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Abstract

We construct and investigate (1, p)-Sobolev space, p-energy, and the correspond-
ing p-energy measures on the planar Sierpiński carpet for all p ∈ (1,∞). Our method
is based on the idea of Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992),
no. 2, 169–196], where Brownian motion (the case p = 2) on self-similar sets in-
cluding the planar Sierpiński carpet were constructed. Similar to this earlier work,
we use a sequence of discrete graph approximations and the corresponding discrete
p-energies to define the Sobolev space and p-energies. However, we need a new ap-
proach to ensure that our (1, p)-Sobolev space has a dense set of continuous functions
when p is less than the Ahlfors regular conformal dimension. The new ingredients
are the use of Loewner type estimates on combinatorial modulus to obtain Poincaré
inequality and elliptic Harnack inequality on a sequence of approximating graphs.
An important feature of our Sobolev space is the self-similarity of our p-energy,
which allows us to define corresponding p-energy measures on the planar Sierpiński
carpet. We show that our Sobolev space can also be viewed as a Korevaar-Schoen
type space.

We apply our results to the attainment problem for Ahlfors regular conformal
dimension of the Sierpiński carpet. In particular, we show that if the Ahlfors regular
conformal dimension, say dimARC, is attained, then any optimal measure which
attains dimARC should be comparable with the dimARC-energy measure of some
function in our (1, dimARC)-Sobolev space up to a multiplicative constant. In this
case, we also prove that the Newton-Sobolev space corresponding to any optimal
measure and metric can be identified as our self-similar (1, dimARC)-Sobolev space.
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Loewner space
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1 Introduction and main results

The goal of this work is to construct and investigate properties of (1, p)-Sobolev space,
p-energy and p-energy measures on the Sierpiński carpet. Our (1, p)-Sobolev space can be
considered to be an analogue of W 1,p(Rn) on Euclidean space, the p-energy of a function f
is an analogue of

´
Rn |∇f|

p(x) dx, and the p-energy measure of a function f is an analogue
of the measure A 7→

´
A
|∇f|p(x) dx. Similar (1, p)-Sobolev spaces were constructed in

recent works of Kigami and the second-named author but much of the results there only
apply to the case p > dimARC, where dimARC is the Ahlfors regular conformal dimension
[Shi+, Kig23].

Our approach and that of [Shi+, Kig23] goes back to the construction of Brownian
motion on the Sierpiński carpet by Kusuoka and Zhou [KZ92]. The Dirichlet form cor-
responding to the Brownian motion on the Sierpiński carpet is a special case of p-energy
when p = 2. The idea behind defining a p-energy of a function f on a metric space (X, d)
is to approximate a metric space by a sequence of graphs {Gn = (Vn, En) : n ∈ N} on a
sequence of increasingly finer scales and to consider a sequence of discrete approximations
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Figure 1.1: The planar Sierpiński carpet and its approximation graphs {Gn}. (G1 and
G2 are drawn in blue.)

Mnf : Vn → R of the function f : X → R. Consider the discrete p-energies,

EGnp (Mnf) =
∑

{x,y}∈En

|(Mnf)(x)− (Mnf)(y)|p.

We then choose a sequence {rn : n ∈ N} of re-scaling factors rn ∈ (0,∞) so that the
quantities lim supn→∞ rnEGnp (Mnf), lim infn→∞ rnEGnp (Mnf), and supn∈N rnEGnp (Mnf) are
comparable uniformly for all integrable functions f . The existence of such a sequence
rn is guaranteed by analytic properties on the sequence of graphs Gn such as bounds on
capacity and Poincaré inequality. The Sobolev space is then defined as

Fp :=
{
f ∈ Lp : sup

n∈N
rnEGnp (Mnf) <∞

}
.

To describe our results, we recall a definition of the Sierpiński carpet. Let q1 = (−1,−1) =
−q5, q3 = (1,−1) = −q7 denote the corners of a square in R2 and let q2 = (0,−1) =
−q6, q4 = (1, 0) = −q8 denote the midpoints of the sides of the corresponding square.
The Sierpiński carpet K is the unique non-empty compact subset of R2 such that

K =
8⋃
i=1

fi(K), where fi : R2 → R2 is the map fi(x) := 1
3
(x− qi) + qi, i ∈ {1, . . . , 8}.

Next, we describe a sequence of graphs that approximate K. Let Vn = Sn denote the
set of words of length n over the alphabet S = {1, 2, . . . , 8}. Let Fi := fi

∣∣
K

for i ∈ S and
for w = w1 · · ·wn ∈ Vn, we set Fw := Fw1 ◦Fw2 ◦ · · · ◦Fwn . Let Gn = (Vn, En) be the graph
whose vertex set is the set of words Vn with n-alphabets and the edge set is defined by

En = {{u, v} : u, v ∈ Vn, Fu(K) ∩ Fv(K) 6= ∅}.

The sequence of graphs Gn, n ∈ N approximate the Sierpiński carpet K (see Figure 1.1).

We now describe how to approximate a function on K by a function on Gn. To
this end, we equip K with the Euclidean metric d and the self-similar Borel probability
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measure m on K such that m(Fw(K)) = 8−n for all w ∈ Vn, n ∈ N. For n ∈ N, we define
the discrete approximation operators Mn : Lp(K,m)→ RVn as

(Mnf)(u) :=
1

m(Fu(K))

ˆ
Fu(K)

f dm, for all u ∈ Vn.

For any p ∈ (1,∞), we show the existence of an exponent ρ(p) ∈ (0,∞) and some constant
C ∈ (1,∞) such that

sup
n∈N

ρ(p)nEGnp (Mnf) ≤ C lim sup
n→∞

ρ(p)nEGnp (Mnf) ≤ C2 lim inf
n→∞

ρ(p)nEGnp (Mnf)

for all f ∈ Lp(K,m). This implies that each of the three expressions in the above
display are uniformly comparable up to multiplicative constants. One of them, say
supn∈N ρ(p)nEGnp (Mnf) could be a considered as a candidate p-energy. However, we would
like to construct an improved p-energy Ep : Fp → [0,∞) that is comparable to the above
candidate p-energy but satisfies desirable properties such as self-similarity, Lipschitz con-
tractivity, and strong locality that the above candidate need not satisfy. The definitions
of these properties are included in the statement of Theorem 1.1. For f ∈ Lp(K,m), by
suppm[f ] we denote the support of the measure f dm. The following theorem describes
the definition and basic properties of our Sobolev spaces.

Theorem 1.1 (Construction of (1, p)-Sobolev space and p-energy). Let p ∈ (1,∞) and let
(K, d,m) be the Sierpiński carpet equipped with the Euclidean metric and the self-similar
measure described above. Then there exists ρ(p) ∈ (0,∞) such that the normed linear
space (Fp, ‖ · ‖Fp) defined by

Fp :=

{
f ∈ Lp(K,m)

∣∣∣∣ ˆ
K

|f|p dm+ sup
n∈N

ρ(p)nEGnp (Mnf) <∞
}
,

and

|f|Fp :=

(
sup
n∈N

ρ(p)nEGnp (Mnf)

)1/p

, ‖f‖Fp := ‖f‖Lp + |f|Fp ,

satisfies the following properties.

(i) (Fp, ‖ · ‖Fp) is a reflexive separable Banach space.

(ii) (Regularity) Fp ∩ C(K) is a dense subspace in the Banach spaces (Fp, ‖ · ‖Fp) and

(C(K), ‖ · ‖∞).

Furthermore, there exist C ≥ 1 and Ep : Fp → [0,∞) satisfying the following:

(iii) Ep( · )1/p is a semi-norm satisfying C−1|f|Fp ≤ Ep(f)1/p ≤ C|f|Fp for all f ∈ Fp.

(iv) (Uniform convexity) Ep( · )1/p is uniformly convex.

(v) (Lipschitz contractivity) For every f ∈ Fp and 1-Lipschitz function ϕ : R → R, we
have ϕ ◦ f ∈ Fp and Ep(ϕ ◦ f) ≤ Ep(f).
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(vi) (Spectral gap) It holds that

‖f − fK‖pLp(m) ≤ CEp(f) for all f ∈ Fp,

where fK :=
´
K
f dm is the m-average of f . In particular,

{f ∈ Fp : Ep(f) = 0} = {f ∈ Lp(K,m) : f is constant m-a.e.}. (1.1)

(vii) (Strong locality) If f, g ∈ Fp satisfy suppm[f ]∩suppm[g−a1K ] = ∅ for some a ∈ R,
then

Ep(f + g) = Ep(f) + Ep(g).

(viii) (Self-similarity) For every f ∈ Fp, we have f ◦ Fi ∈ Fp for all i ∈ S and

Ep(f) = ρ(p)
∑
i∈S

Ep(f ◦ Fi).

Furthermore, Fp ∩ C(K) = {f ∈ C(K) : f ◦ Fi ∈ Fp for all i ∈ S}.

(ix) (Symmetry) Let D4 denote the dihedral group of isometries of K. For every f ∈ Fp
and Φ ∈ D4, we have f ◦ Φ ∈ Fp and Ep(f ◦ Φ) = Ep(f).

We compare the above result with earlier results in [Shi+, Kig23]. Theorem 1.1 was
previously known only in the case p > dimARC(K, d), where dimARC(K, d) ∈ (1,∞) is the
Ahlfors regular conformal dimension [Shi+] (we recall the definition of Ahlfors regular
conformal dimension in Definition 1.7). Similar to this work, Kigami uses an approach
based on discrete energies and introduces a conductive homogeneity condition under which
the Sobolev space was constructed [Kig23]. However much of the results apply only to
the case p > dimARC(K, d) as the author points out “Regrettably, we do not have much
for the case p ≤ dimARC(K, d)” in [Kig23, p. 8]. In particular, Theorem 1.1 answers a
question of Kigami [Kig23, §6.3, Problem 1] for the Sierpiński carpet which asks for the
property (ii) above. This property is known as regularity in the theory of Dirichlet form
[FOT].

The difficulty in the case p ≤ dimARC(K, d) is due to the fact that the Sobolev space
contains discontinuous functions. If p > dimARC(K, d), there is a version of Morrey’s
embedding theorem which makes the analysis easier. Recently Cao, Chen and Kumgai
show that under the conductive homogeneity condition, the Sobolev space constructed
by Kigami contains discontinuous functions if and only if p ≤ dimARC(K, d) [CCK23+].
Another difficulty is that the conductive homogeneity condition of [Kig23] (or its analogue
‘knight move condition’ in [Shi+]) was not obtained on the Sierpiński carpet if p ≤
dimARC(K, d). The Poincaré inequality for graphs Gn shown in our work (Theorem 4.2)
implies these conditions when p ≤ dimARC(K, d). However, we do not show them as our
approach only relies on Poincaré inequality and certain upper bounds on capacity across
annulus on the sequence of graphs Gn.

