of distinct words with the same length that begin
and end with the same symbol are 0k1n−k, 0k

′
1n−k

′
and 1m02n−m−1, 1m

′
02n−m

′−1.
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Now, observe that

C(0k1n−k) = C(0k
′
1n−k

′
) = {(0i, 1j)}

C(1m02n−m−1) = C(1m
′
02n−m

′−1) = {(1i, 2j)}

for 0 < k, k′ < n and 0 < m,m′ < n− 1.
�

Since Xnot is countable, any strictly positive countable probability vector defines
a measure whose support is Xnot. Any such measure is an MRF because any
valid configuration in Xnot on the positions 0 and n + 1 uniquely determines the
configuration on [1, n] or [0, n+ 1]c. Thus, there exist non-stationary finite-valued
MRF’s which are not Markov chains of any order.

Now we will prove that there is a finite procedure for checking whether a sofic
shift is a TMF. The following characterisation of sofic shifts will be used.

Proposition 3.7. A shift space X is sofic iff |C(X)| <∞.

Proof. “If:” For each F ∈ F (X), fix some wF ∈ B(X) such that F (wF ) = F , Now,
consider the map Ψ : F (X) → C(X), defined by Ψ(F ) = C(wF ). If F 6= F ′, then
F (wF ) 6= F (wF ′) and thus C(wF ) 6= C(wF ′). Thus, Ψ is 1-1, and so F (X) is finite.

“Only If:” For a follower set F ∈ F (X) and a word w ∈ F , let Fw = {y : wy ∈
F}. Note that Fw is a follower set. We claim that

(3) C(w) = {(x, y) : there exists F s.t. w ∈ F, y ∈ Fw, and x ∈ ∩z∈FP (z)}.

To see this, first note that if (x, y) ∈ C(w), then wy ∈ F = F (x). Then w ∈ F ,
y ∈ Fw and for all z ∈ F = F (x), xz ∈ B(X), and so x ∈ P (z).

Conversely, if w ∈ F and y ∈ Fw, then z = wy ∈ F . If x ∈ ∩z∈FP (z), then
taking z = wy, we see that xwy ∈ B(X), and so (x, y) ∈ C(w). This establishes
(3).

By (3), we see that C(w) is uniquely determined by the set

{(∩z∈FP (z), Fw) : F is a follower set that contains w}.

Thus, |C(X)| is upper bounded by the number of functions whose domain is a
subset of F (X) and whose range is subset of 2P (X) × F (X) and is therefore finite
(here, for a given word w, the domain D is the collection of follower sets that
contain w and the function is: for F ∈ D, g(F ) = ({P (z)}z∈F , Fw)).

�

Now we can introduce the procedure.

Theorem 3.8. There is a finite algorithm to check whether a given sofic shift X is a
TMF (here, the input to the algorithm is a labelled finite directed graph presentation
of X).

Proof. By combining the next two lemmas, we will see that condition (2) can be
decided by checking words of a length bounded by an explicit function of a presen-
tation of X.

Lemma 3.9. Let n > |C(X)|2 and w, u ∈ Bn(X) such that w1 = u1 and wn = un.
Then there exists r ≤ |C(X)|2, w∗, u∗ ∈ Br(X) such that w∗1 = u∗1, w∗r = u∗r,

C(w∗) = C(w) and C(u∗) = C(u).
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Proof. We claim that if C(a) = C(c) for some a, c ∈ B(X) then for any b ∈ B(X)
such that ab, cb ∈ B(X), C(ab) = C(cb). To see this, observe:

C(ab) = {(x, y) : xaby ∈ B(x)}
= {(x, y) : (x, by) ∈ C(a)}
= {(x, y) : (x, by) ∈ C(c)}
= C(cb).

