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Abstract—We develop methods for analyzing and constructing

1 1 1 1
combined modulation/error-correctiong codes (ECC codes), in 0 ®
particular codes that employ some form of reversed concatenation 0 0 0 0
and whose ECC decoding scheme requires easy access to soft

information (e.g., turbo codes, low-density parity-check (LDPC)
codes or parity codes). We expand on earlier work of Immink Fig. 1. MTR(j = 4).
and Wijngaarden and also of Fan, in which certain bit positions

are reserved for ECC parity, in the sense that the bit values in L . . .
these positions can be changed without violating the constraint. €ncoder. This is natural since otherwise the error-correction en-

Earlier work has focused more on block codes for specific mod- coder might well destroy the modulation properties. However,
ulation constraints. While our treatment is completely general, this scheme has the disadvantage that the modulation decoder,
we focus on finite-state codes for maximum transition run (MTR) - \yhjch comes before the error-correction decoder, can propagate
constraints. We 1) obtain some improved constructions for MTR .
codes based on short block lengths, 2) specify an asymptoticchannel errors bef.ore they can be corrected. For this reason, a
lower bound for MTR constraints, which is tight in very special 900d deal of attention has recently focusederersed concate-
cases, for the maximal code rate achievable for an MTR code nation shown in Fig. 3, where the encoders are concatenated in
with a given density of unconstrained positions, and 3) show how the reversed order. Special arrangements must be made in order
to compute the capacity of the set of sequences that safisty ay, angyre that the output of the error-correction encoder satis-
completely arbitrary constraint with a specified set of bit positions fies the modulation constraints. Typically, this is done by in-
unconstrained. e . : . ! ]
sisting that this encoder be systematic and then re-encoding the
parity information using a second modulation encoder, whose
corresponding decoder is designed to limit error propagation;
the output of this second modulation encoder is then appended
to the modulation-encoded data stream (typically, a few merging
. INTRODUCTION bits may need to be inserted in between the two streams in

N recording systems and communication systems, datz0rgler to ensure that the entire stream satisfies the constraint). In
I encoded via an error-correction code (ECC), which enable&der to distinguish between the two modulation encoders, we
correction of a certain number of channel errors. In many suéfll the first one thelata modulation encodeand the second
systems, data is also encoded into a constrained system ofPity modulation encodeiof course, we also have the corre-
quences via a modulation code, which helps to match the cod@®nding decoders. In this scheme, after passing through the
sequences to the channel and thereby reduce the likelihoodd@nnel the modulation-encoded data stream is split from the
error. modulation-encoded parity stream, and the latter is then de-

Prominent examples of constrained systems are the m&gded via the parity modulation decoder before being passed
imum transition run (MTRY)) systems [17] defined by the ON to an ECC decoder. In this way, many channel errors can be
requirement that the maximum run of consecutii@is j (see corrected .b.efor.e passing through the data modglation decoder,
Fig. 1 with j = 4) and the well-known run-length limited thereby mitigating the problem of error propagation. Moreover,
(RLL(d, k)) systems. While we will restrict ourselves in thidf the data modulation encoder has high rate, then the overall
paper mainly to binary systems, the results carry over easily%_heme will still have high rate because the parity stream is rel-
constrained systems over any finite alphabet of symbols. ~ atively small.

In principle, the data can be encoded with one encoder thafNOW. suppose that for decoding the ECC scheme requires
imparts both error-correction and modulation properties. But §9ft information, say on the bit level. For instance, the ECC
practice the combined properties are achieved by cascadingf8H!d be a turbo code, low-density parity check (LDPC) code
error-correction encoder with a modulation encoderstan- [15], or a simple parity code [6]. In reversed concatenation,
dard concatenationshown in Fig. 2, data is first encoded byafter passing through the channel, the data modulation encoded

an error-correction encoder and then encoded by a modulatf$fgam is passed directly to the ECC decoder, and so soft in-
formation for each bit in this stream becomes readily available.
_ _ However, this is not necessarily so for parity bits; the informa-
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Fig. 3. Reversed concatenation.
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Fig. 4. Wijngaarden—Immink scheme.

parity modulation encoder is required to be systematic (this doesAnother way to look at this code is as follows. If we delete the
incur an additional rate penalty, but applied only to the relativethird and fifth positions, then we obtain a lendifiplock code
small parity portion). For instance, for the MTR(constraint,
one can use the rafe: j + 1 systematic parity modulation en-
coder which simply inserts @ after every; bits—see Fan and

Cioffi [7], [8]. Inserting the two parity bits then weakens the constraint to

In a related approach [21] (see also [20] and [13, pR/ITR(j = 2). So, the idea is that given a desired constraint

1.03_105])’ WungaarQen _and Ir_nmlnl_< introduced q concater\% first construct a modulation code for a more restrictive con-
tion scheme, shown in Fig. 4, in which a modulation encod

&lraintS” and then insert parity bits which result in sequences

produces constrained sequences such that certain bit posit%§ satisfyS

:[':1hre uncon_?_tramed |r]1|_the 3ense tkl[aftl_whe(;\e_ve(; the Z't v;luis "this Wijngaarden—Immink scheme is the subject of our
OS? p_o? 1ons ?re_ I'F;pg é(ggo '.fp? f) n etPe” egt Y E%per. In fact, the title of our paper is a slight modification of
constraint 1S not violated. parity information, obtaiN€d e qtinn title in their paper. Variants of this scheme have also

from a systematic ECC encoding of the data modulation €aen considered by [7], [8], as well as [2]

COdfe.d strea}m can,'ther_efore, be inser'ted into the unconstrain he focus in [21] was on block codes, in particular simple,

posmon; without violating the. constraint. combinatorial constructions of low complexity for very spe-
Asa S|mplg example, c0n5|der the lengithlock code [21] cial constraints (I, k)-RLL constraints and somé,(G/I) con-

for the MTR(j = 2) constraint straints). In contrast, here we consider the more general class of

finite-state codes for completely general constraints (although

in the first few sections, we emphasize MTR constraints, which

Note that all concatenations of these words satisfy the MER( are equivalent to(), k£)-RLL constraints). Our intent is to com-

2) constraint; moreover, this still holds if the bit values in théine the various approaches for easily providing soft informa-

third and fifth positions are flipped independently. We view thison to an ECC decoder.

as aratel : 5 modulation code with two bit positions reserved As mentioned in [21], this scheme can alternatively be used

for ECC parity. purely for modulation code construction (without regard to error

{100, 010}

all of whose concatenations satisfy the MR{ 1) constraint.

{10101, 01101}.
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correction). For instance, the rate 5 block modulation code to S. It is well known that any constrained system can be pre-
with error-correction capability above can be viewed as a ragented by a deterministic graph [14], [17].

3 : 5 modulation code without error-correction capability. Such Let S be a constrained system¥ a positive integer, and

a code has the advantages that encoding is completely trivial@rc {0, ..., N — 1} (the notation ¥/” is supposed to suggest
the unconstrained positions and channel errors on the unctldnconstrained,” and’/ will sometimes be called thencon-
strained positions do not propagate at all. strained set We say that a word’ is al/-flip of z if

Our paper is organized as follows. In Section Il, we lay
out the basic concepts regarding constrained systems with
unconstralne(_i positions. In Section Ill, we SpeCla“Ze tﬁ)] other WOTdSl’/ is obtained fromz by independently fllpplng
MTR constramt_s _and show that for codes_ based on “sho@;r not flipping) the bit values in positions
block lengths, finite-state coding constructions can, in some
situations, improve upon the performance of block coding {i:imod N € U}.
constructions given in [21]. In Section IV, based on bit-stuffin ) ) ,
we specify an asymptotic lower bound on code rate for MTR'® U, V)-unconstrained version df, denotedSy, v, is the
constraints with a given density of unconstrained position%‘.at of all sequences € 5 such that
This bound is tight for; = 1 andj = 2, but is not tight for 1) z; = 1foralli mod N € U
generalj.