As we will see in Theorem 1.4 and Proposition 1.6, the value of ρ(p) in Theorem 1.1
is uniquely determined by the above properties. If ρ(p) were larger, the Sobolev space Fp
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would only consist of constant functions violating property (ii). If ρ(p) were smaller, then
the resulting p-energy would be too small to satisfy property (v).

Our next result is the existence of energy measures. To motivate energy measure,
let us consider the following question: what information does the energy measure contain
about a function? In the primary example on Rn, the p-energy measure of a function
f ∈ W 1,p(Rn) is the measure A 7→

´
A
|∇f(x)|p dx. By considering the Radon-Nikodym

derivative of the energy measure with respect to Lebesgue measure, we see that the
energy measure contains the same information as |∇f| up to sets of Lebesgue measure
zero, were ∇f is the distributional gradient of f . A generalization of |∇f| is given by
the minimal p-weak upper gradient in the theory of Newton-Sobolev space [HKST]. In
these settings, the energy measure is always absolutely continuous with respect to the
reference measure. In the setting of diffusion on fractals, the energy measure (for p = 2)
is typically singular with respect to the reference measure [Hin05, KM20]. As we will
see in Theorem 1.8, not requiring the p-energy measure to be absolutely continuous with
respect to the reference measure is useful as the reference measure might not be suited to
express energies and also because the energy measure might satisfy better properties such
as the Loewner property. Based on the above analogy, we think of our energy measures as
containing similar information about the function as the minimal p-weak upper gradient
in the setting of Newton-Sobolev spaces.

Let us describe the construction of energy measure. Following an idea of Hino [Hin05],
we use the self-similarity property of the p-energy to construct our p-energy measure. To
describe it, we let Σ = SN be the set of all infinite words in the alphabet S equipped with
the product topology. Recall that the canonical projection (or coding map) χ : Σ→ K is
defined to satisfy

{χ(ω)} =
⋂
n∈N

(Fw1 ◦ · · · ◦ Fwn)(K), where ω = (w1, w2, · · · ) ∈ Σ.

For w ∈ Sn, let Σw ⊂ Σ be the set of infinite words whose beginning n alphabets
coincide with w. For any function f ∈ Fp, self-similarity of the p-energy Ep(·) and
Kolmogorov’s extension theorem guarantees the existence of a measure mp〈f〉 on Σ such
that mp〈f〉(Σw) = ρ(p)nEp(f ◦ Fw) for all w ∈ Sn, n ∈ N. The energy measure is then
defined to be the pushforward measure Γp〈f〉 := χ∗(mp〈f〉). Our next theorem shows the
existence of energy measure corresponding to self-similar energy and describes some of its
basic properties.

Theorem 1.2 (Existence of p-energy measure). Let p ∈ (1,∞) and let (K, d,m) be the
Sierpiński carpet. Let (Ep,Fp) be the p-energy in Theorem 1.1. There exists a family of
Borel finite measures {Γp〈f〉}f∈Fp on K satisfying the following:

(i) For any f ∈ Fp, we have Γp〈f〉(K) = Ep(f) and

Γp〈f〉(Fw(K)) = ρ(p)nEp(f ◦ Fw) for all w ∈ Sn, n ∈ N.

(ii) (Triangle inequality) For any f1, f2 ∈ Fp and Borel function g : K → [0,∞],(ˆ
K

g dΓp〈f1 + f2〉
)1/p

≤
(ˆ

K

g dΓp〈f1〉
)1/p

+

(ˆ
K

g dΓp〈f2〉
)1/p

.
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(iii) (Lipschitz contractivity) For any f ∈ Fp, Borel function g : K → [0,∞] and 1-
Lipschitz function ϕ : R→ R,

ˆ
K

g dΓp〈ϕ ◦ f〉 ≤
ˆ
K

g dΓp〈f〉.

(iv) (Self-similarity) For any n ∈ N and f ∈ Fp,

Γp〈f〉 = ρ(p)n
∑
w∈Sn

(Fw)∗
(
Γp〈f ◦ Fw〉

)
.

(v) (Symmetry) For any f ∈ Fp and Φ ∈ D4, we have Φ∗
(
Γp〈f〉

)
= Γp〈f ◦ Φ〉.

(vi) (Chain rule and strong locality) For any Ψ ∈ C1(R) and f ∈ Fp ∩ C(K),

Γp〈Ψ ◦ f〉(dx) = |Ψ′(f(x))|pΓp〈f〉(dx).

If f, g ∈ Fp ∩ C(K) and A ∈ B(K) satisfy (f − g)
∣∣
A

= a · 1A for some a ∈ R, then
Γp〈f〉(A) = Γp〈g〉(A)

We describe another approach to defining Sobolev space motivated by a work of
Korevaar and Schoen [KoSc]. This work describes classical Sobolev spaces in terms of
Besov–Lipschitz spaces at the critical exponent (also called Korevaar-Schoen space). On
a metric space (X, d), we denote by Bd(x, r) = {y ∈ X : d(x, y) < r} the open ball
centered at x ∈ X and radius r > 0. Our next result identifies our Sobolev space ob-
tained using rescaled discrete energies in Theorem 1.1 as the critical Besov-Lipshitz or
Korevaar-Schoen type space with comparable seminorms.

Definition 1.3. Let (X, d) be a connected metric space with #X ≥ 2 and let m be a
Borel-regular measure on X such that m(Bd(x, r)) ∈ (0,∞) for any x ∈ X, r > 0. For
p ∈ (1,∞) and s > 0, the Besov–Lipschitz space Bs

p,∞ = Bs
p,∞(X, d,m) is defined as

Bs
p,∞ :=

{
f ∈ Lp(X,m)

∣∣∣∣ sup
r∈(0,diam(X,d)]∩R

ˆ
X

 
Bd(x,r)

|f(x)− f(y)|p
rsp

m(dy)m(dx) <∞
}
.

Korevaar and Schoen show that the Sobolev spaceW 1,p(Rn) coincides withB1
p,∞(Rn, d, λ)

where d is the Euclidean metric and λ is the Lebesgue measure [KoSc, Theorem 1.6.2].
Furthermore there exists C ∈ (0,∞) such that the distributional gradient ∇f of any
function f ∈ W 1,p(Rn) satisfies

C−1

ˆ
Rn
|∇f|p dλ ≤ sup

r∈(0,∞)

ˆ
Rn

 
Bd(x,r)

|f(x)− f(y)|p
rp

λ(dy)λ(dx) ≤ C

ˆ
Rn
|∇f|p dλ.

This result was later extended to spaces satisfying doubling property and Poincaré in-
equality by Koskela and MacManus [KoMa, Theorem 4.5]. In these settings, it turns out
that the exponent s = 1 is critical in that for every s > 1 every function f ∈ Bs

p,∞ is
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constant almost everywhere and for every s ≤ 1, the space Bs
p,∞ contains non-constant

functions.

This motivates the definition of the critical exponent for Besov–Lipschitz space

sp := sup{s > 0 : Bs
p,∞ contains non-constant functions} (1.2)

and the Korevaar-Schoen space as the critical Besov–Lipschitz space B
sp
p,∞. This approach

to define Sobolev space was recently proposed by Baudoin [Bau22+]. Our next result is
that the Sobolev spaces defined using rescaled discrete energies coincides with the one
defined using critical Besov–Lipschitz space with comparable seminorms. Furthermore,
we describe the scaling constant ρ(p) in Theorem 1.1 in terms of the critical scaling
exponent for Bs

p,∞.

Theorem 1.4 (Self-similar Sobolev space is a Korevaar-Schoen space). Let (K, d,m)
be the Sierpiński carpet. Let Fp, |·|Fp , ρ(p) be the Sobolev space, seminorm and scaling

constant respectively as given in Theorem 1.1. Set dw(p) := log(8ρ(p))
log 3

. Then, there exists a
constant C ≥ 1 such that

C−1|f|pFp ≤ lim inf
r↓0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rdw(p)

m(dy)m(dx)

≤ sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rdw(p)

m(dy)m(dx) ≤ C|f|pFp for all f ∈ Lp(K,m).

In particular, Fp(K, d,m) = B
dw(p)/p
p,∞ (K, d,m) and

sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rdw(p)

m(dy)m(dx)

≤ C2 lim inf
r↓0

ˆ
X

 
Bd(x,r)

|f(x)− f(y)|p
rdw(p)

m(dy)m(dx) for all f ∈ Lp(K,m). (1.3)

Moreover, it holds that dw(p)/p = sp.

This result was previously obtained under the additional assumption p > dimARC(K, d).
The above result answers a question of F. Baudoin as he asks if (1.3) is true for the
Sierpiński carpet [Bau22+]. Recently, Yang also proves (1.3) for generalized Sierpiński
carpets in the case p > dimARC [Yan+, Theorem 2.8]. If (1.3) were true, then [Bau22+] ob-
tains number of useful consequences such as Sobolev embeddings and Gagliardo-Nirenberg
inequalities. Our notation dw(p) in Theorem 1.4 is inspired by the notion of walk dimen-
sion studied for p = 2 in the context of diffusion on fractals [KM23]. Similar to that
setting, dw(p) also plays a role as the exponent governing Poincaré inequality and capac-
ity bounds as shown in the following theorem.

Theorem 1.5 (Poincaré inequality and capacity upper bound). Let p ∈ (1,∞) and let
(K, d,m) be the Sierpiński carpet. Let Ep,Fp be the p-energy and Sobolev space in Theorem

1.1. Let dw(p) = log(8ρ(p))
log 3

be as defined in Theorem 1.4 and let Γp〈 · 〉 denote the p-energy
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measure constructed in Theorem 1.2. Then there exist C,A ≥ 1 such that for all x ∈ K,
r > 0 and f ∈ Fp, we have

ˆ
Bd(x,r)

∣∣f − fBd(x,r)

∣∣p dm ≤ Crdw(p)

ˆ
Bd(x,Ar)

dΓp〈f〉,

and

inf
{
Ep(f)

∣∣ f ∈ Fp ∩ C(K), f
∣∣
Bd(x,r)

≡ 1, supp[f ] ⊆ Bd(x, 2r)
}
≤ C

m(Bd(x, r))

rdw(p)
,

where fBd(x,r) := 1
m(Bd(x,r))

´
Bd(x,r)

f dm.

Theorems 1.1 and 1.4 suggest that the Sobolev space we construct is canonical since
two different approaches lead to the same space. As further evidence, we present the
following axiomatic description of our Sobolev space and self-similar p-energy.