Consider the set {(C(u′), C(w′))} such that u′ and w′ are proper prefixes of u
and w (respectively) and of the same length. This set has size at most |C(X)|2.
Since n > |C(X)|2, there are distinct pairs (u′, w′) and (u′′, w′′), where u′ and u′′

are prefixes of u, w′ and w′′ are prefixes of w such that

|u′| = |w′|, |u′′| = |w′′|, C(u′) = C(u′′), C(w′) = C(w′′).

We may assume that |u′| < |u′′|.
Define words h, k by: u = u′′h and w = w′′k. Since

C(u′) = C(u′′) and C(w′) = C(w′′),

we have

C(u′h) = C(u′′h) = C(u) and C(w′k) = C(w′′k) = C(w).

If u∗ = u′h and w∗ = w′k have length at most |C(X)|2, we are done; if not,
inductively apply the same argument to u∗, w∗ instead of u,w. �

Let

Cm(w) = {(x, y) : xwy ∈ B(X), |x|, |y| ≤ m}.

Lemma 3.10. Let m = max{|P (X)|, |F (X)|} and w, u ∈ B(X) such that |w| = |u|,
w1 = u1 and w|w| = u|u|. Then

C(w) = C(u) iff Cm(w) = Cm(u).

Proof. Assume that Cm(w) = Cm(u). Assume that awb ∈ B(X). It suffices to
prove aub ∈ B(X).

If |a|, |b| ≤ m then there is nothing to prove. Suppose instead |a| > m. By the
choice of m, there exists 1 ≤ i < i′ ≤ |a| such that

F (a1 . . . ai) = F (a1 . . . ai′).

Let a′ = a1 . . . aiai′+1 . . . a|a|. Then a′wb ∈ B(X). And aub ∈ B(X) iff a′ub ∈
B(X). Since |a′| < |a|, by induction on |a|, we can assume |a′| ≤ m. By a similar
argument, we can find b′ such that |b′| ≤ m, a′wb′ ∈ B(X). And aub ∈ B(X) iff
a′ub′ ∈ B(X). Since Cm(w) = Cm(u), a′ub′ ∈ B(X). Therefore, aub ∈ B(X), as
desired. �

Proof of Theorem 3.8: By Lemmas 3.9 and 3.10, X is a TMF if and only if
for all r ≤ |C(X)|2, w, u ∈ Br(X) such that w1 = u1 and wr = ur and all
m = max{|P (X)|, |F (X)|}, Cm(w) = Cm(u). This reduces to the problem of
deciding for all words z of length at most |C(X)|2+2 max{|P (X)|, |F (X)|}, whether
z ∈ B(X). This is accomplished by using a labelled graph presentation of a sofic
shift [5, Section 3.4]; such a presentation can be used to give a bound on |F (X)|,
|P (X)|, and therefore also on |C(X)| by a bound given implicitly at the end of the
proof of Proposition 3.7. �
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For any sofic shift X, we can endow C(X) ∪ {?}, where ? is an extra symbol,
with a semigroup structure:

C(w)C(u) = C(wu) if wu ∈ B(X) and ? otherwise

One can show that the multiplication is well-defined and formulate an algorithm in
terms of the semigroup to decide if X is a TMF. This is consistent with the spirit
in which sofic shifts were originally defined [10].

Theorem 3.11. Let X be a shift space. The following are equivalent.

(a) X is the support of a stationary Markov chain.
(b) X is the support of a stationary MRF.
(c) X is non-wandering and a TMF.
(d) X ×X is non-wandering and X is a TMF.
(e) X is a TMC consisting of a finite union of irreducible TMC’s with disjoint

alphabets.

Proof. (a) implies (b) by Proposition 2.1, and (b) implies (c) follows from Lemma 3.3
and the fact, mentioned above, that the support of a stationary probability measure
is non-wandering.

For (c) implies (d), first observe that, by Proposition 3.5, X is sofic, and then by
Lemma 2.2, X is non-wandering iff X has dense periodic points. Then (d) follows
since X has dense periodic points iff X ×X has dense periodic points.