In Section V, we give a brief review of standard background
on the notion of follower sets for constrained systems. In Sdote thatin the unconstrained positions, the bit value is forced to
tion VI, given an arbitrary constrained systéhand subsel/ of ~ be “1,” but this was arbitrary: we could have just as well chosen
integers modulo some integ&¥, we use follower sets to con-“0" or made a random, but fixed, assignment of bit values in
struct a finite-state graph which presents the unique maxintBese positions. These positions are unconstrained in the sense
subsystem of such that any positiohmod N € U is uncon- that we can independently change the bit values without vio-
strained. In principle, this enables us to compute the maximating the constraint. In fact, if we augmesit, » by throwing in
possible rate of a code that satisfies a given constraint and is 8hpossible such changes, we obtain the unique maximal subset
constrained in a specified set of positions. While the construgf S which contains every/-flip of every element ofS. The
tion in this section is very general, it can be rather complicatei@tio |U|/N is called theparity insertion rate(or simplyinser-

In Section VII, some simplifications are considered. Finally, ition rate) because it represents the percentage of positions in
Section VIII, we show how to simplify the construction evenvhich ECC parity information can be inserted without violating
further in the case of finite memory systems. the constraint. Note thafy y = SandSy, .. y—13, v =0 un-
lesssS itself is unconstrained.

One more piece of notatiorEU, ~ denotes the set of se-
guences iy, of length exactlyV.

Afinite directed labeled grap® (or simplygraph) is afinite ~ If 0 € U, thenthe position8, IV, 2V, ... are unconstrained.
collection of states and transitions, with each transition havif. the truncation (say, by deleting the first symbol) of a word
an initial state, terminal state, and label; the notatlofi~.J in Sy, v need not belong t6, v, and soSy, y need not be a
signifies a transition from statkto stateJ with labela. A col- ~ constrained system. But this is the only way in which it fails to
lection of transitions is said to bgarallel if they all have the be a constrained system. We could remedy this by throwing in
same initial state and all have the same terminal state. A grapHigcations of words iy, v
deterministidf for any given state and any given symbol, there In Section VI, we will show that there is a graghy, x with
is at most one outgoing edge with the given symbol as label.the following properties:
graph@ hasfinite memoryl/ if whenever any two paths i .
of lengthAf have the same label sequence, they end at the same,
state.

x}, = z; whenevet mod N ¢ U.

2) all U-flips of = belong tosS.

Il. BACKGROUND AND BASIC DEFINITIONS

Gy, y is deterministic;
Gy, y has periodN (i.e., the states are divided int¥

A binary constrained systerfi is a set of finite sequences, d|SJ|9|nt”pr}ases{0, " h’ N_t 1Eh with t:a:nSItIOI’]S moving
calledwords with alphabet{0, 1} defined as the set of label cyclica y. .rom one_p f”lse_ 0 the next);
sequences obtained by traversing paths of a gfapie say « the transitions beginning in all phasesiéthave all out-

that the constrained systefhis presentedby G. Constrained going edges labelett
systems that have a finite memory presentation are chifiite * Sy, ~ is the set of words that can be generated starting in
memory systen systems of finite typ&xamples of such sys- phase0.

tems include the RLL and MTR constraints.
We will typically write a word as a sequence of symbols o
length¢

he special case @¥y;, y for MTR constraints is described in
ection Ill.
The capacityof a constrained system is defined as

T =%To - Te—1- Cap(S) = nh_l)lgo(l/n) log(N(n, S)) (2)

We usez™ to denote the concatenation ofcopies ofz. Note where N(n, S) is the number of words of length in S (the
that the truncation of any word if must necessarily belonglog is log,). The capacity can be computed as ibg of the
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largest eigenvalue\( A(G)), of the adjacency matrid(G) of phase 0: ®
any deterministic presentati@® of S [22]. ForS = MTR(j), 0 J ! J 1 o 1 J
the adjacency matrixt = A) of the standard presentation of \.

Sisthe(j + 1) x (5 + 1) matrix whose superdiagonal and
first column consist entirely of ones (with zeros elsewhere). For
instance, forj; = 4, we have 1

1 1

phase 2:
of N ¢ 0 0 0
hase 0 No Ve Ve Ve

Fig. 5. Gy, ~ for MTR(j = 4), N = 3 andU = {1}.

phase 1:

A=AW =

L = N =y
OO O O
OO OO
OO~ OO
O =R O OO

This matrix is the adjacency matrix of the graph in Fig. 1.
It is well known thatCap(S) is the maximal rate of an en- IIl. SHORT CODES FORMTR CONSTRAINTS

coder from unconstrained sequences into sequencgqf]. For the MTR(j) constraintSy;, v is the set of sequences that

Of course, the encoded sequences are required to satisfy 488 be generated from phasi the graphy. v, described as
constraint, not only within each codeword but across codewagiiows.

boundaries; in particular, for a block code, the codewords must ) )
be freely concatenable without violating the constraint. * States:j + 1 states in each oV phases
For finite-memory systems, decoding can be accomplished {(0,i):0<L<N—-1,0<4<j}.
via a sliding-block decoder [1]. Even if the constrashis of fi-
nite type, the systerfi;; x need not be of finite type—roughly
because of the multiple phases. However, these sysfems
do belong to a larger class of constrained systems for which ¢ Transitions: Beginning in any phasé ¢ U, we have the
sliding-block decodability is always achievable, but at the ex-  transitions
pense of considerable added complexity. Instead, our construc- (£, %) L, (¢+1mod N, i+1), if ¢ < j
tions of finite-state codes for these systems will be sliding-block o
decodable in a weaker sense: we will allow the decoding func- (£, ) = (£+ 1 mod NV, 0)
tion to vary from phase to phase; that is, even if the same con- and beginning in any phage= U we have the transitions
strained sequence can be generated from more than one phase,
we will allow the decoding to depend on the phase, implicitly
assuming that the decoder has access to phase information (i . o .
most applications, this is a reasonable assumption). We remEIrkEOSr xv-ﬂﬁ(tlhe: i)aivé ;;gi?glfe:ti;—]gttgésﬂlst(')”u;:gtsgtt'gm)
that for finite-typeS, the systems$y n are natural examples of ?n an hase’pgz U the transﬁions mimic thosz of the stan-.
periodic finite type (PFT) systems of Moision and Siegel [23]dard y P X ! P T
) g . i presentation of MTR] (as shown in Fig. 1 fof = 4), but
While Sy, v is not literally a constrained system, we ca ass from phaséto phas¢/ + 1. In any phasé € U, the next
define its capacity just as in (1), and this coincides Wit sumbol is constrained to belabut must allow for the
_k’g()‘(A(GU: ~))) (because if we throw in truncations of Wc_’rdspossibility that thel can be flipped to & without violating the
in Sy, v, then we get an honest constrained system wWitholfh\qyraint: thus, the transition outgoing from stétes) must

changing the growth rate). Thus, capacity gives us the maximaly 4t the “more severely constrained” of the two possibilities:

possible rate of an encoder which produces sequences @a}r 1,i+1)or(£+ 1, 0), namely,(¢ + 1, i + 1) (provided
satisfy the constraint and allow the positions mod N € U of cou7rse, that < j; otﬁerwise, there is né) transition).