Proposition 1.6 (Axiomatic description of the self-similar Sobolev space). Let p ∈ (1,∞)
and let (K, d,m) be the Sierpiński carpet. Let Ep,Fp, ρ(p) be the p-energy, Sobolev space
and scaling constant in Theorem 1.1.

Let Fp be a subspace of Lp(K,m) and let Ep : Fp → [0,∞) be a functional. Suppose
that the pair (Ep,Fp) satisfies the following properties:

(a) {f ∈ Fp : Ep(f) = 0} = {f ∈ Lp(K,m) : f is constant m-almost everywhere}. For
any a ∈ R and f ∈ Fp, we have

Ep(f + a1K) = Ep(f), Ep(af) = |a|pEp(f).

(b) The functional f 7→ Ep(f)1/p satisfies the triangle inequality on Fp. In addition,

the function ‖ · ‖Fp
: Fp → [0,∞) defined by ‖ · ‖Fp

(f) :=
(
‖f‖pLp(m) + Ep(f)

)1/p

is

a norm on Fp and (Fp, ‖ · ‖Fp
) is a uniformly convex Banach space.

(c) (Regularity) The subspace Fp ∩ C(K) is dense in C(K) with respect to the uniform
norm and is dense in the Banach space (Fp, ‖ · ‖Fp

).

(d) (Symmetry) For every Φ ∈ D4 and for all f ∈ Fp, we have f ◦ Φ ∈ Fp and
Ep(f ◦ Φ) = Ep(f).

(e) (Self-similarity) There exists ρ̃ ∈ (0,∞) such that the following hold: For every
f ∈ Fp, i ∈ S, we have f ◦ Fi ∈ Fp, and

ρ̃
∑
i∈S

Ep(f ◦ Fi) = Ep(f).

Furthermore, Fp ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ Fp for all i ∈ S}.

(f) (Unit contractivity) f+ ∧ 1 ∈ Fp for all f ∈ Fp and Ep(f+ ∧ 1) ≤ Ep(f).

10



(g) (Spectral gap) There exists a constant Cgap ∈ (0,∞) such that

‖f − fK‖pLp(m) ≤ CgapEp(f) for all f ∈ Fp.

Then ρ̃ = ρ(p),Fp = Fp and there exists C ∈ [1,∞) such that

C−1Ep(f) ≤ Ep(f) ≤ CEp(f) for all f ∈ Fp = Fp.

By the above result, the assumptions (a)-(g) in Proposition 1.6 determine the Sobolev
space uniquely and the self-similar p-energy up to a bi-Lipchitz transformation. In light
of the uniqueness result of [BBKT], we conjecture that the p-energy is unique up to a
multiplicative constant. Note that the self-similar p-energy Ep constructed in Theorem
1.1 satisfies the properties of Ep in Proposition 1.6. For instance, the unit contractivity is
a special case of Lipschitz contractivity.

The most widely used definition of Sobolev space on a metric measure space relies on
the notion of upper gradient introduced by Heinonen and Koskela [HK98]. Two different
definitions of Sobolev space (sometimes called the Newton-Sobolev space) based on upper
gradient were proposed by Shanmugalingam [Sha00] and Cheeger [Che99] but these two
definitions lead to the same Sobolev space on any metric measure space [HKST, Theorem
10.1.1]. The Newton-Soboev space N1,p(K, d,m) for the Sierpiński carpet is known to be
trivial, that is, N1,p(K, d,m) = Lp(K,m) with equal norms, because the minimal weak
upper gradient of any function is 0. We refer to Remark 11.7 for further details and
references. The triviality of Sobolev space based on upper gradient suggest the need for
an alternate method to construct Sobolev spaces on fractals such as the one considered
in this work.

An important motivation for our work is quasisymmetric uniformization and the re-
lated attainment problem for Ahlfors regular conformal dimension. A recent work pre-
dicts that Sobolev spaces and energy measures are relevant to the attainment problem
for Ahlfors regular conformal dimension [KM23, p.395-396]. Our work confirms this pre-
diction. To describe our results in this direction, we recall the relevant definitions of
conformal gauge and Ahlfors regular conformal dimension. Ahlfors regular conformal di-
mension is a slight variant of Pansu’s conformal dimension [Pan] and first appeared in
[BP03, BK05]. Conformal dimension of boundary of hyperbolic groups and Julia sets
of complex dynamical systems are widely studied. We refer the reader to [MT] for a
comprehensive account of conformal dimension.

Definition 1.7 (Conformal gauge). Let (X, d) be a metric space and θ be another metric
on X. We say that d is quasisymmetric to θ, if there exists a homeomorphism η : [0,∞)→
[0,∞) such that

θ(x, y)

θ(x, z)
≤ η

(
d(x, y)

d(x, z)

)
for all triples of points x, y, z ∈ X, x 6= z.

The conformal gauge of a metric space (X, d) is defined as

J (X, d) := {θ : X ×X → [0,∞) | θ is a metric on X, d is quasisymmetric to θ}. (1.4)
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A Borel measure µ on (X, d) is said to be p-Ahlfors regular if there exists C ≥ 1 such
that

C−1rp ≤ µ(Bd(x, r)) ≤ Crp for all x ∈ X, 0 < r ≤ diam(X, d).

The Ahlfors regular conformal dimension is defined as

dimARC(X, d)

= inf{p > 0 : θ ∈ J (X, d) and there is a p-Ahlfors regular measure µ on (X, θ)}. (1.5)

The infimum in the definition of dimARC(X, d) need not be attained in general [BK05,
§6]. The attainment problem for Ahlfors regular conformal dimension asks if the infi-
mum in the definition of dimARC(X, d) is attained by a ‘optimal’ metric and measure.
Quasisymmetric uniformization problem asks if there is a metric in the conformal gauge
isometric to a model space with more desirable properties. These two problems are often
related. For instance, it is a well-known open problem to determine whether or not the
conformal gauge of the standard Sierpiński carpet contains a Loewner metric [HKST, p.
408], [Kle, Question 8.3] (we recall the definition of Loewner metric in Definition 11.12).
Another related question is to determine if the Ahlfors regular conformal dimension of
the Sierpiński carpet is attained [BK05, Problem 6.2]. As pointed out by Cheeger and
Eriksson-Bique, these two questions are essentially the same due to the combinatorial
Loewner property of the Sierpiński carpet [BK13, Theorem 4.1], [CE, §1.6].

As a motivation for the attainment problem for Ahlfors regular conformal dimension,
we recall a long-standing conjecture in geometric group theory, namely Cannon’s conjec-
ture. It asserts that any Gromov hyperbolic group G whose boundary at infinity ∂∞G
is homeomorphic to S2 admits an action on the hyperbolic 3-space H3 that is isomet-
ric, properly discontinuous and cocompact. Bonk and Kleiner show Cannon’s conjecture
under the additional assumption that the Ahlfors regular conformal dimension of the
boundary at infinity ∂∞G is attained [BK05]. Thus Cannon’s conjecture is reduced to an
attainment problem for the Ahlfors regular conformal dimension of ∂∞G. We refer the
reader to ICM 2006 proceedings of Bonk for further context and details [Bon].

Another related motivation for the attainment problem for Ahlfors regular conformal
dimension is to better understand Loewner spaces. Since Loewner spaces enjoy desirable
properties, it is useful to know if a given metric space contains a Loewner metric in its con-
formal gauge. To this end, Kleiner formulated a combinatorial version of Loewner property
that is necessary for such a Loewner metric to exist and is easier to check. Bourdon and
Kleiner verify combinatorial Loewner property for a number of examples including the
Sierpiński carpet [BK13]. Kleiner conjectured that the combinatorial Loewner property
for a self-similar space is equivalent to the existence of Loewner metric in the conformal
gauge [Kle, Conjecture 7.5]. Due to an observation of Cheeger and Eriksson-Bique [CE,
§1.6], Kleiner’s conjecture can be rephrased as a conjecture about the attainment prob-
lem as follows: combinatorial Loewner property for a self-similar space implies that the
Ahlfors regular conformal dimension is attained. We refer to the ICM 2006 proceedings
of Kleiner for further details [Kle].

As partial progress towards the attainment problem for Ahlfors regular conformal
dimension on the Sierpiński carpet, we show that if an optimal measure attaining the
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Ahlfors regular conformal dimension exists then this measure is necessarily a bounded
perturbation of the p-energy measure of some function in our (1, p)-Sobolev space, where
p is the Ahlfors regular conformal dimension. This result confirms the relevance of energy
measures to the attainment problem for Ahlfors regular conformal dimension as predicted
earlier in [KM23, p.395-396]. Furthermore, if the Ahlfors regular conformal dimension is
attained we identify our Sobolev space Fp with Newton-Sobolev space of the attaining
metric measure space. To state this result, we briefly recall the definition of Newton-
Sobolev space N1,p(X, θ, µ) of a metric measure space (X, θ, µ).

We define Ñ1,p(X, θ, µ) as the set of p-integrable functions with a p-integrable p-weak
upper gradient (we recall the definition of weak upper gradient in Definition 11.4). We

equip Ñ1,p(X, θ, µ) with the seminorm ‖u‖N1,p(X,θ,µ) := ‖u‖Lp(µ) + ‖gu‖Lp(µ), where gu
denotes the minimal p-weak upper gradient of u in (X, θ, µ) (Heuristically, the minimal

p-weak upper gradient of u is an analogue of |∇u|). Two functions f, g ∈ Ñ1,p(X, θ, µ) are
said to be equivalent if ‖f − g‖N1,p(X,θ,µ) = 0. The Newton-Sobolev space N1,p(X, θ, µ) is
defined to the set of equivalence classes equipped with the norm ‖·‖Ñ1,p(X,θ,µ). Our final
result below identifies the Newton-Sobolev space for any metric and measure attaining
the Ahlfors regular conformal dimension of (K, d) with our Sobolev space Fp(K, d,m).
Moreover, the attaining measure is essentially equal to the energy measure Γp〈h〉 for some
function h ∈ C(K)∩Fp(K, d,m). The following result relates the Sobolev space based on
upper gradient to the self-similar Sobolev space under the attainment of Ahlfors regular
conformal dimension. Moreover, the attaining measures are essentially energy measures.