We now show that (e) implies (a). Any irreducible TMC is the support of a sta-
tionary Markov chain, defined by an irreducible (stochastic) probability transition
matrix P such that Pxy > 0 iff xy ∈ B2(X).

Finally, we show that (d) implies (e). Let u,w ∈ B(X) and v ∈ Σ such that
uv ∈ B(X) and vw ∈ B(X). To prove that X is a TMC it is sufficient to show that
uvw ∈ B(X).

There exists w̃ ∈ B(X) with |w| = |w̃| and uvw̃ ∈ B(X). Also, there exists
ũ ∈ B(X) such that |ũ| = |u| and ũvw ∈ B(X). Since X × X is non-wandering,
there are words x, y ∈ B(X) with |x| = |y| and ũvwxũvw, uvw̃yuvw̃ ∈ B(X). Since
X is a TMF, uvwxũvw̃ ∈ B(X). In particular, uvw ∈ B(X), and so X is a TMC. It
is easy to see that if X×X is non-wandering, so is X. Thus, X is a non-wandering
TMC. As mentioned in Section 2.2, it follows that X is a finite union of irreducible
TMC’s with disjoint alphabets. �

We remark that in each of (c) and (d), TMF can be replaced with TMC. Also, as
mentioned above, a shift space X is nonwandering if X ×X is nonwandering. The
converse is true for TMF’s due to the equivalence of (c) and (d); in fact, the converse
is true more generally for sofic shifts (this follows from Lemma 2.2). However, the
converse is false for shift spaces in general.

4. Stationary MRF’s are Markov chains

Theorem 4.1. Let µ be a stationary measure on ΣZ. Then µ is an MRF iff it is
a Markov chain.

Proof. By Proposition 2.1, every Markov chain is an MRF.
For the converse, let µ be an MRF. By Theorem 3.11, supp(µ) is a finite union

of irreducible TMC’s on disjoint alphabets. Therefore µ is a convex combination of
MRF’s supported on irreducible TMC’s. So, it suffices to assume that X = supp(µ)
is an irreducible TMC.
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If X were a full shift, then it would be a Markov chain by [2, Corollary 3.9]. We
will reduce to this case.

Let p be the period and t be the index of primitivity of X. Let Σ0,Σ1, . . . ,Σp−1

be the cyclically moving subsets of X. For r ∈ N, a multiple of p, let

B0
r (X) = {a−r . . . a−1 ∈ Br(X) : a−r ∈ Σ0}.

Fix x−r . . . x−1 ∈ B0
r (X), x0 ∈ Σ0 and L a multiple of p such that L > r + tp. Fix

i ∈ N. Then, with the summations below taken over all values of aiL−r . . . aiL−1 ∈
B0
r (X), we have

µ(x0|x−1, . . . , x−r) =
∑

µ(x0, aiL−r, . . . , aiL−1 | x−1, . . . , x−r)

=
∑

µ(x0 | x−1, . . . , x−r, aiL−r, . . . , aiL−1)µ(aiL−r, . . . , aiL−1 | x−1, . . . , x−r)

=
∑

µ(x0 | x−1, aiL−r)µ(aiL−r, . . . , aiL−1 | x−1, . . . , x−r)

(the last equality follows from the MRF property).
Thus,

(4)

µ(x0|x−1, . . . , x−r) =
∑

µ(x0 | x−1, aiL−r)µ(aiL−r, . . . , aiL−1 | x−1, . . . , x−r).

Let

X0 = {x ∈ X : x0 ∈ Σ0}
and let

φ : X0 −→ {B0
r (X)}Z

be given by

(φ(x))i = (xiL−r . . . xiL−1).