to be unconstralned. . ) Reference [21] gave many nice low-complexity constructions
When X is large, Gy, v will necessarily have many states ¢ 1,0k codes for RLL, j) constraints and therefore (by bi-
However, an encoder fdfy, v need not use alV phases. For 5., complementation) for MTRY constraints. But given the
instance, a ratg : N encoder need use only one phase. Ifann,, - one can consider applying finite-state construction
general, aratg : ¢ encoder need use only methods to yield finite-state codes [22]. It is then interesting to
compare the resulting finite-state codes with the earlier block
N ) codes.
ged(HV, g) One way to do this is as follows. For a given codeword length
gand a given number, setV = gand ask whatis the maximum
phases o7y, n; each of these encoder phases can be viewedrasnberm possible for a rater : ¢ block code and finite-state
a ratep : ¢ finite-state machine with initial states in one phaseode which satisfies the MTRY constraint and allows fot
and terminal states in another phase [4]. As mentioned abowuaconstrained positions in each block of length= q.
we allow the sliding-block decoding function to vary from phase For block codes, an application of a result of [11] shows that
to phase. the maximumm is thelog of themax of certain sums of entries

Herei represents the number of preceding consectutwve
and/ represents the phase.

(0,i) 2= (¢+1mod N,i+1), ifi<j.
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TABLE | TABLE I
FORMTR(; = 3), MAXIMUM NUMBER m OF INFORMATION BITS FORGIVEN RATE 8/9 CODES FORMTR(j = 4)
LENGTH¢ = N AND NUMBER u OF UNCONSTRAINED POSITIONS scheme length code parity window #states
g |u|m (block) | m (finite state) | window | #states rate | insertion rate | (bits)
812 4 5 2 2 #1 (block) 18 |8/9] 1/18 ~.0556 18 1
8|1 6 6 1 1 #2 (block) 45 | 8/9 | 3/45~.0667 | 45 1
8]0 7 7 1 1 #3 (finite state) | 9 | 8/9 | 1/15 ~ .0667 18 26
9 ]2 5 6 2 3 #4 (finite state) | 9 | 8/9 | 2/27~ 0741 27 32
911 7 7 1 1
9 [0 8 8 1 1
ig f g ;’ f ‘1‘ very low complexity of the Wjingaarden—Immink constructions
10]0 9 9 1 1 [21].
1112 = 8 3 1 For the codes in Table I, the codeword lengtvincides with
1111 3 9 3 2 the IV in the definition ofSy;, 5, and so the parity insertion rate
11{0 10 10 1 1 is alwaysu/N = w«/q. According to the discussion at the end of
1212 8 9 3 13 Section Il, this has the advantage that only one ofthghases
1211 9 10 2 3 need be used in the construction of an encoder. On the other
i?, g 191 191 i i hand, in this case, we must have+ <4, for otherwise we
131 10 11 2 ) would have a ratg : ¢ encoder that satisfies the constraint. In
1310 11 12 2 ) particular, ifw > 1, we can never have a rage— 1 : ¢ code

(indeed, this is consistent with the results in the table). On the
) . ) other hand, if we allow the possibility df > ¢ it is possible to
of powers of the adjacency matrix: for MTR_@ 3), this turns - nstruct codes with ratg— 1 : g andu > 1.
out to be thdog of themax of the four quantities For this purpose, we now consider the constrasht—
AL, AL+ AL, Af o+ AL+ AL, MTR(j = 4) (a “reasonably well-constrained” system for
Ag ot Ag 4 Ag , +fl§ , recording applications), and we compare codes at§#fe(a
. : : : : “reasonably high” rate for combined modulation and ECC in
whereA is the adjacency matrix @y, y and the indice$i, i) a recording application), but allowing for the possibility of

of A refer to state$0, i) and (0, #') in Gy, x. N > 0.
For finite-state codes, an application of [1] shows that the Table Il presents a list of four ragg9 codes for MTR( = 4).
maximumm is |log(A(A9))]. The first code is a block code with the shortest block length

Table | reveals that, for MTH(= 3) and some choices of 4 that permits a nonzero parity insertion rate and code rate at
8 < ¢ < 13and0 < u < 2, the numbern can be increased if least8/9. Here,q = N = 18 and the parity insertion rate
one allows a finite-state code rather than a block code (see iba /18 ~ 0.0556 (the encoder operates at raté : 18). It
bold-faced entries in the table). The column labeled “windowtlirns out that if one wants to strictly increase the insertion rate,
shows the length, measured in numbegdflocks, of the de- but still keep the code rate at least9, then for a block code,
coder window for the finite-state code (of course, the decodgie block length must increase jo= N = 45. For this code,
window for a block code is alwayk). The column labeled “# one can arrange far = 3 and so the insertion rate 45 =
states” shows the number of encoder states for the finite-stagg5 ~ 0.0667. However, the large block length means that
code (of course, a block code has only one state). The entriegfitoding is probably very complex. On the other hand, the same
these columns are determined by finding an approximate eigeode rate §/9) and insertion ratel(/15) can be achieved via a
vector and corresponding state splitting [22]. finite-state code (code #3) with block length omly= 9 (here,

One can then evaluate tradeoffs between the block codes ane= 15 andw = 1). Moreover, the decoder window has length
finite-state codes. For instance, the ratel1 block code with = two 9-bit blocks, and so is comparable (in number of bits) to
u = 1 can be compared against the rgte 11 finite-state code #1 (and much shorter than that of code #2). Also, according
code withu, = 2. Here, the finite-state code has twice the errap (2) only five of the 15 phases need be used for an encoder,
correction power of the block code, but the former has to cop@d it turns out that such an encoder can be constructed with
with some error propagation. For bursty channels, the finitesughly five states per phase. Finally, code #4 again has block
state code would probably perform better. lengthq = 9, code rate= 8/9, and further improved insertion

One can also compare the rate: 10 block code against rate2/27 =~ 0.0741. But this code probably requires a larger
the rate9 : 11 finite-state code, each with = 1. Here, the decoding window (three 9-bit blocks).
block code will have better error protection (one parity bit per Actually, for MTR(j = 4), one can comput€ap(Sioy, 15) ~
10 bits versus one parity bit per 11 bits) and will not have ©.901. This suggests trying for a rafe: 10 modulation code
cope with error propagation, but the finite-state code will hawgith parity insertion rate= 1/15—thereby improving the rate
a higher rate. In a low-SNR regime, the block code may be s/9) of code #3 above. Moreover, according to (2), the encoder
perior, while in a high-SNR regime the finite-state code may hgeed use only
superior.