Theorem 1.8. Let (K, d,m) denote the Sierpiński carpet and let p = dimARC(K, d).
Suppose that there exists θ ∈ J (K, d) and a measure µ on K attaining the Ahlfors regular
conformal dimension; that is, µ is a p-Ahlfors regular measure on (K, θ). Let Fp =
Fp(K, d,m), Ep and Γp〈·〉 denote the Sobolev space, p-energy and p-energy measure as
given in Theorem 1.2. Then we have the following:

(i) The spaces Fp(K, d,m) and N1,p(K, θ, µ) are equal with comparable norms, semi-
norms, and energy measure. More precisely, it holds that C(K) ∩ Fp(K, d,m) =
C(K)∩N1,p(K, θ, µ), there exist a bijective linear map ι : Fp(K, d,m)→ N1,p(K, θ, µ)
and C1 > 1 such that ι(f) = f for any f ∈ C(K) ∩ Fp(K, d,m) = C(K) ∩
N1,p(K, θ, µ)1 and

C−1
1 Γp〈f〉(B) ≤

ˆ
B

gpι(f) dµ ≤ C1Γp〈f〉(B)

for any Borel set B ⊂ K, f ∈ Fp(K, d,m), where gpι(f) denotes the minimal p-weak

upper gradient of ι(f). In particular, C−1
1 Ep(f) ≤

´
K
gpι(f) dµ ≤ C1Ep(f) for all

f ∈ Fp(K, d,m). Furthermore, the corresponding norms are comparable; that is,

C−1 ‖f‖Fp(K,d,m) ≤ ‖ι(f)‖N1,p(K,θ,µ) ≤ C ‖f‖Fp(K,d,m) for all f ∈ Fp(K, d,m).

1more precisely, the equivalence class containing f in Fp(K, d,m) is mapped to the equivalence class
containing f in N1,p(K, θ, µ).
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(ii) There exist h ∈ Fp(K, d,m) ∩ C(K) and C2 ∈ (0,∞) such that

C−1
2 Γp〈h〉(B) ≤ µ(B) ≤ C2Γp〈h〉(B) for any Borel set B ⊂ K.

In particular, Γp〈h〉 is a p-Ahlfors regular measure on (K, θ).

Let us briefly explain how Theorem 1.8 could be potentially used to solve the attain-
ment problem. Although the attainment problem requires us to find optimal metrics and
measures, it is well-known that the metrics and measures determine each other (see Lem-
mas 11.16 and 11.14). Therefore it suffices to look for optimal measure and use Lemma
11.14 to construct the corresponding metric. By Theorem 1.8, it suffices to look for op-
timal measures among energy measures of continuous functions. We conjecture that it
suffices to look for optimal measure among energy measures of p-harmonic functions (see
Conjecture 12.9). One could then hope to find a ‘good’ function whose energy measure is
optimal or rule out the existence of such function by a careful analysis of energy measures.
In fact, Theorem 1.8(ii) was inspired by a similar result for the attainment problem for
conformal walk dimension [KM23, Theorem 6.16]. Such a result was successfully used to
solve a similar attainment problem in [KM23].

More generally, we believe that Sobolev spaces and energy measures are relevant to
similar quasisymmetric uniformization problems and the attainment problem for Ahlfors
regular conformal dimension on other ‘self-similar spaces’ such as boundaries of hyperbolic
groups and Julia sets in conformal dynamics. It would be interesting to construct Sobolev
space, energy measures and prove analogues of Theorem 1.8 for fractals arising from
hyperbolic groups and conformal dynamics [Bon, Kle]. Another obvious question is to
use Theorem 1.8 to solve the attainment problem. This motivates further study of energy
measures.

Although we discussed three approaches towards defining Sobolev space based on
discrete energies, Korevaar-Schoen energies, and upper gradients, there are several omis-
sions. Among them, we mention Sobolev spaces constructed using two-point estimates
by Haj lasz (Haj lasz–Sobolev space) [Haj96], Poincaré inequalities by Haj lasz–Koskela
(Poincaré-Sobolev space) [HK95, HK00], and using weak Lp-estimates of gradient on hy-
perbolic fillings by Bonk–Saksman [BS18]. It would be interesting to understand if these
spaces or their variants are related to our Sobolev spaces constructed using discrete ener-
gies.

1.1 Overview for the rest of the paper.

In §2, we introduce basic notions concerning capacity, modulus and volume growth of
graphs.

In §3, we introduce variants of the ball Loewner property due to Bonk and Kleiner
and of Loewner-type modulus lower bounds between connected sets. The main result
(Theorem 3.2) shows that lower bounds of modulus between balls imply lower bounds of
modulus between any pair of connected sets.
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In §4, we use the lower bounds of modulus from §3 to obtain a discrete Poincaré
inequality. The proof of the Poincaré inequality in Theorem 4.2 follows an idea of Heinonen
and Koskela [HK98, Proof of Theorem 5.12].

In §5, we show that discrete Poincaré inequality along with capacity upper bounds
on graphs imply elliptic Harnack inequality for p-harmonic functions on graphs. The
Harnack inequality is then used to prove existence of Hölder continuous cutoff functions
with controlled energy.

In §6, we introduce a framework describing the approximation of a metric space by
a sequence of graphs. We then define the Sobolev space using discrete graph energies
under the assumption that the sequence of graphs satisfy uniform Poincaré inequality
and capacity upper bounds. We obtain many basic properties of this Sobolev space such
as completeness, separability, reflexivity, and the existence of a dense set of continuous
functions in the Sobolev space.

In §7, we identify our Sobolev space as the Korevaar-Schoen space with comparable
energies. We express the critial exponent for Besov–Lipschitz space in terms of the scaling
exponent for discrete energies.

In §8, we introduce the setting of self-similar sets and construct a natural approxi-
mation of a self-similar set by a seuence of graphs. obtain a sufficient condition for the
existence of a self-similar p-energy in our Sobolev space (Theorem 8.12).

In §9, we describe the construction of the energy measure associated to a self-similar
p-energy and obtain its basic properties.

In §10, we apply the results from previous sections to the planar Sierpiński carpet.
To this end, we check the assumptions imposed on the graph approximations for the
construction of the Sobolev space in §6 and the assumptions imposed for the existence of
a self-similar p-energy in §8.

In §11, we show that any optimal measure for Ahlfors regular conformal dimension
on the Sierpiński carpet must necessarily be comparable to a energy measure. If the
Ahlfors regular conformal dimension is attained we identify the Newton-Sobolev space of
the attaining space with our Sobolev space.

In §12, we collect some conjectures and open problems related to our work.

Notations. In this paper, we use the following notation and conventions.

(1) N := {n ∈ Z | n > 0} and Z≥0 := N ∪ {0}.
(2) For a set A, we write #A to denote the cardinality of A.

(3) Let X be a non-empty set. For disjoint subsets A and B of X, we use AtB to denote
the disjoint union of A and B.

(4) For p > 1, we write p′ = p
p−1

, i.e. p is the Hölder conjugate index of p so that
1
p

+ 1
p′

= 1.
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(5) For a ∈ R, define

sgn(a) =


1 if a > 0,

0 if a = 0,

−1 if a < 0.

(6) For a, b ∈ R, we write a ∨ b = max{a, b} and a ∧ b = min{a, b}. For simplicity, we
also write a+ = a ∨ 0 and a− = a ∧ 0. We also use these notations for real-valued
functions.

(7) For a ∈ R, define dae, bac ∈ Z by

dae = max{n ∈ Z | n ≤ a} and bac = min{n ∈ Z | a ≤ n}.
(8) For arbitrary countable set V , define

RV = {f | f : V → R}, `+(V ) = [0,+∞)V = {f | f : V → [0,+∞)},
and

`+
c (V ) = {f ∈ [0,+∞)V | # supp[f ] < +∞},

where supp[f ] := {x ∈ V | f(x) 6= ∅}.
(9) Let (X, d) be a metric space. The open ball with center x ∈ X and radius r > 0 is

denoted by Bd(x, r), that is,

Bd(x, r) := {y ∈ X | d(x, y) < r}.
If the metric d is clear in context, then we write B(x, r) for short. We write B(x,R)
for {y ∈ X | d(x, y) ≤ r}. For a metric ball B, let rad(B) denote the radius of B.
For λ ≥ 0 and a ball B = B(x,R), define λB = B(x, λR).

(10) Let (X, d) be a metric space. For A ⊆ X, the diameter of A with respect to d is
defined as

diam(A, d) = sup
x,y∈A

d(x, y).

We also use diamd(A) to denote diam(A, d). If no confusion can occur, we omit the
metric d in these notations.

(11) Let (X,A , µ) be a measure space. For f ∈ L1
loc(X,µ) and A ∈ A with µ(A) < +∞,

we use
ffl
A
f dµ to denote the averaged integral of f over A, i.e. 

A

f dµ =
1

µ(A)

ˆ
A

f(x)µ(dx).

We also write fA or (f)A to denote
ffl
A
f dµ if the underlying measure µ is clear.

(12) Let (X,A , µ) be a measure space and let 1 ≤ p ≤ ∞. For f ∈ Lp(X,µ), we use
‖f‖p to denote the Lp-norm of f . In addition, for any A ∈ A , define

‖f‖p,A := ‖f1A‖p =

(ˆ
A

|f(x)|p µ(dx)

)1/p

.

(13) Let X be a topological space. We use B(X) (resp. B+(X)) to denote the set of
[−∞,∞]-valued (resp. [0,∞]-valued) Borel measurable functions on X. (Note that
each element in B(X) or B+(X) is defined on every points of X.)
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2 Preliminaries

2.1 Basic facts and terminologies of graphs

Throughout this section, let G = (V,E) be a locally finite connected simple non-directed
graph, i.e. G = (V,E) is a simple connected graph, where V is a countable set (the set of
vertices) and E ⊆

{
{x, y}

∣∣ x, y ∈ V, x 6= y
}

(the set of edges), satisfying

degG(x) := #{y ∈ V | {x, y} ∈ E} < +∞ for all x ∈ V .

We always consider G as a metric space equipped with the graph distance d = dG. In this
paper, we suppose that G has bounded degree, i.e.

deg(G) := sup
x∈V

degG(x) < +∞.

A sequence of vertices θ = [x0, . . . , xn] for some n ∈ N is said to be a (finite) path in
G if xi ∈ V and {xi, xi+1} ∈ E for each i ∈ {0, . . . , n − 1}. We frequently regard a path
θ as a subset {xi}ni=0 of V . Define the length of θ = [x0, . . . , xn] by

lenG(θ) := n.

A finite path θ = [x0, . . . , xn] is said to be simple if there is no loops, i.e. xi 6= xj for any
distinct i, j ∈ {0, . . . , n}. Note that our definition excludes the case where a one point set
{x} becomes a path (since G has no self-loops). In particular, len(θ) ∈ N for any finite
path θ.