Let µ′ be the probability measure on {B0
r (X)}Z given by the push-forward of the

measure µ by φ, i.e., µ′(U) = µ(φ−1(U)).
Observe that supp(µ′) = {B0

r (X)}Z by definition of L and t. We show that µ′ is
a stationary MRF with alphabet B0

r (X), as follows. Let x ∈ X0. Below, we write

xiL−r . . . xiL−1 as xiL−1
iL−r when viewed as a word of length r and as bi when viewed

as a a single symbol in the alphabet, B0
r (X), of µ′. Then

µ′([b0, . . . , bn]0 | [b−N , . . . , b−1]−N ∩ [bn+1, . . . bn+M ]n+1)

= µ(x−1
−r, . . . , x

nL−1
nL−r | x

−NL−1
−NL−r, . . . , x

−L−1
−L−r, x

(n+1)L−1
(n+1)L−r, . . . , x

(n+M)L−1
(n+M)L−r)

= µ(x−1
−r, . . . , x

nL−1
nL−r | x−L−1, x(n+1)L−r)

= µ(x−1
−r, . . . , x

nL−1
nL−r | x

−L−1
−L−r, x

(n+1)L−1
(n+1)L−r)

= µ′([b0, . . . , bn]0 | [b−1]−1 ∩ [bn+1]n+1).

Thus, µ′ is a stationary MRF with full support.
By [2, Corollary 3.9], µ′ is a fully supported stationary Markov chain, and thus

has a positive stationary distribution, which we denote by π.
Therefore, for any a−r . . . a−1 ∈ B0

r (X), we have

lim
i→∞

µ(aiL−r = a−r, . . . , aiL−1 = a−1 | x−1, . . . , x−r)

= lim
i→∞

µ′(bi = a−r . . . a−1 | b0 = x−1 . . . x−r) = π(a−r . . . a−1).

11



By compactness of [0, 1], there is a sequence ik such that

lim
k→∞

µ(x0 | x−1, aikL−r)

exists. Returning to (4), we obtain

µ(x0 | x−1, x−2, . . . , x−r) = lim
k→∞

∑
µ(x0 | x−1, aikL−r)µ(aikL−r, . . . , aikL−1 | x−1, x−2, . . . , x−r)

=
∑

a−r...a−1∈B0
r(X)

π(a−r . . . a−1) lim
k→∞

µ(x0 | x−1, aikL−r),

which does not depend on any of x−2, x−3, . . . , x−r . Therefore,

µ(x0 | x−1, x−2, . . . , x−r) = µ(x0 | x−1).

Since the only restriction on r is that it is a multiple of p, it can be chosen arbitrarily
large and so µ is a stationary Markov chain, as desired. �

As noted in the course of the proof of Theorem 4.1, in the case where the support
is a full shift, the result is well known. It can also be inferred from [2, Theorems
10.25, 10.35] in the case where µ satisfies a mixing condition [2, Definition 10.23]
(that condition is slightly stronger than the concept of irreducibility used in our
paper; the results in [2] apply to certain stationary processes that may be infinitely-
valued).

Closely related to the notion of MRF is the notion of Gibbs measures [9]. It is
an old result [9] that any Gibbs measure defined by a nearest-neighbour potential
is an MRF. Also it is easy to see that any Markov chain is a Gibbs measure, defined
by a nearest-neighbour potential determined by its transition probabilities. So, in
the one-dimensional (discrete-time, finite-valued) stationary case, MRF’s, Gibbs
measures and Markov chains are all the same (where we assume that our MRF’s
and Markov chains are first order and our Gibbs measures are nearest-neighbour).

5. Continuous-time Markov random fields and Markov Chains

We begin with a definition of continuous-time processes. This presentation is
compatible with standard references, for example [6, Section 2.2]. To avoid ambi-
guity and measurability issues, we will use the following:

Definition 5.1. A continuous-time stationary process (CTSP) taking values in a
finite set Σ is a translation-invariant probability measure on the space RC(Σ) of
right-continuous functions from R to Σ with the σ-algebra B generated by cylinder
sets of the form:

[a1, . . . , an]t1,...,tn = {x ∈ RC(Σ) : xti = ai , i = 1, . . . , n},
where ai ∈ Σ and ti ∈ Q.