The entries in the table indicate that even the finite-state codes 15

are not terribly complex. But in general they will not match the ged(15, 10) =3
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of the 15 phases of(y; 15, however, estimates using an apThus, the code rat8/9 can be achieved with insertion rate

proximate eigenvector [22] show that such an encoder will hawestrictly larger thar.0741. Indeed, setting (4) equal &/9,

an average of at least 37 states per phase, yielding a total o$@ltiing forw, and then solving fox in (3), we getr = 0.0793;

least 100 encoder states (and possibly many more). so we can achieve code ra&¢9 with insertion rate as high as
Of course, everything we have done in this section for MTR0793.

constraints applies equally well {®, k)-RLL constraints via ~ For.S = MTR(3) and parity insertion rate, letgs(x) denote

binary complementation. the code rate obtained by the weighted averagdelf-stuffing
and(k + 1)-bit-stuffing, described above. According to (4), the
IV. LONG CoDES FORMTR CONSTRAINTS graph ofgs(z) is the piecewise-linear curve that connects the

In Section Ill, we considered codes for MTR constraint§+ 1 points
based on relatively short block lengths. For instance, for « (0, log);)
MTR(; = 4) and code rat&/9, we found a code with parity
insertion rate approximatel9.0741. The encoder had block
lengthg = 9 and the decoder had a window of at most 27
bits. We can improve upon the insertion rate, at the expense
of increasing the block length, by the following construction, is1 o
essentially due to [7], [9]. T 741 log )‘1)

For0 < k < j, we say that a string is/abit-stuffing-MTRj) . (4 1 lom\ ) _ (; 0)
stringif it is obtained as follows: begin with a stringthat satis- T 10870 gt w )
fies the MTR( — k) constraint and subdivideinto intervals of This is illustrated in Fig. 6 foj = 4. Each point where the
sizej — k + 1; then, in between each of these intervals insertsfope changes is indicated by an™The point plotted as “0”
string of & ones. The resulting string satisfies the MFR¢on- is (0.0793, 0.8889), indicating that a weighted average of two
straint and has parity insertion rate= ﬁ The set of all such bit-stuffing schemes can achieve code r@té with insertion
strings of a fixed lengthV can be viewed as a block code, andate approximately.0793 (as mentioned above).
the asymptotic optimal code rate of such codesyas- oc, is One might imagine achieving still higher rates by using a
J;J’f{l log A;_1 (where),,, denotes the largest eigenvalue of theveighted average of more than two of the bit-stuffing schemes
standard adjacency matti¥™ forthe MTR¢n) constraint). Of mentioned above. However, Fig. 6 suggests thdt:) is con-
course, if we want to ensure that free concatenations of codave, and so this would not yield any improvement. Indeed, this
words also satisfy the constraint, then we must ad@’dlt at  is the case.
the end of the entire string.

If the desired insertion rate is not a multiple ofﬁ, we
can construct a code via a weighted average of two bit—stuffiq%ge domain of pointd0. _L i 1), Thus, for parity in-
schemes: if-f7 < « < %4, consider a weighted average of e ¢ P :{ PR kjl-i]?} - 1hus, for parity
k-bit-stuffing-MTR(j) and(k -+ 1)-bit-stuffing-MTR(j): subdi- Sertion rater with =5 < = < 777, the weighted average of
vide an interval of some large lenginto two subintervals and #-bit-stuffing-MTR(y) and (% + 1)-bit-stuffing-MTR(;) yields
do k-bit-stuffing in the first subinterval angk + 1)-bit-stuffing & strictly higher code rate than any other weighted average of

in the second subinterval; the subintervals should have lengfisstuffings.

o log i)

(5
(j%, i log Aj_o
(

~

[SSTE
=

L]

Proposition 1: For all positive integerg, the functiongs(x)
is concave on the domaif, JJ?] (in fact, strictly concave on

(1 — w)N andwlN, where Proof: Since concavity is not affected by an affine change
X of the independent variable, the proposition is equivalent to the
w = YT 3) following lemma, which we prove in the Appendix. O
= T
J+ Lemma 2: The function
_Note that the asymptotic optimal code rate of such block codes ki klog(M_1) (5)
is
P P is strictly concave on the domain of positive integers.
(1 )*‘] k+110)\ +( )*‘] klo)\ 4)
—w EEEre— Ak w A _k—1- . . o . .
Jj+1 8 A=k Jj+1 8 Aj—k-1 At this point, it is natural to ask if weighted averages of these

Again, in order to ensure that the resulting strings satisfy tiéi-Stuffing schemes are optimal, i.e.gif(z) is the asymptotic

MTR(j) constraint, we need to insert 8”bit in between the ©Optimal rate of codes that satisfy the constraint MTR(j)

two subintervals. for a given insertion rate. This turns out to be true for very
For MTR(j = 4), the parity insertion rate = 0.0741 lies in special cases (see Theorem 3 later). However, it is false in gen-

between-2- = 0 and-1; = 1/5. Thus, this insertion rate can€ral- For example, fof = MTR(j = 4), N' = 14 andl/ =

be realized via a weighted averageoebit-stuffing and1-bit- {2 3, 7, 8, 11, 12, 13} (and soz = 0.5), it turns out that

stuffing with weightw ~ 5 % 0.0741 ~ 0.3705 (according to  Cap(Su, ) ~ 0.4031, yet gs(0.5) ~ 0.4026. We leave, as

(3) with & = 0). This yields an asymptotic code rate, as in (4N OPen problem, the question of whether or not there is a larger

of approximately class of simple bit-stuffing schemes that completely describe the
optimal coding schemes (for al).
(1—0.3705) * 1 % 0.9752 + 0.3705 * (4/5) x 0.9468 We pause to put this in a more formal setting. Recall that

~ 0.8945 > 8/9. Sy n denotes the set of sequencesin y of length exactlyV.
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0.1

0 ] ] I 1 1 | ] 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
insertion rate

Fig. 6. gs(x) for MTR(j = 4).

Given a constrained systefhandx € [0, 1], let fs(z) denote  We give a complete proof of this fgr = 2 as follows (the
the limiting, asNV — oo, optimal code rate with parity insertion proof for j = 1 is considerably easier). Recall th&t’’ denotes

ratex. Precisely the standard adjacency matrix for the MR¢onstraint; in par-
g ticular
log [Su,
= 1 d ’ . 6
Js@) =B o vy N (©) o [EL0
Of course, this makes sense only for rationalNote that since A=A47= 1 8 (1) @)
Ca (Sv ) < 10g|§kb’,k1\f ' '
P\OUN) = EN Let B = BY denote the matrix obtained from®) by re-
it follows that fs(z) dominates the rate of any finite-state cod®lacing all entries of the first column by zeros; in particular
into the constraintSy; x with [I/|/N = z. Moreover, it also 01 0
dominates the rate achievable by any scheme based on reversed B=B@—-10 o 1. (8)
concatenation (Fig. 3) with the parity modulation encoder re- 0 0 0

quired to be systematic (such as that studied by Fan [7], [
or the Wijngaarden—Immink scheme [21] based on insertion
parity bits discussed in the Introduction.

For MTR constraints, it is not possible to achieve insertio
rates above+ : forif = > 47 and/ is sufficiently large, then M = MoM; --- My_1,
a subdivision of any string iy, y into consecutive nonover- whereM; = Bift e Uand M; = Aifi g U. (9)
lapping intervals of lengthi+1 will contain at least one interval g1, entry of/ represents the number of sequenceSiny
consisting ofj +1 ones, and so would violate the MTRCON- 14t hegin with a restricted set of prefixes and suffixes; specifi-
straint. Thus, fois = MTR(j) andx > 547, we havefs(x) = cajly, A7, , is the number of sequencesSi.  that begin with
—oo. Clearly, for0 < = < 547, we havefs(z) = gs(x) and  at most3 — « ones and end with exactly — 1 ones. It then
both fs(x) andgs(x) are concave. However, as we said abovggllows that the sum of the entries in the first row bf is ex-
equality does not hold in general, although it does hold in veggtly the total number of sequences of lengthhat satisfy the
special cases. MTR(5) constraint with the position& unconstrained