For any subset A ⊆ V , we define

E(A) :=
{
{x, y} ∈ E

∣∣ x, y ∈ A}.
A subset A ⊆ V is called a connected subset of V (with respect to G) if d(A,E(A))(x, y) <∞
for all x, y ∈ A.

For arbitrary A ⊆ V , define

∂iA = {x ∈ A | there exists y ∈ V \ A such that {x, y} ∈ E},

∂A = {x ∈ V \ A | there exists y ∈ A such that {x, y} ∈ E},
and

A = A ∪ ∂A.
The set ∂iA (resp. ∂A) is called the interior (resp. exterior) boundary of A in G. The set
A is a kind of closure of A in G.
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2.2 Combinatorial p-modulus of path families

We recall the notion of combinatorial modulus of discrete path families on a graph and a
few basic properties. For a path θ in G = (V,E) and ρ ∈ `+(V ), define the ρ-length of θ,
Lρ(θ), by

Lρ(θ) =
∑
v∈θ

ρ(v).

For arbitrary path family Θ on G, define the ρ-length of Θ, Lρ(Θ), by

Lρ(Θ) = inf
θ∈Θ

Lρ(θ).

The set of admissible functions Adm(Θ) for Θ is given by

Adm(Θ) = {ρ ∈ `+(V ) | Lρ(Θ) ≥ 1}.

Definition 2.1. Let Θ be a family of paths in G and let p > 0. The (combinatorial)
p-modulus ModGp (Θ) of Θ is

ModGp (Θ) = inf
ρ∈Adm(Θ)

‖ρ‖p`p(V ) = inf
ρ∈Adm(Θ)

∑
v∈V

ρ(v)p.

We also use Modp(Θ) to denote ModGp (Θ) when no confusion can occur.

Remark 2.2. For a path family Θ, define

V [Θ] := {v ∈ V | v ∈ θ′ for some θ′ ∈ Θ}.

We easily see that ρ ∈ Adm(Θ) implies ρ1V [Θ] ∈ Adm(Θ). This observation yields

ModGp (Θ) = inf
ρ∈Adm(Θ)

‖ρ‖pp,V [Θ] .

The following properties of p-modulus is well-known.

Lemma 2.3 (e.g. [HKST, Section 5.2]). Let p > 0.

(i) ModGp (∅) = 0.

(ii) If path families Θi (i = 1, 2) satisfy Θ1 ⊆ Θ2, then ModGp (Θ1) ⊆ ModGp (Θ2).

(iii) For any sequence of path families {Θn}n∈N,

ModGp

(⋃
n∈N

Θn

)
≤

∞∑
n=1

ModGp (Θn).

(iv) Let Θ,Θ# be families of paths. If all path θ ∈ Θ has a sub-path θ# ∈ Θ# (i.e.
θ# ⊆ θ), then

ModGp (Θ) ≤ ModGp (Θ#).
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If p > 1, then by the strict convexity of `p, there exists a unique ρ ∈ Adm(Θ) such
that ModGp (Θ) =

∑
v∈V ρ(v)p.

For subsets Ai ⊆ V (i = 0, 1, 2) with A0 ∪ A1 ⊆ A2, define

Path(A0, A1;A2) =

{
[x0, . . . , xn]

∣∣∣∣ n ∈ N, {xi, xi+1} ∈ E for any i = 0, . . . , n− 1,
xi ∈ A2 (i = 0, . . . , n), x0 ∈ A0, xn ∈ A1

}
,

and we write Modp(A0, A1;A2) for Modp
(
Path(A0, A1;A2)

)
. We use Path(A0, A1) and

Modp(A0, A1) to denote Path(A0, A1;V ) and Modp(A0, A1;V ) respectively. When we
need to specify the underlying graph G, we will use PathG(A0, A1;A2) and so on.

The following lemma is used to obtain lower bounds on modulus. Roughly, speaking
modulus lower bound of a curve family is equivalent to existence of shortcuts.

Lemma 2.4. Let p > 0. Let Θ be a family of paths in G and let c > 0. If Modp(Θ) ≥ c,
then for any ε > 0 and ρ ∈ `+(V ) there exists a path θ ∈ Θ such that

Lρ(θ) ≤ (1 + ε)c−1/p ‖ρ‖p,V [Θ] . (2.1)

(If the infimum in the definition of Lρ(Θ) is attained, then ε can be replaced with 0.)
Conversely, if for any ρ ∈ `+(V ) there exists a path θ ∈ Θ such that Lρ(θ) ≤ c−1/p ‖ρ‖p,
then Modp(Θ) ≥ c. In particular, if p ≥ 1, L ∈ N and there exists θ ∈ Θ such that
len(θ) ≤ L, then

ModGp (Θ) ≥ L1−p. (2.2)

Proof. First, we observe that

ModGp (Θ) = inf
ρ∈`+(V );Lρ(Θ)>0

‖ρ‖p`p(V )

Lρ(Θ)p
. (2.3)

Set ρ̃ = ρ1V [Θ] for any ρ ∈ `+(V ). Since Lρ(θ) = Lρ̃(Θ) and ‖ρ̃‖`p(V ) ≤ ‖ρ‖`p(V ), we have

ModGp (Θ) = inf
ρ∈`+(V );Lρ(Θ)>0

‖ρ‖pp,V [Θ]

Lρ(Θ)p
.

Therefore, Modp(Θ) ≥ c implies Lρ(Θ) ≤ c−1/p ‖ρ‖p,V [Θ]. Pick θ ∈ Θ so that Lρ(θ) ∈
[Lρ(Θ), (1 + ε)Lρ(Θ)). Then θ satisfies (2.1).

Let us prove the converse. Let ρ ∈ `+(V ) with Lρ(Θ) > 0 and suppose that there
exists θ ∈ Θ such that Lρ(θ) ≤ c−1/p ‖ρ‖p. Combining with (2.3), we get Modp(Θ) ≥ c.

Lastly, suppose that p ≥ 1 and that θ ∈ Θ satisfies len(θ) ≤ L. For any ρ ∈ `+(V ), by
Hölder’s inequality,

Lρ(θ) =
∑
v∈θ

ρ(v) ≤
(∑
v∈θ

1

)(p−1)/p

‖ρ‖p,θ ≤ L(p−1)/p ‖ρ‖p,V [Θ] ,

which implies (2.2). The proof is completed. �
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2.3 Discrete p-energy, p-Laplacian and associated capacity

For f ∈ RV , the length of discrete gradient of f , |∇f| : E → [0,+∞), is given by

|∇f|
(
{x, y}

)
= |f(y)− f(x)| for {x, y} ∈ E.

For simplicity, we also use |∇f|(x, y) to denote |∇f|
(
{x, y}

)
for each {x, y} ∈ E.

Definition 2.5. Let p > 0 and let A ⊆ V . For f, g ∈ RV , define

EGp,A(f ; g) :=
∑

{x,y}∈E(A)

sgn(f(y)− f(x))|f(y)− f(x)|p−1(g(y)− g(x)).

The p-energy of f on A is given by EGp,A(f) = EGp,A(f ; f), i.e.

EGp,A(f) :=
∑

{x,y}∈E(A)

|∇f|(x, y)p =
∑

{x,y}∈E(A)

|f(x)− f(y)|p.

We write EGp (f ; g) and EGp (f) for EGp,V (f ; g) and EGp,V (f) respectively. We omit the underling
graph G in these notations if no confusion can occur.

We recall basic properties of discrete p-energy, which are immediate from the definition.

Lemma 2.6. Let p > 0 and A ⊆ V .

(a) EGp,A(ϕ ◦ f) ≤ EGp,A(f) for any f ∈ RA and 1-Lipschitz function ϕ ∈ C(R). In
particular,

EGp,A
(
f#
)
≤ EGp,A(f) for any f ∈ RV , a ∈ R, f# ∈ {f+, f−, |f|, (f − a)+},

(b) EGp,A(f ∧ g) ∨ EGp,A(f ∨ g) ≤ EGp,A(f) + EGp,A(g) for any f, g ∈ RA.

(c) EGp,A(f · g) ≤ (2p−1 ∨ 1)
(
‖g‖p`∞(A) EGp,A(f) + ‖f‖p`∞(A) EGp,A(g)

)
for any f, g ∈ RA.

(d) Suppose that f ∈ RV is constant on Ac, i.e. there exists a ∈ R such that f(x) = a
for every x 6∈ A. Then we have EGp (f) = EG

p,A
(f).

Proof. (a) This is obvious from |ϕ(f(x))− ϕ(f(y))|p ≤ |f(x)− f(y)|p.
(b) This is immediate from the following elementary estimate. For any a1, a2, b1, b2 ∈ R,

|(a1 ∧ b1)− (a2 ∧ b2)|p ∨ |(a1 ∨ b1)− (a2 ∨ b2)|p ≤ |a1 − a2|p + |b1 − b2|p.

(c) We easily see that

EGp,A(f · g) ≤ (2p−1 ∨ 1)
∑

{x,y}∈E(A)

(
|g(x)|p|f(x)− f(y)|p + |f(y)|p|g(x)− g(y)|p

)
≤ (2p−1 ∨ 1)

(
‖g‖p`∞(A) EGp,A(f) + ‖f‖p`∞(A) EGp,A(g)

)
.

(d) The assertion holds since |f(x)− f(y)| = 0 whenever {x, y} 6∈ E
(
A
)
. �
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Next we recall the definition of discrete p-Laplacian using a discrete version of inte-
gration by parts. Let 〈·, ·〉`2(V,deg) denote the inner product of `2(V, deg)

Definition 2.7. Let p > 0. The p-Laplacian ∆G
p on G is the operator satisfying

EGp (f ; g) = −1

2

〈
∆G
p f, g

〉
`2(V,deg)

for all f, g ∈ RV . Equivalently,(
∆G
p f
)
(x) =

1

deg(x)

∑
y∈V ;

(x,y)∈E

sgn(f(y)− f(x))|f(y)− f(x)|p−1. (2.4)

(See [Shi21, Theorem 6.4] for example.) A function f ∈ RV is said to be p-superharmonic
(resp. p-subharmonic) at x ∈ V if ∆G

p f(x) ≤ 0 (resp. ∆G
p f(x) ≥ 0). In addition, f is said

to be p-harmonic at x ∈ V if ∆G
p f(x) = 0. If A ⊆ V and ∆G

p f(x) = 0 for every x ∈ A,
then f is said to be p-harmonic in A. p-superharmonic, p-subharmonic functions in A are
defined in similar ways.

The following lemma describes a well-known property of p-superharmonic (resp. p-
subharmonic) functions, namely the minimum (resp. maximum) principle.

Lemma 2.8 ([HS97, Theorem 3.14] or [MY92, Theorem 7.5]). Let A be a non-empty
connected subset of G. Let f ∈ RV be p-superharmonic (resp. p-subharmonic) in A.