For sets A,B ∈ B and Borel measurable I ⊆ R, we will use the shorthand
notation µ(A|B and xI) to mean µ(A|B ∩ {y ∈ RC(Σ) : yI = xI}).

Definition 5.2. A continuous-time stationary Markov random field (CTMRF)
taking values in a finite set Σ is a CTSP which satisfies:

µ ([a1, . . . , an]t1,...,tn | [a, b]s,t) = µ ([a1, . . . , an]t1,...,tn | [a, b]s,t ∩ [b1, . . . , bm]s1,...,sm) ,

whenever
t1, . . . , tn ∈ (s, t), s1, . . . , sm ∈ [s, t]c and µ([a, b]s,t ∩ [b1, . . . , bm]s1,...,sm) > 0
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Informally, a CTMRF can be viewed as a stationary process such that for all
s < t, the distribution of (xu)u∈(s,t) is independent of (xu)u∈[s,t]c given {xs, xt}.

Definition 5.3. A continuous-time stationary Markov Chain (CTMC) taking val-
ues in a finite set Σ is a CTSP which satisfies

µ ([a1, . . . , an]t1,...,tn | [a]s) = µ ([a1, . . . , an]t1,...,tn | [a]s ∩ [b1, . . . , bm]s1,...,sm) ,

whenever t1, . . . , tn > s, s1, . . . , sm < s and µ([a]s ∩ [b1, . . . , bm]s1,...,sm) > 0.

In this section, we prove:

Proposition 5.4. Any continuous-time (finite-valued) stationary ergodic Markov
random field is a continuous-time stationary Markov chain.

Note that in this statement, there are no positivity assumptions on the condi-
tional probabilities µ ([a1, . . . , an]t1,...,tn | [a, b]s,t).

We prove this result by reducing it to the discrete-time case.

Proof. Let µ be a CTMRF. It suffices to show that for any n ∈ N and t < t1 <
t2 < . . . < tn ∈ R

µ(xt | xt1 , xt2 , . . . , xtn) = µ(xt | xt1).

Let ε > 0. By the right continuity of the elements of RC(Σ), there exists m ∈ N
such that

|µ(xt | xt1 , xt2 , . . . , xtn)− µ(xt̃ | xt̃1 , xt̃2 , . . . , xt̃n)| < ε(5)

|µ(xt | xt1)− µ, (xt̃ | xt̃1)| < ε(6)

where for any r ∈ R, r̃ means drmem . Also, the process restricted to evenly spaced

discrete points forms an MRF; that is, defining φ : RC(Σ) −→ ΣZ by φ(x)i = x i
m

,

the push-forward of µ, given by µ̃(F ) = µ(φ−1(F )), is an (discrete-time) MRF. By
Theorem 4.1, µ̃ is a (discrete-time) Markov Chain. Hence

µ(xt̃ | xt̃1 , xt̃2 , . . . , xt̃n) = µ̃(φ(x)mt̃ | φ(x)mt̃1 , φ(x)mt̃2 , . . . , φ(x)mt̃n)

= µ̃(φ(x)mt̃ | φ(x)mt̃1)

= µ(xt̃ | xt̃1).(7)

By (5), (6), (7) and the triangle inequality, we get

|µ(xt | xt1 , xt2 , . . . , xtn)− µ(xt | xt1)| < 2ε.

Since ε was arbitrary,

µ(xt | xt1 , xt2 , . . . , xtn) = µ(xt | xt1).

�

We conclude this section with an ergodic-theoretic consequence. A measure-
preserving flow is a collection of invertible measure preserving mappings {Tt}t∈R of
a probability space such that Tt+s = Tt ◦ Ts for all t, s and the map (t, x) 7→ Tt(x)
is (jointly) measurable. Any CTSP is a measure preserving flow.