Theorem 3:Forj = 1andj = 2and0 < z < B ~ 3
[Su.n] = (MT), =30 My,
fs(@) = gs(a). 2

ven a lengthV, a parity insertion rate € [0, 1] and a spec-
fication of unconstrained positiords C {0, ..., N — 1} with
W|/N = z, define the matrix
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(here,1 denotes the column vector consisting entirely of ones). V. FOLLOWER SETS OFCONSTRAINED SYSTEMS
The crux of our proof of Theorem 3 is the following lemma,

which is proved in the Appendix. In this section, we briefly summarize some background on

follower sets for constrained systems. For a more thorough treat-
Lemma 4: There is a fixed constank, satisfying the fol- ment, the reader may consult [14] or [22].
lowing. Given a lengthV, a parity insertion rate € [0, 1] and Given a sefS of finite sequences and a finite sequencéhe

a specification of unconstrained positidisC {0, ..., N—1} follower setof « is defined as follows:
with |U|/N = z, let M be the matrix defined in (9). Then there
is a matrix of the form F(u) = Fs(u) = {finite sequences: uv € S}.
M' = A®™(A?B)"2(AB?)" (10)  we allow to be the empty word, in which case the follower
such that set is all ofS. Note that ifu does not occur irf, thenF(u) is

empty. Any constrained system has only finitely many follower

1) M1 < M1,
sets [14], [22].
2) the number of occurrences 6fin (10) is within Ko of  since a constrained system typically has infinitely many
zN, and words, many follower sets must coincide with one another. For
3) the number of occurrences dfin (10) is within K, of example, for the constrained system MFRpe follower set of
(1—x)N. a word depends only on its suffix of lengthin fact, this system

has only;j+1 follower setsF(0), F(01), F(011), ..., F(1%).
The follower sets can be used to manufacture a special presen-
%&iona , called thefollower set graphof a constrained system
S. Namely, the states a@¥ are follower sets and the transitions
ny, nNa N3

Ho ™ Hy™ Ho are

wherepg, 111, andy, are the largest eigenvalues4B?, A%B,
and A2, respectively. We claim that

Proof of Theorem 3 foj = 2: It follows from Lemma 4
(part 1) and Perron—Frobenius Theory [14, Ch. 4] that, up t
fixed multiplicative constant)/1 is dominated by

F(u) - Flua), a€{0,1} 12)

fo=2Xo, p1=2A], p2=A3 provided thai.a occurs inS. Note in particular that the follower
(recall that\,,, denotes the largest eigenvalue of the adjacengg! 9raph is deterministic. Note also that whenever a wad
matrix A(™). This follows by straightforward computation (inth€ label of a path in the follower set graph ending at stte),

fact, more generally, for arbitragyando < k < j, one can use W& Must have¥(v) C F().
the recurrence relatiofi,, = f_1 + --- + fn_;—1 to show Some follower sets are helpful for proofs but not so much for
T Jm— m—j—

that(AU)*+1(B())i~k is a2 x 2 block triangular matrix with code construction. Clearly, the follower set of the empty word
diagonal block®) and(A™)¥+1, and so indeeg;, = )\§+1)_ is an example—more generally, so is any follower set that has

So, up to a fixed multiplicative constant/T is dominated by ~"© INcoming edges or no outgoing edges. _
An irreducible graphis a graph such that for any given

ATTATEAGE. ordered pair of states, .J there is a path in the graph from
Let I to J. Any graph can be decomposed into irreducible sub-
graphs (calledrreducible componenjdogether with transient
N’ =3n1 + 3n2 + 3ns. connections from one component to another. iAkaducible

_ constrained systens a constrained system such that for any
Then*2l>¢. vl i dominated by a weighted average of the Nungiven ordered pair of words andv in S, there is a wordw
bers such thatwww is also inS. It turns out that any irreducible con-
5 1 strained system can be presented by an irreducible component
{log(X2), 3log(A1), 5log(Mo)} of its follower set graph; this component is sometimes called
theirreducible follower set graplfil4].
Most constrained systems of interest are irreducible. For in-
dni 3ng 3ng stance, the irreducible follower set graphs of some MTR and
{ N’ N N’ } RLL constraints are given in Fig. 7 and 8. These agree with
the standard presentations that are usually given for these con-
straints (in particular, Figs. 1 and 7 agree).

Sometimes the irreducible follower set graph agrees with the
3ny *9 3na *1 Ing . 2 _mat2ng (11) follower set graph itself (for instance, for MTR constraints),
N 3 N 3 N 3 N and sometimes the irreducible follower set graph is obtained by
According to Lemma 4 (parts 2 and 3), the numerator (respeunerely deleting the follower set of the empty word (for instance,
tively, denominator) of the right-hand side of (11) differs fronfor RLL constraints). But quite often more follower sets need to
«N (respectively/N) by at mostK, (respectively2Ky). Thus, be deleted.
asN — oo, the right-hand side of (11) tendso Sincegs () As another example, Fig. 9 shows the irreducible follower
is continuous and concave (Proposition flg(x) is dominated set graph for the constrained system, defined by requiring that
by (and hence equal tg) (). [0 runlengths of zeros be congruent to eithenr 1 modulo3.

with weights

These same weights applied to the numbigrs3, 1/3, 2/3}
yield
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F(0) 1 F(01) 1 J‘—‘(Oll)1 F(0111) 1 F(1111) Proof:
0 ® ® Part 1: To show that the transitions are well-defined we must
ﬁ 0 0 j verify that whenever € {0, 1} and
Flup) NN Flug) = Flup) N0 Flul,) 13)

Fig. 7. Irreducible follower set graph for MTR(= 4). we have
Flura) N -+ NFluga) = Fluia) NN F(u,a). (14)

F) o 710 4 ]:200) 0 f(;OOO) 0 j;(OOOO) To see this, observe thatifbelongs to the left-hand side of (14),
L J j 1 j thenav belongs to the left-hand side of (13) andaobelongs
to the right-hand side of (13) and sdelongs to the right-hand
side of (14).
Fig. 8. lIrreducible follower set graph f¢il, 4)-RLL. Part 2: Suppose that = zq---x¢_; iS the label of a se-
guence of transitions iy x beginning in phase. Then,z

F(1) o F(10) 5 F(100) S becauser is the label of a sequence of transitions in the fol-
lower set graph of. Now, since the transition at phases U
are all labeled, it follows thatz; = 1 for eachi mod N € UJ.
According to the definition of5y;, x, it remains only to show
Fig. 9. Irreducible follower set graph for systefwith zero runlengths= 0 that anyU-flip of « belong,s tas. For this, conglder the graph
or 1 mod 3. formed fromGy, xy by adding a parallel transition labelédo
each transition beginning in each phasé/inBy construction,

VI. PRESENTATION OFGENERAL CONSTRAINED SYSTEMS ~ €Very sequence presented by this augmented graph is the label

WITH UNCONSTRAINED POSITIONS of a sequence of transitions in the follower set grapltt oft
i i i follows that anyU-flip of « belongs taS, as desired.