(i) If there exists x ∈ A such that f(x) = minz∈A f(z) (resp. f(x) = maxz∈A f(z)),
then f is constant on A.

(ii) If A is finite, then min∂A f = minA f (resp. max∂A f = maxA f).

Proof. For the reader’s convenience, we recall the proof by following [Bar, Theorem 1.37],
where the case p = 2 is treated. Here, we discuss only the case where f is p-superharmonic
on A because the maximum principle can be obtained from the minimum principle by
considering −f instead of f .

(i) Define A∗ = {z ∈ A | f(z) = minA f}. Then A ∩ A∗ 6= ∅ since x ∈ A ∩ A∗. For any
y ∈ A ∩ A∗ and z ∈ A with (y, z) ∈ E, we have f(z) ≥ f(y). Since f is p-superharmonic
in A,

0 ≥ deg(y)∆pf(y) =
∑

z∈V,(y,z)∈E

sgn(f(z)− f(y))|f(z)− f(y)|p−1 ≥ 0.

Hence f(z) − f(y) = 0 for any z ∈ A with (y, z) ∈ E. This implies that A ∩ {y} ⊆ A∗
for any y ∈ A ∩ A∗. Since A is connected, we conclude that A∗ = A, which means
f |A ≡ minA u.

(ii) Note that A is a finite set and thus there exists x ∈ A such that f(x) = minA f . If
x ∈ ∂A, then there is nothing to be proved. If x ∈ A, then (i) implies that f is constant
on A. We finish the proof. �
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Definition 2.9. Let p > 0 and let Ai ⊆ V (i = 0, 1, 2) with A0 ∪ A1 ⊆ A2. Define the
p-capacity between A0 and A1 in A2 by

capGp (A0, A1;A2) = inf
{
EGp,A2

(f)
∣∣ f ∈ RV , f = 0 on A0 and f = 1 on A1

}
.

We write capGp (A0, A1) for capGp (A0, A1;V ). The underlying graph G is omitted in these
notations if no confusion can occur.

The following monotonicity is immediate from the definition.

Lemma 2.10. Let p > 0 and let Ai ⊆ V (i = 0, 1, 2). If A′i ⊆ Ai (i = 0, 1), then

capGp (A′0, A
′
1;A2) ≤ capGp (A0, A1;A2)

Typical p-harmonic functions are given as equilibrium potential of p-capacity:

Lemma 2.11 ([HS97, Theorems 3.5 and 3.11]). Let p > 1. Let A0, A1 ⊆ V and let A2

be non-empty connected subset of V with A0 ∩ A1 = ∅ and A0 ∪ A1 ⊆ A2. There exists a
unique function ϕ : A2 → [0, 1] equilibrium potential) such that ϕ|Ai ≡ i for i = 0, 1 and

EGp,A2
(ϕ) = capGp (A0, A1;A2)

Furthermore, ϕ is p-harmonic in A2 \ (A0 ∪ A1).

On bounded degree graphs, the notions of modulus and capacity between sets are
comparable as observed by He and Schramm [HS95].

Lemma 2.12. Let p > 0. Then there exists a constant C ≥ 1 depending only on p, deg(G)
such that the following statement is true: for any Ai ⊆ V (i = 0, 1, 2) with A0 ∪ A1 ⊆ A2,

C−1capGp (A0, A1;A2) ≤ ModGp (A0, A1;A2) ≤ CcapGp (A0, A1;A2). (2.5)

Proof. If we introduce the edge version of combinatorial p-moduli, then that p-moduli
and p-capacity are the same (see [ABPPW, Theorem 4.2] or [Shi21, Theorem 3.17] for
example). It is easy to see that vertex and edge version of modulus are comparable by a
slight modification of [HS95, Theorem 8.1].

A direct proof of (2.5) can be found in [Kig20, Proposition 4.8.4]. �

2.4 Volume growth conditions

We recall doubling properties and Ahlfors regularity on graphs and metric spaces.

Definition 2.13. A metric space (X, d) is said to be metric doubling if there exists
ND ∈ N such that any ball Bd(x, r) can be covered by at most ND balls with radii r/2.
A Borel measure m on X is said to be volume doubling (VD for short) with respect to d
if there exists CD ≥ 1 such that

0 < m(Bd(x, 2r)) ≤ CDm(Bd(x, r)) <∞ for all x ∈ X, r > 0. (VD)

A graph G = (V,E) is volume doubling if VD holds with respect to the graph distance
and the counting measure.
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Definition 2.14. Let df > 0. A metric space (X, d) is said to be df-Ahlfors regular
(AR(df) for short) if there exist CAR ≥ 1 and a Borel measure m on X with

C−1
ARr

df ≤ m(Bd(x, r)) ≤ CARr
df for any x ∈ X and r ∈ (0, diam(X, d)). (AR(df))

(X, d) is said to be Ahlfors regular if it satisfies AR(df) for some df > 0. We shall say
that a graph G = (V,E) is df-Ahlfors regular if the condition above defining AR(df) holds
with respect to the graph distance and the counting measure for all x ∈ V and for all
r ∈ (1, diam(V )).

We recall a few elementary consequences of these definitions.

Remark 2.15. Let (X, d) be a metric space.

(1) If there exists a volume doubling measure m on (X, d), then (X, d) is metric doubling
whose doubling constant ND depends only on the doubling constant CD of m. [Hei,
Chapter 13]

(2) If a Borel measure m on X satisfies AR(df) for some df > 0, then m is volume dou-
bling whose doubling constant CD depends only on CAR and df > 0. Furthermore,
AR(df) implies that the Hausdorff dimension of (X, d) is df .

We recall the following consequence of the volume doubling property.

Lemma 2.16. Let (X, d) be a metric space and let m be a Borel measure on X satisfying
VD. Then there exists α > 0 depending only on the doubling constant CD such that

m(Bd(x,R))

m(Bd(y, r))
≤ C2

D

(
d(x, y) +R

r

)α
for any x, y ∈ X and 1 ≤ r ≤ R <∞. (VD(α))

In particular,

m(Bd(x,R)) ≤ CDR
α for any x ∈ X and 1 ≤ R < diam(X, d). (2.6)

Since increasing α does not affect the validity of VD(α), we assume that α ≥ 1 for
much of this work.

3 Loewner-type lower bounds for p-modulus

Throughout this section, let p ≥ 1 and let G = (V,E) be a locally finite connected simple
non-directed graph.

We introduce the following Loewner-type lower bounds on modulus between balls.
The case with exponent ζ = 0 was introduced by Bonk and Kleiner [BK05, Proposition
3.1]. This was extended by Bourdon and Kleiner [BK13, Proposition 2.9] to a discrete
setting.
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Definition 3.1. Let ζ ∈ R. A graph G satisfies p-combinatorial ball Loewner condition
with exponent ζ (BCLp(ζ) for short) if there exists A ≥ 1 such that the following hold:
for any κ > 0 there exist cBCL(κ) > 0 and LBCL(κ) > 0 such that

ModGp ({θ ∈ Path(B1, B2) | diam θ ≤ LBCL(κ)R}) ≥ cBCL(κ)Rζ (BCLp(ζ))

whenever R ∈ [1, diam(G)/A) and Bi (i = 1, 2) are balls with radii R satisfying
dist(B1, B2) ≤ κR.

In this section, we discuss BCLp(ζ) and prove a key estimate (Theorem 3.2) in this
paper. The setting of this section is given by the following condition:

The underlying graph G satisfies BCLp(ζ) and 1− p ≤ ζ < 1. (BCLlow
p (ζ))

We are interested in the case where ζ is the ‘largest’ possible value. Since BCLlow
p (1− p)

is always true by (2.2), there is not much loss of generality in the assumption ζ ≥ 1 − p
but the inequality ζ < 1 need not be true in general but holds in many ‘low dimensional
settings’ such as the Sierpiński carpet.

Under BCLlow
p (ζ), we can show a generalized lower bound of p-modulus as in the

next theorem, which is one of the main results in this section. It states that Loewner-
type lower bounds on modulus between balls imply analogous lower bound on modulus
between any pair of connected sets. This result plays important roles in the proofs of
Poincare inequality in §4 and elliptic Harnack inequality in §5. The following theorem
can be viewed as an extension of a result of Bonk and Kleiner from ζ = 0 to more general
exponent ζ [BK05, Proposition 3.1], [BK13, Proposition 2.9].

Theorem 3.2. Let p ∈ [1,∞) and κ0 ∈ (0,∞). Assume that G is bounded degree
graph that satisfies p-combinatorial ball Loewner condition BCLlow

p (ζ) with exponent ζ ∈
[1− p, 1). Then there exist constants c, L > 0 depending only on the constants associated
to the assumptions such that the following statement is true: If Fi (i = 1, 2) are disjoint
connected subsets of V satisfy

dist(F1, F2)

diamF1 ∧ diamF2

≤ κ0,

then
ModGp ({θ ∈ Path(F1, F2) | diam θ ≤ LR0}) ≥ cRζ

0, (3.1)

where R0 := 2 dist(F1, F2) ∧ 1
2

diamF1 ∧ 1
2

diamF2.

The proof of the above theorem is inspired by [BK05, Proposition 3.1] and [BK13,
Proposition 2.9]. Similar to [BK05, BK13], the idea behind its proof is to show the
existence of a shortcut with respect to an arbitrary function ρ ∈ `+(V ) and use Lemma
2.4. To construct such a shortcut, we need two key lemmas.

The first one is a is a discrete analog of [BK05, Lemma 3.5] and provides a linear
decay of measure of suitably chosen balls.
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Lemma 3.3. Let (G, ν) = (V,E, ν) be a weighted graph with ν(V ) < +∞ and let A ⊆ V
be a connected subset with respect to G with #A ≥ 2. Then there exists z ∈ A such that

ν(B(z, r)) ≤ 8

diamA
(r ∨ 1)ν(V ) for any r > 0. (3.2)

Proof. The proof is a straightforward modification of the proof of [BK05, Lemma 3.5].
We give the details for the reader’s convenience. If (3.2) were false, then for any z ∈ A
there exists rz > 0 such that

ν(B(z, rz)) > C(rz ∨ 1)ν(V ), (3.3)

where C := 8/ diamA. From this estimate, we have

sup
z∈A

rz ≤
ν(B(z, rz))

Cν(V )
≤ C−1 < +∞.