A measure-preserving flow is ergodic if the only invariant functions are the con-
stant functions, i.e., if for all t, f ◦ Tt = f a.e., then f is constant a.e. And {Tt} is
weak mixing (or weakly mixing) if it has no non-trivial eigenfunctions, i.e., if λ ∈ C
and for all t, f ◦ Tt = λtf a.e., then f is constant a.e.
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Weak mixing is in general a much stronger condition than ergodicity. However, it
is well known that any stationary ergodic continuous-time Markov chain is weakly
mixing [3]. So, a consequence of Proposition 5.4 is:

Proposition 5.5. Any continuous-time (finite-valued) stationary ergodic Markov
random field is weakly mixing.

Below, we give a direct proof of this result. For I ⊂ R, we use B(ΣI) to denote
the σ-algebra generated by cylinder sets of the form:

[a1, . . . , an]t1,...,tn = {x ∈ RC(Σ) : xti = ai , i = 1, . . . , n},
where ai ∈ Σ and ti ∈ Q ∩ I.

Proof. Suppose µ is an ergodic CTMRF on the alphabet Σ. Suppose that f is
a non-constant L2(µ)-eigenfunction of Tt, with λ the corresponding eigenvalue:
f(Tt(x)) = λtf(x). By the assumption that Tt is ergodic, λ 6= 1. By normalizing,
we can assume |f | = 1 a.e., thus ‖f‖2 = 1. For any ε > 0, there is a sufficiently
large n and a B(Σ(−n,n))-measurable function fn with ‖fn − f‖2 ≤ ε.

It follows that for any t ∈ R, ‖fn − Ttλ
−tfn‖2 ≤ 2ε. Now denote by f̂n the

conditional expectation of fn with respect to B(Σ{−n,n}). By the MRF property
of µ, since fn is B(Σ(−n,n))-measurable and Ttλ

−tfn is B(Σ(−n+t,n+t))-measurable
it follows that for t > 2n,∫

(fn)(Ttλ
−tfn)dµ =

∫
(f̂n)(Ttλ

−tf̂n)dµ.

It follows that

(8) ‖f̂n − Ttλ−tf̂n‖2 ≤ 2ε.

We claim that for sufficiently small ε it is impossible for (8) to hold simultane-
ously for all sufficiently large t. To see this, first note that due to the MRF property,

f̂n takes at most |Σ|2 values. Thus, there is some c ∈ C with |c| = 1 such that for

all x, |f̂n(x) − c| > 1
2|Σ|2 , and some d ∈ C with |d| = 1 with µ(f̂n(x) = d) ≥ 1

|Σ|2 .

Now take t > 2n such that λtd = c.
Now for any x such that f̂n(x) = d, let z = Ttf̂n(x). Then

|f̂n(x)− λ−tTtf̂n(x)| = |d− λ−tz| = |λtd− z| = |c− z| ≥ 1

2|Σ|2
,

and so ‖f̂n − Ttλ−tf̂n‖2 ≥ 1
2|Σ|3 . This contradicts (8) for ε < 1

4|Σ|3 �

6. MRF’s in Higher Dimensions

There is a vast literature on Markov random fields and Gibbs measures in higher
dimensions. Most of the concepts in this paper can be generalized to higher di-
mensional processes. For instance, we can define a Zd TMF as a Zd shift space
X such that whenever A and B are finite subsets of Zd such that ∂A ⊂ B ⊂ Ac,
and x, y ∈ X such that x∂A = y∂A, then there exists z ∈ X such that zA = xA
and zB = yB . With this definition, the proof of Lemma 3.3 carries over to show
that the support of a Zd stationary MRF is a Zd TMF. However, most of the other
results in this paper fail in higher dimensions. For example, there are Zd TMF’s
which are not even sofic. And there are stationary Zd MRF’s that are not Gibbs
measures. However, there are some positive things that can be said, and this is a
topic of ongoing work.
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