In this section, we show théf;, N_|s the set of all sequences For the converse, we show that any= o - - z,_; € Sy, x
th.at can be generated fror_n a pgrtlcular phase of a gtaphy can be presented by a sequence of transitio6giny beginning
with period V. This graph is defined as follows. in phasen. In fact, we claim that: is the label of such a path

« States:All pairs of the form(¢, F) where ending at stat¢/ mod NV, Nyy-gips yof 23 F (¥)). We prove this
telfo,....N—1) by induction on the lengtld of x. For the base casé = 1,

. . ) . this follows from the fact that the empty word is allowed as a
andF is an intersection (possibly empty) of one or morg,ower set.

follower sets ofs

So, assume this is true fér— 1, and writez’ = zg - - - T¢_o.
« Transitions: For/ ¢ U, we have the transitions Sincex € Sy, n, for any U-flip y of «, we havey ¢ S. If
(6, Flur) 0N Flug)) £—1mod N g U, then/the set of sucH-flllp_s is the_set of ?II
a words of the formy = v'x,—1 € S wherey’ is aU-flip of «’.
— (¢ +1mod N, F(uia) N---N F(ura))  Thys, we have the transition
provided that: belongs taF (uy)N- - -NF (ug,). Fors € U, (£ = 1mod N, N(rr-ipsy o2y F(¥))

we have the transitions To_1
(4, Flu) N0 Flur) . L mod N Mg ety F(0)
L inGy, n. If £—1mod N € U, thenz,_; = 1 and the set of
— ({+ 1 mod N, F(u10) N -+ N F(ur0) U-flips of z is the set of all words of the form = y/a € S
NFul)N---NFlukl)) wherey/’ is aU-flip of 2’ anda is either0 or 1. Thus, we have
provided that botl and1 belong taF (u;) M- - -N F(uy). e transition

- T=f7 YL ' !
For a particula¥, the states of the forrf¢, F) constitute the'th (€= 2mod N, Our-tipsy oty (1)

1
phase()f Gu N — (Z mod N7 m[U'ﬂipsyof xz} F(y)) .
Note that for each statg/, 7), 7 is an actual intersection Thus,z = =z - - -z,_; can be generated by a sequence of tran-
of follower sets; so, if two distinct collections of follower setssitions in(¢y;  beginning in phase. O

have the same intersection, then they define the same state in ) ) ] )
each phase offy n. Sometimes there are ordering relationships between follower

For givens, I/ and N, the following result gives a graphical sets that make for far fewer intersections of follower sets than

description ofSy: y and, in principle, allows us to compute thdMght be expected. For instance, consider the casdinéarly

maximum possible code rate for a modulation code which eprderedconstrained system, i.e., a constrained system such that
codes intaS and allows for the positionsmod N € U to be for any pair of follower sets, one is contained in the other. Then
unconstrained. the intersection of any collection of follower sets is a follower

set itself. Prominent examples of such systems are RLLY
Theorem 5: and MTR()) constraints. For MTR{( = 4), a comparison of the
1) The transitions of+y; x are well-defined. irreducible follower set graph in Fig. 7 with the graphy; » in
2) Sy, v isthe setof all sequences that can be generated fréiig. 5 shows that indeed in each phase there is one state for each
phasel in Gy, . follower set.
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Finally, recall thatSy, y denotes the set of all sequences of(0,7(1)) 1 @FQ); GFQ) | GFQ); (0,7Q1)
paths of lengthV in S; x, and saSy;, v is the set of all label se- o ® L4 ® ® ®
quences of paths iy, x that begin at0, F(¢)). It follows that (L,FQ) nF(10) \
the size| Sy x| of this set can, in principle, be computed from 0 1

the adjacency matrix @y, . Note that- = [log(|Sv, x|)| /N (3,F(10))
is the maximal rate at which we can encode into sequences u ’

length NV such that Fig. 10. Presentation ofS;ey,5 for system S with zero runlengths
= 0,1mod3.

1) all codewords obey the constrai{although concatena-
tions of codewords need not obey the constraint); must be labeled?.” But since “1” cannot follow “100,” for any
2) for any codeword the bit value in any positianc Uis 7 5 £(100), the state(0, F) has no outgoing edges and is
1 but can be freely switched to O without violating thgnerefore inessential. But this forces other states in phase 0 to
constraints. be inessential. For example, we can easily check that the only
path outgoing from the stat@, F(1) N F(10)) is as shown
VI SIMPLIFICATIONS in the expression at the bottom of the page. Since the terminal

The graphGy » may be enormous relative 18, even for state of this path is inessential, each state in this path, in partic-

small N. However, the number of states can be reduced in tHiar (0. (1) N F(10)), must be inessential. In fact, it turns out
following steps. that all that remains after deleting inessential states is shown in

Fig. 10
Step 1: Not all intersections of follower sets are needed at all g _ - _ o
phases. Rather, we need only a collection of intersections that i$Step 3: Third, even ifS is irreducible, it still can happen that

closed under the following operations: the graph resulting from Steps 1 and 2 is reducible. However,
cfortec U there is always at least one irreducible component of maximal
capacity. For coding purposes, we can delete all but one such

(4, Flup) N~ NF(ug))
— ({+1mod N, F(ui0) N - N F(ur0)
NFlugrl) NN Flugl))
o fort g U
£, Flug) NN Flur))

component.

VIII. FINITE-MEMORY SYSTEMS

Recall that a presentatiafi of a constrained systeii has
finite memoryM if whenever any two paths i¥ of length A/

= ({+1mod N, F(ur0) N -+ N F(ux0)) have the same label sequence, they end at the same state; and
and constrained systems that have a finite memory presentation are
(€, Flup) N0 Flug)) called finite-memory systems. For such a system, the follower

— (£ +1mod N, Flus1) N - N Flupl)) set graph always has finite memory; in fact, the follqwer set of
X . any word of length>M equals the follower set of its suffix
(gf course, we need only those above that define vahdtragr length M. Prominent examples of finite-memory systems
sitions inGy, v). are RLL, MTR systems, and their NRZ precoded versions. The
So, starting only with follower sets (but not intersections gfystemin Fig. 9 and the well-known charge-constrained systems
follower sets) in phase 0, we can accumulate, cyclically froato not have finite memory. The following result shows how the
phase to phase, only those states obtained from applying thg&phGu, x can be simplified for finite-memory systems.

operations, until no new states occur; of course, we may have tol'heorem 6:Let S be an irreducible constrained system of
traverse each phase several times until the process stops. Fhjs, memoryM and anN andU satisfying the
generally results in far fewer states.

. . _ Gap Conditionthe gaps (moduldV) between elements
Step 2: Even after Step 1, we still may be left withessential Pf 17 are all of size at least/

states, i.e., states which are either not the terminal state or ini en the Procedure given in Step 1 of Section VII results in

state of arbitrarily long words (in particular, we can delete Stat%?ates of the fori¢, ) whereF is either asingleton i.e., a

of the form(£, 7) where " is either empty or the follower Setsingle follower set or doubletoni.e., an intersection of exactly

.Of the empty word). For example, in the graph O.f Fig. 5, thg o follower sets. Moreover, the only phagdfer which a state
inessential states are the second and fifth states in phase 0, .
) can be a doubleton are those whére ¢ + %k mod N,

. . . . (
Lhr:gjsgnzd fifth states in phase 1, and the first and fourth statesvw]erei cUandl <k < M—1.
As another example, consider the syst€mshown in Fig. 9, Proof: Without loss of generality, we can assume that
with N = 5 andl/ = {0}. In phase 0, all outgoing edgesl/. First observe that, applying the procedure in Step 1, we begin
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phase 0: (0,F7(100) =1, @ ® (0,F10)=1
1 1

phase 1: (1, F(1) N F(1000)) @ @ (1, F(1)nF(100))
0 0

phase 2: (2, F(10) N F(0000)) @ 1 (2, F(10) N F(1000))
1 0

phase 3: (3, F(1) ® L(a, F(100) N F(0000))
0 1

phase 4: (4, F(10)) ® ® (4, 7(1))
1 0

phase 5: (5, F(1)) 0 0 (5, F(10))

phase 0: (0,F100) =L @ ® (0,7(10))=1

Fig. 11. Presentation df (o3, for S = (1, 4)-RLL.