Applying the basic covering lemma (Lemma A.1), we get a family of disjoint balls
{B(zi, ri)}i∈I (for each i ∈ I, zi ∈ A and ri = rzi) such that A ⊆ ⋃

i∈I B(zi, 3ri).
Since A is connected, we can show that for any distinct i, j ∈ I there exists a sequence
i = i0, i1, · · · , il−1, il = j in I such that

B(zik−1
, 3rik−1

) ∩B(zik , 3rik) 6= ∅ for any k ∈ {1, . . . , l}.

By the triangle inequality, we see that

diamA ≤
∑
i∈I

diamB(zi, 3ri) ≤
∑
i∈I

(6ri + 2) ≤ 8
∑
i∈I

(ri ∨ 1),

that is,
∑

i∈I(ri ∨ 1) ≥ C−1. However, by combining with (3.3), we have

ν(V ) ≥
∑
i∈I

ν(B(zi, ri)) > Cν(V )
∑
i∈I

(ri ∨ 1) ≥ ν(V ),

which is a contradiction. �

The next lemma is an analog of [BK05, Lemma 3.7] or [BK13, Lemma 2.10]. Note
that condition (iv) is similar to the hypothesis and is suitable for indutive application of
this lemma.

Lemma 3.4. Suppose that G = (V,E) satisfies BCLp(ζ). For any λ ∈ (0, 1/8), let
Lλ := LBCL

(
9

2λ

)
+ 7

8
. Let (B,F1, F2) be a triple such that B = B(x,R) for some x ∈ V

and R ≥ 16 and Fi (i = 1, 2) are connected subset of V . If the triple (B,F1, F2) satisfies

Fi ∩
1

4
B 6= ∅ and Fi \B 6= ∅ (i = 1, 2),

then for any ρ ∈ `+(V ) there exist xi ∈ Fi (i = 1, 2) satisfying the following:
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(i) For each i = 1, 2, xi ∈ B(x, 3R/4) and d(x, x1) ∧ d(x, x2) ≤ 3R/8. Furthermore,
Bi := B(xi, λR) satisfies 1

8λ
Bi ⊆ 7

8
B and B1 ∩B2 = ∅.

(ii) For each i = 1, 2, ‖ρ‖pp,Bi ≤ 128(λ ∨R−1) ‖ρ‖pp,B.

(iii) There exists θ ∈ Path
(

1
4
B1,

1
4
B2

)
such that θ ⊆ LλB, diam θ ≤ LBCL

(
9

2λ

)
R and

Lρ(θ) ≤ Cp,λ(λR)−ζ/p ‖ρ‖p,LλB ,

where Cp,λ > 0 is a constant depending only on p, ζ, λ and cBCL

(
9

2λ

)
.

(iv) Fi ∩ 1
4
Bi, θ ∩ 1

4
Bi, Fi \Bi and θ \Bi (i = 1, 2) are non-empty.

Proof. Since R ≥ 16, we can choose disjoint connected subsets F̃i (i = 1, 2) of V such that

F̃1 is a connected subset of F1 ∩
(
B

(
x,

3

8
R

)
\B
(
x,

1

4
R

))
with diam F̃1 ≥

R

16
,

and

F̃2 is a connected subset of F2 ∩
(
B

(
x,

3

4
R

)
\B
(
x,

5

8
R

))
with diam F̃2 ≥

R

16
.

Let ρ ∈ `+(V ) and define a measure νρ by νρ(A) = ‖ρ‖pp,A∩B for any A ⊆ V , i.e. νp({x}) =

ρ(x)p for x ∈ B and νp({x}) = 0 for x 6∈ B. Applying Lemma 3.3, we find zi ∈ F̃i for
each i = 1, 2 such that

νρ(B(zi, r)) ≤
8

R/16
(r ∨ 1)νρ(V ) = 128 · r ∨ 1

R
νρ(B) for any r > 0.

Choosing r = λR and setting Bi := B(zi, λR) ⊆ B, we get

‖ρ‖pp,Bi ≤ 128(λ ∨R−1) ‖ρ‖pp,B ,

which proves (ii). Clearly, we have Bi ⊆ 7
8
B by λ ∈ (0, 1/8) and zi ∈ B(x, 3R/4).

Moreover, for any y ∈ 1
8λ
Bi,

dG(x, y) ≤ dG(x, zi) + dG(zi, y) <
3

4
R +

1

8λ
(λR) =

7

8
R,

which proves 1
8λ
Bi ⊆ 7

8
B. Since z1 ∈ B(x, 3R/8), z2 6∈ B(x, 5R/8) and λ < 1/8, we have

B1 ⊆
1

2
B and B2 ⊆

7

8
B \ 1

2
B,

and hence B1 ∩B2 = ∅. This proves (i).

The rest of the proof is proving (iii) and (iv).
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(iii) It is clear that

dist
(1

4
B1,

1

4
B2

)
≤ dG(z1, z2) ≤ 3

8
R +

3

4
R =

9

8
R =

9

2λ
· λR

4
.

Thus BCLp(ζ) together with Lemma 2.4 implies that there exists a path θ ∈ Path
(

1
4
B1,

1
4
B2

)
satisfying the following conditions.

• diam θ ≤ LBCL

(
9

2λ

)
R and hence θ ⊆

(
LBCL

(
9

2λ

)
+ 7

8

)
B = LλB;

• Lρ(θ) ≤ 2
[
cBCL

(
9

2λ

)]−1/p (λR
4

)−ζ/p ‖ρ‖p,LλB =: Cp,λ(λR)−ζ/p ‖ρ‖p,LλB.

(iv) Since Bi is centered at Fi and Bi ⊆ B, we immediately have Fi ∩ 1
4
Bi 6= ∅ and

Fi \ Bi 6= ∅. Also, θ ∩ 1
4
Bi 6= ∅ is clear. Since B1 ∩ B2 = ∅ and θ ∈ Path

(
1
4
B1,

1
4
B2

)
, we

see that θ \Bi 6= ∅. We complete the proof. �

Finally, we shall prove the main result (Theorem 3.2) in this section.

Proof of Theorem 3.2. Let ρ ∈ `+(V ). We will construct a Lρ-shortcut joining F1 and F2.
Let λ ∈ (0, 1/16) be a fixed small parameter that will be chosen later. First, we consider
the case R0 ≥ λ−1. Set

n∗ = n∗(λ,R0) = max{n ∈ Z≥0 | λnR0 ≥ λ−1}+ 1,

i.e. n∗ ∈ N is the unique natural number such that

logR0

log λ−1
− 1 < n∗ ≤

logR0

log λ−1
. (3.4)

Then, for any n ∈ Z≥0 with n < n∗,

λ ∨ (λnR0)−1 = λ and λnR0 ≥ λ−1 > 16.

Pick xi ∈ Fi so that dG(x1, x2) = dist(F1, F2). Then Bi := B(xi, R0) satisfies Fi∩ 1
4
Bi 6= ∅

and Fi\Bi 6= ∅ for each i = 1, 2. Furthermore, dist
(

1
4
B1,

1
4
B2

)
can be estimated as follows:

If R0 = 2 dist(F1, F2), then

dist
(1

4
B1,

1

4
B2

)
≤ dist(F1, F2) = 2 · R0

4
.

If R0 6= 2 dist(F1, F2) (i.e. 2R0 = diamF1 ∧ diamF2), then

dist
(1

4
B1,

1

4
B2

)
≤ dist(F1, F2) =

8 dist(F1, F2)

diamF1 ∧ diamF2

· R0

4
≤ 8κ0 ·

R0

4
.

By using BCLp(ζ) and Lemma 2.4, we can find a path θ∅ ∈ Path
(

1
4
B1,

1
4
B2

)
satisfying the

following condition (c1).
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(c)1 diam θ∅ ≤ LBCL(2 ∨ 8κ0)R0 and Lρ(θ∅) ≤ C · cBCL(2 ∨ 8κ0)−1/pR
−ζ/p
0 ‖ρ‖p, where

C > 0 is a constant depending only on p and ζ.

We set Θ1 := {θ∅}, B1 := {B1, B2}, and Ξ1 := {F1, F2}.
Next we describe an essential step of this proof. Set Ξ2 := Ξ1 t {θ∅} = Ξ1 t Θ1, and

define F11 := F1, F12 = F21 := θ∅ and F22 := F2. Then Ξ2 = {Fτ}τ∈{1,2}2 . If R0 ≥ 16,
then θ∅ is a connected subset of V with #θ∅ ≥ 2 and we can apply Lemma 3.4 for the
triple (Bi, Fi1, Fi2). (The case R0 < 16 will be discussed in the next paragraph.) Indeed,
we have from R0 ≤ 2 dist(F1, F2) that 1

4
Bi ∩ Bj = ∅ if {i, j} = {1, 2}. Combining with

θ∅ ∈ Path
(

1
4
B1,

1
4
B2

)
, we verify 1

4
Bi ∩ θ∅ 6= ∅ and θ∅ \ Bi 6= ∅ for i = 1, 2. As a result of

Lemma 3.4, we get balls Bi1, Bi2 and paths θi satisfying the following conditions (a2)-(d2).

(a)2 Bi1 = B(xi1, λR0), Bi2 = B(xi2, λR0) for some xi1 ∈ Fi1, xi2 ∈ Fi2 with xi1, xi2 ∈
B(xi, 3R0/4) and dG(xi, xi1) ∧ dG(xi, xi2) ≤ 3R0/8. Furthermore, 1

8λ
Bi1 ∪ 1

8λ
Bi2 ⊆

7
8
Bi and Bi1 ∩Bi2 = ∅.

(b)2 ‖ρ‖pp,Bi1 ∨ ‖ρ‖
p
p,Bi2
≤ Cshrλ ‖ρ‖pp,Bi , where Cshr := 128.

(c)2 θi ∈ Path
(

1
4
Bi1,

1
4
Bi2

)
, θi ⊆ LλBi, diam θi ≤ LλR0 and

Lρ(θi) ≤ Cp,λ(λR0)−ζ/p ‖ρ‖p,LλBi ,

where Lλ and Cp,λ are the constants in Lemma 3.4.