with singletons in phase 0, and because of the Gap ConditionFurther simplifications are possible if we are willing to com-
we accumulate only (at worst) doubletons in phases ., M. bine some phases together. This will be useful for simplifying
In particular, any state accumulated in phadewill be of the the capacity computation and for constructing nateq codes
form (M, F(v0u)NF(viw)) for some worde of lengthM . But in the case where is a multiple of V. We need the following
by definition of finite memory,F(v0u) = F(u) = F(vlw), formal constructions to do this.

and so in phasé/, these are really singletons. They will remain
singletons in phase&/ + 1, M + 2, ... until the next phase

£ € U mod N is encountered; from then on, we will see only
(at worst) doubletons for at modt/ — 1 more phases, again
because of the Gap Condition. But in the next phase, the finite

1) Let G be a graph ane a positive integer. Thaigher
power graphG™ is the graph with the same state set as
(, and an edge labeled by a sequence of lendtr each
path inG of lengthn (with the label inherited from the

memory condition will force singletons, etc. O path).
As an example, considét, the(1, 4)-RLL system, withV = 2) For a graph and an integedV/, let G(_M) denote the
6 andl/ = {0}. Beginning with the irreducible follower set graph with states in and the following transitions:

graph in Fig. 8, we apply the constructions of Theorems 5 and  Whenever there are two paths from stdt¢o state./,
6. We claim that after eliminating inessential states, we are left ~ One with labelzoz ---zx—1 and the other with label
with the graph, shown in Fig. 11, which presefits x. To see Tox1 - - - Ty—1, endowG) with a transition from? to
this, first observe that for any word, the statg(0, 7 (w)) will J and labellzy - - -zp—1.

have an outgoing edge (#;; » only if both«0 andu1 belong to

S. This eliminates the statés, F(1)) and(0, F(0000)). For 3) For graphstio, G,
state(0, F(1000)), there is an outgoing transition, labeletb
state(1, F(1)NF(0000)), but neithe nor1 can be generated

..., Gx_1, each with the same set
V of states, let7o W Gy W - -- W (G§,_; denote the graph
(“trellis construction”) defined by the following.

from this state. So, the only surviving states in phasee  States:The union ofk disjoint copies)y, Vi, ...,
I, = (0, 7(10)) and I = (0, F(100)). V-1, of V.

By starting from these states, and applying the Procedure in « Transitions: For eachi = 0, 1, ..., k — 1, mimic

Step 1, one can check that all that remain&'ef  is that shown each transition i@, with a transition fromV; to

in Fig. 11.

o Vit1 (where the subscripts are read modkj)o
Now, note that in this graph there are exactly three paths of

length6 from phase 0 to itself, one from eachhfto I, I; to Now, letS be an irr(_educibl_e constrained system with memory
I>, andl; to ;. It follows that Cap(Sy, ) = log(\)/6 where M presented by its irreducible follower set grafgh Assume

A is the largest eigenvalue of the matrix the Gap Condition and théte U. Write the unconstrained set
11 U =10, ui, ..., u}andwriteG' = G*), From Theorem 6,
L 0} : we see thaby, v is the set of sequences generated by

Itis well-known that\ = (1 +v/5)/2 andlog()) ~ 0.6942.
S0, Cap(Sy, §) ~ 0.6942/6 = 0.116. G=GuWG@" MyGuyGaw M. . . yGuGN-u-M
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beginning in)y. The adjacency matrix of the higher poweln particular, note that
graphG? restricted to phase 0 is

2(a+1)
A= A/AulfJWAlAuzfulfl\l . _A/ANfukfj\l z(a) > —.

a+2
whereA is the adjacency matrix d¥, and 4’ is the adjacency =~ We claim thatz'(a) > 0 and soz(«) is monotonically in-
matrix of G’. Thus, the capacity dfy;, i can then be computed creasing withu. To see this, first rewrite (15) d8—2)zt =1,
as(1/N)log()) where X is the largest eigenvalue of. Note take natural logs and differentiatewith respect taz to obtain

(16)

that in the special cadé = {0}, this reduces to / 1 a+1
Z:A/A]\T—]\l' Z(a) <2_Z_ o ) :111(2)
As an example, consider aga# oy for S = (1, 4)-RLL. equivalently
Here (a) = (2 - 2)zln(z)
01000 N (a+2)2 —2(a+ 1)
10100 which is positive by (16).
A=1100 10 Fora > 1, let
1 0 0 0 1
100 00 u(a) = alogz(a — 1).

The graph has memory = 4 and one can check that the grapiNote thatu’(a) > 0 and sou(a) is increasing with. It suffices

G™) has only three edgeﬁ(lo)@f F(1), F(10) 1%0]:(10), to show that:”’(a) < 0 on the domaim > 1. We find it easier

and (100) 120]__(10)’ and so instead to show that”(a) < 0 merely for alla > 4 and then

use an auxiliary argument to complete the proof of concavity of
0 0 0 0 O . . o
1100 0 the function (5) on the domain of positive integers.
“-lo 10 0 o For this, first note that(a — 1) = 2%/ |t follows that
000 0 0 u(a) satisfies the equation
0 0 0 0 0 2u(a)(l+l/a) _ 2u(a)+l + 1 — 0
We compute which we can rewrite as
00000 , B
91 1 1 0 211,((1,)/(1, —92_9 u,(a,)' (17)
A 2
A=AA=|1 10 1 0}, In what follows, we will writeu(a), u/(a), u”(a) as simply
8 8 8 8 8 u, v, v”. Differentiating (17) with respect te, we obtain
w/ar, / 21 _ o—u,,!
the essential part of which is simply tBex 2 submatrix deter- 24/ fa — u/a®] = 27"
mined by the second and third rows and columns Solving forw’, we obtain
1 1 , 2'11,/a,u
1 0 U

T a2v/a — g2a—u’

consistent with the computation earlier in this section. L , . .
Now, substituting foR%/* via (17), we obtain

APPENDIX , (2-2""u
PROOFS OFLEMMAS 2 AND 4 YT 9g - 2-ug— a22—v
Proof of Lemma 2:Itis well known [13, p. 61] thaf\,, is the Multiplying numerator and denominator &y, we obtain
unique solutiorz > 1 to the equation , (24 — 1)y
2 g g g, R e —— (18)

Let o be a real variable. We claim that for each valug.of 0, Differentiating this equation with respectdpwe see that
the equation

w =n/é
212 20t 4 1=0 (15) whereé is positive
has a unique solution = z(a) € (1, 2). This is a consequence” = (2" 'a —a — a®)((2"*" — L)/ + 2"+ /uC)
of the following facts regarding the left-hand side of (15): — (2% — (2" ad/C 4+ 24T — 1 — 2a)u
sitisOatz =1, andC = In2,
eitislatz = 2, We will show thatp < 0 for all ¢ > 4. Now, using (18), we

: , / X
. it has negative derivative (as a function gfat z = 1 erjwzsgl;l::nfom only in the second factor of the first term gf
(namely, the derivative is-a),
« it has derivative0 at only one pointz > 0 (namely, at 7= (2“7" = 1)((2*** = 1) + 2“ M uC)u
z = 2(”"1'1)), — (2" — )2 e/ C 4 24T — 1 — 2a)u.

a+2
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But this expression simplifies to that we have deleted in Stage 2. Then, tack on to the right end

n = (2"t — )" uC + 2a — 2% au/C)u. of M the matrix
(AQB) [nll/3] (ABQ) [nll/3] —+mg .
Thus,n < 0 if and only if o — . -
This will not decreasé/1. Note that ifmm; were divisible by3,

u > w =uja+2""/C. (19) then this would completely rectify the length and insertion rate.
2utlaC Otherwise, it changes, in (9), the number of occurrenceB of
Now, we can rewrite (18) as and the number of occurrences.4by bounded amounts.
, a Stage 3: Now M is a product of several intermingled powers
' = (u/a) <1 + m) . of A, A2B, and isolated copies ofB, followed by a single
. . . . power of A2B and a single power afiB2. Using R4, we can
So, the inequality (19) Ij equivalent to combine each isolated copy dfB with an A to form another

>27%/C. copy of A2 B. Then, using R5, we can combine all powersdof

u+1l 4 . . .
2 a—1 together and all powers of%B together, yielding a matrix of
Recallingthat/ > 0, it follows from (18) that***—a—1 > 0, the form

and so the preceding inequality is equivalent to
u>2/C—(a+1)/(24C). (20)

Fora = 4, one computes that

M/ — Am(AQB)mz (ABQ)mS.

Then we can delete some initial copiesfdfo makem divisible

by 3 at the expense of changing the number of occurrences of
u = 4log A3 ~ (4)(0.9468) ~ 3.78 > 2/C. A by a bounded amount. This completes the proof of Lemma 4,

Now, sinceu is increasing withz, we haveu > 2/C for all ~€xcept for the verification of inequalities R4 and RS.

a > 4; thus, (20) holds fom > 4. Thus, the function (5) is  Verification of R4: Consider the sequence of integers gener-

concave on the domain of integérs> 4. Now, one can verify, ated by the recurrence

via explicit computation, that this function is concave on the fn=fon1+ frno

domain of integer$1, 2, 3, 4, 5}. Since the domain of positive \ ity initial conditions: fo = f1 = 1; this is the well-known

integers is the union of these two domains, which intersecté'@quence of Fibonacci numbers. Now, by a simple induction
two consecutive integers (namely, 5}), it follows that the e can show that

function (5) is concave on the entire domain of positive integers,

0 n —
as desired (use the characterization of a concave function as a (A2B)" = | 0 ﬁn ﬁn_i
function with decreasing slopes). O 0 fonor fono
Proof of Lemma 4:Let A andB be asin (7) and (8). We will From this, one computes
make use of the following matrix relations: [4fons1 2fony1 O
R1: B3 = 0; A(A’BY"ABA% = | 2fapnto fong2 O
R2: AB%A < A; | 2fon+1 fany1 O
R3: B(AB)" = BABforalln > 1; and f s 0
2n+4 2n+43
R4: A(A?B)"ABA® < (A?B)™+! A% foralln 2 1 (A2BY"H A% = | fonta  fongs O

’ | fan+3  fang2 O

R5: A(A’B)"AmA?B< A™H(A?B)" ! foralln,m>1. Comparing these two matrices, we see that it suffices to show
The first three of these relations can be verified by straightfor- 4f, < fuys and 2f, < foio.
ward cqmputatlon. The fourth and fifth, which we verify below,:Or the latter, observe that
are a bit more subtle.

We will use these relations to gradually transfakinto the 2fn <2fn+ 1= fat1 + fo = foto-
desired formd/’. For the former, observe that
Sel; i(r)llrlg\évi;;osrgcitli\gzt we may assume in (9) that we never Frds = fagz + fagt = 2fns1 + f

Stage 1: From R2, we see that we can delete each appearance 3fat+2fn-1>3fn+ foot + fr2 = dfn.
of AB? without decreasing any entry dff (we can assume in  Verification of RS: For eachd) < v < 2 and1 < v < 2,
(9) that A ends with and). But in the course of doing so, wel€t S.,., denote the set of sequences that satisfy MTR(2),
change the lengtlV and insertion rate. We will rectify thisin begin with exactly. ones and end with exactlyones, and are
a moment; but for now, simply let, denote the total number Of the form
of occurrences ofiB? that we have deleted in this stage. aparaslazasl -« - asp_1a9,1bg - - bp_1coct 1. (22)

Stage 2: At this point, we may assume that contains only | o T,,., be the set of sequences that satisfy MTR(2), begin

isolated copies aB. It follows from R3 that we can replace any,ith exactlyu ones and end with exactlyones, and are of the
occurrence ofA? B(AB)" A with A BABA? and not change ¢4

any entry ofM (again, this changes the lengthand insertion
ratex). Let m; denote the total number of occurrencesAd? do - dmegerlesesl - - ezpeanyr 1.
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We will show the following.

a) For all combinations df., v), excepts = 2, v = 1, there
is a one-to-one (but not necessarily onto) mapping.:
Su,'v - Tu,'u-

b) There is a partition o> ;

5271 =5'us”

and one-to-one (but not necessarily onto) mappifgs:
S — T271 andz/;: S — T071 \(7)071(5071)

Since the(r + 1, v + 1) entry of the left-hand side of R5 is
> u>r 194, »| and the same entry of the right-hand side of R5 is

> usr [ Tu, ], inequality R5 will then follow.

1)

2)

(1]

(2]

The mappings are all constructed by shifting some ones angs
reversing the order of most of each sequence of the form (21).

Specifically, for a), the mappings are

(u=0,v=1):
$0,1(061a21a3a41 - - - @25—162, 100 - - - by, —1¢001)

= OCObm,1 s boagnlagnfl s 1@3@21@101
(u=0,v=2)
¢0,2(0a1a21azasl - - - a2 102,109 - - - by —1011)

= Obrn—l et boagnagn_ll et 1@4@31@2@1 1011
(w=1v=1)
¢1,1(10azlagayl - - - agp_1a2,1bg - - - by _1¢001)

= 1060bm_1 e bolagnagn_ll e 1a4a31a201
(u=1v=2)
(7)17 2(10@21@3@41 e agnflagnlbo e bm,l()ll)

= 1Obrn—1 e boagnlagn_lagn_gl et a41a3a21011
(u=2v=2)
(/)27 2(1101@3@41 et agn_lagnlbo et bm_1011)

= 110brn—1 M bolagnagn_l M 1a4a31011.

For b), letS” denote the subset ¢, | defined by, = 1
andb, = 1 (with the notation in (21)), and le§’ = S5 1 \ S”.
Define (7)27 1 by
¢2,1(1101azayql - - - a2n_102,1bo - - - b1 ¢001)

= 11060bm_1 e bl 1()0@2”1@2”_1 a2n_21 e 1a5a41a301
and by

z/)(1101a3a41 e CLQn_1CL2n1b0 e bm—l 6001)
= OOCObmfl s bolagnagnfl 1a2n,2 s 1@4@31001.

We must show that:(5”) C Tp 1 \ ¢o,1(So,1), equivalently,
that the images ap and¢g, ; are disjoint. This follows from the

following.

(4]

(5]

(6]
(7]
(8]

(9]
[10]

[11]

(12]

(13]
(14]
[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

(23]
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By definition of "/, for any sequence in the image0f
there are ones in both positionst 1 andm+2 (counting
from the left with the first position viewed as positiah

For any sequence in the imagedf ;, there cannot be
ones in both positions: 4+ 1 andm + 2 (with the same
counting convention as in 1)) because otherwise the cor-
responding domain sequence$p,; would haveb, =

b, = 1 and thus violate the MTH(= 2) constraint. [
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