(d)2 For i, j ∈ {1, 2}, all of Fij ∩ 1
4
Bij, θi ∩ 1

4
Bij, Fij \Bij and θi \Bij are non-empty.

We set Θ2 := {θ1, θ2} and B2 := {Bτ}τ∈{1,2}2 . Thanks to (d2), we can use Lemma
3.4 for (Bij, Fij1, Fij2) when λR0 ≥ 16, where {Fij1, Fij2} = {Fij, θi}. Here, we select
Fijk (i, j, k = 1, 2) so that F111 = F1 and F222 = F2. Inductively, for j = 2, . . . , n∗ + 1, we
can construct a path collection Θj = {θω}ω∈{1,2}j−1 , a ball collection Bj = {Bτ}τ∈{1,2}j ,
and a collection of connected sets Ξj = {Fτ}τ∈{1,2}j with Fii···i = Fi (i = 1, 2) subject to
the following conditions: for any ω = ω1 · · ·ωj−1 ∈ {1, 2}j−1 (i.e. ωk ∈ {1, 2} for each
k = 1, . . . , j − 1),

(a)j Bω1 = B(xω1, λ
j−1R0) and Bω2 = B(xω2, λ

j−1R0) for some xω1 ∈ Fω1, xω2 ∈ Fω2

with xω1, xω2 ∈ B(xω, 3λ
j−2R0/4) and dG(xω, xω1) ∧ dG(xω, xω2) ≤ 3λj−2R0/8. Fur-

thermore, 1
8λ
Bω1 ∪ 1

8λ
Bω2 ⊆ 7

8
Bω and Bω1 ∩Bω2 = ∅.

(b)j ‖ρ‖pp,Bω1
∨ ‖ρ‖pp,Bω2

≤ Cshrλ ‖ρ‖pp,Bω .

(c)j θω ∈ Path
(

1
4
Bω1,

1
4
Bω2

)
, θω ⊆ LλBω, diam θω ≤ Lλλ

j−2R0 and

Lρ(θω) ≤ Cp,λ(λ
j−1R0)−ζ/p ‖ρ‖p,LλBω .

(d)j For i ∈ {1, 2}, all of Fωi ∩ 1
4
Bωi, θω ∩ 1

4
Bωi, Fωi \Bωi and θω \Bωi are non-empty.
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Note that a combination of (a)j and (c)j implies
⋃
w∈{1,2}j−1 θω ⊆ LλB1 ∪ LλB2. Indeed,

for j ∈ {1, . . . , n∗ + 1}, ω = ω1 · · ·ωj ∈ {1, 2}j and y ∈ LλBω, we have from (a)j that

dG(xω1···ωj−1
, y) ≤ dG(xω1···ωj−1

, xω) + dG(xω, y)

<
3

4
λj−2R0 + λj−1LλR0 ≤

(
3

4
+
Lλ
8

)
λj−2R0 < Lλλ

j−2R0,

where we used Lλ ≥ 7
8
> 6

7
in the last inequality. Combining with (c)j, we obtain

θω ⊆ LλBω ⊆ LλBω1···ωj−1
.

Hence we conclude that θω ⊆ LλBω1 ⊆ LλB1 ∪ LλB2.

Next we will fill “gaps” between θω and the center of 1
4
Bωi for each ω ∈ {1, 2}n∗ and

i = 1, 2. Since G is connected, we can find a (shortest) path θ̃ωi ∈ Path(θω, xωi) such that

θ̃ωi ⊆ Bωi and len
(
θ̃ωi
)
≤ λn∗R0/4 < (4λ)−1. By Hölder’s inequality, we also have

Lρ
(
θ̃ωi
)
≤ len

(
θ̃ωi
)(p−1)/p ‖ρ‖p,Bωi ≤

(
1

4λ

)(p−1)/p

‖ρ‖p,Bωi . (3.5)

Concatenating paths {θω | ω ∈ {1, 2}j, j = 0, . . . , n∗} and
{
θ̃τ | τ ∈ {1, 2}n∗+1

}
in a

suitable way, we can obtain a path θ∗ satisfying the following conditions (3.6)-(3.8):

θ∗ ∈ Path(F1, F2) with θ∗ ⊆ LλB1 ∪ LλB2 ∪ θ∅, (3.6)

diam θ∗ ≤ diam θ∅ +
n∗∑
j=1

∑
ω∈{1,2}j

diam θω +
∑

ω∈{1,2}n∗

(
len
(
θ̃ω1

)
+ len

(
θ̃ω2

))
, (3.7)

and
Lρ(θ∗) ≤

∑
ω∈{1,2}n∗

Lρ(θω) +
∑

τ∈{1,2}n∗+1

Lρ
(
θ̃τ
)
. (3.8)

From (3.7) and (c)j, we can give an upper bound for diam θ∗ as follows:

diam θ∗ ≤
(
LBCL(κ0) + Lλ

n∗∑
j=1

2jλj−1

)
R0 +

2n∗

2λ

≤
(
LBCL(κ0) +

2

1− 2λ
Lλ +

1

2λ

)
R0 =: LR0. (3.9)

We will give an upper bound on Lρ(θ∗) by using (3.8). We start by introducing

l∗ = l∗(λ, Lλ) := max
{
l ≤ n∗

∣∣ (8λ)−l ≤ Lλ
}
.

Here, if {l ≤ n∗ | (8λ)−l ≤ Lλ} = ∅, then we define l∗ as 0. By (3.8), we have

Lρ(θ∗) ≤ L1 + L2 + L3. (3.10)
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where

L1 :=
l∗∑
j=0

∑
ω∈{1,2}j

Lρ(θω), L2 :=
n∗∑

j=l∗+1

∑
ω∈{1,2}j

Lρ(θω), and L3 :=
∑

τ∈{1,2}n∗+1

Lρ
(
θ̃τ
)

Each term can be estimated as follows.

The first term L1. For any j ∈ {1, . . . , l∗} and ω ∈ {1, 2}j, by (c)j+1,

Lρ(θω) ≤ Cp,λ(λ
jR0)−ζ/p ‖ρ‖p,LλBω ≤ Cp,λ(λ

jR0)−ζ/p ‖ρ‖p .

Combining with (c)1, we see that

L1 =
l∗∑
j=0

∑
ω∈{1,2}j

Lρ(θω) ≤ Lρ(θ∅) +
l∗∑
j=1

∑
ω∈{1,2}j

Lρ(θω)

≤
(
c(κ0)−1/p + Cp,λ

l∗∑
j=1

2jλ−jζ/p
)
R
−ζ/p
0 ‖ρ‖p . (3.11)

Moreover, if we suppose λ < C−1
shr(= 128−1), then since (Cshrλ)(j−l∗−1)/p ≥ 1 for j ≤ l∗

L1 ≤
(
cBCL(κ0)−1/p + Cp,λ

l∗∑
j=1

2jλ−jζ/p(Cshrλ)(j−l∗−1)/p
)
R
−ζ/p
0 ‖ρ‖p . (3.12)

The second term L2. Note that Lλ ≤ (8λ)−l∗ . For any j ∈ {l∗ + 1, . . . , n∗}, k ∈
{1, . . . , j − 1} and ω = ω1 · · ·ωj ∈ {1, 2}j, define [ω]−k = ω1 · · ·ωj−k ∈ {1, 2}j−k. From
(a)j, we observe that

LλBω ⊆ (8λ)−l∗Bω ⊆ (8λ)−l∗+1B[ω]−1 · · · ⊆ B[ω]−l∗
.

By using (b)j repeatedly, we obtain

‖ρ‖p,B[ω]−l∗
≤ (Cshrλ)1/p ‖ρ‖p,B[ω]−l∗−1

≤ · · · ≤ (Cshrλ)(j−l∗−1)/p ‖ρ‖p,B[ω]−j+1

≤ (Cshrλ)(j−l∗−1)/p ‖ρ‖p . (3.13)

Therefore, by (c)j+1, we have

Lρ(θω) ≤ Cp,λ(λ
jR0)−ζ/p ‖ρ‖p,LλBω ≤ Cp,λλ

−jζ/p(Cshrλ)(j−l∗−1)/pR
−ζ/p
0 ‖ρ‖p ,

and hence

L2 =
n∗∑

j=l∗+1

∑
ω∈{1,2}j

Lρ(θω) ≤ Cp,λ

(
n∗∑

j=l∗+1

2jλ−jζ/p(Cshrλ)(j−l∗−1)/p

)
R
−ζ/p
0 ‖ρ‖p . (3.14)
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The third term L3. By (3.5) and the same argument to obtain (3.13), we have

L3 =
∑

τ∈{1,2}n∗+1

Lρ
(
θ̃τ
)
≤ 2

(
1

4λ

)(p−1)/p

(2pCshrλ)n∗/p ‖ρ‖p . (3.15)

Recall that we suppose ζ < 1. Pick δ ∈ (ζ, 1) and define n′∗ as the unique non-negative
integer such that

logR0

log (2pCshrλ)−1
− 1 < n′∗ ≤

logR0

log (2pCshrλ)−1
.

We now suppose λ ≤ (2pCshr)
−1/(1−δ). Then log λ−1 ≤ log (2pCshrλ)−1/δ and hence

δn′∗ ≤
logR0

log λ−1
≤ n∗ + 1.

Therefore, we have

(2pCshrλ)n∗ ≤ (2pCshrλ)δn
′
∗−1 ≤ (2pCshrλ)−1R−δ0 ≤ (2pCshrλ)−1R−ζ0 . (3.16)

Combining (3.15) and (3.16), we obtain

L3 ≤ C̃p,λR
−ζ/p
0 ‖ρ‖p , (3.17)

where C̃p,λ := 2(1/4λ)(p−1)/p(2pCshrλ)−1/p that depends only on p, λ and deg(G).

Consequently, if we fix δ ∈ (ζ, 1) and λ < (2pCshr)
−1/(1−δ) (e.g. λ = 1

2
(2pCshr)

−1/(1−δ)),
then (3.12), (3.14) and (3.17) imply that

Lρ(θ∗) ≤ C∗R
−ζ/p
0 ‖ρ‖p , (3.18)

where

C∗ := c(κ0)−1/p + Cp,λ(Cshrλ)−(l∗+1)/p

+∞∑
j=0

(
2 · C1/p

shr · λ(1−ζ)/p)j + C̃p,λ.

By λ < (2pCshr)
−1/(1−δ), we have 2 · C1/p

shr · λ(1−ζ)/p < 1 and, by Cshr = 128,

(Cshrλ)−l∗ ≤ (8λ)−l∗ ≤ Lλ.

Hence C∗ ≤ c−1/p if we put

c :=

(
cBCL(κ0)−1/p + Cp,λL

−1/p
λ (Cshrλ)−1/p

+∞∑
j=0

(
2 · C1/p

shr · λ(1−ζ)/p)j + C̃p,λ

)−p
.

We conclude from Lemma 2.4, (3.9) and (3.18) that

ModGp ({θ ∈ Path(F1, F2) | diam θ ≤ LR0}) ≥ cRζ
0,

which finishes the proof when R0 ≥ λ−1.
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Lastly, we consider the case R0 < λ−1. If R0 = 0 (i.e. #F0 = 1 or #F1 = 1), then
the required estimate is trivial. So we can assume that R0 ≥ 1 and #Fi ≥ 2. Since
dist(F0, F1) ≤ (2−1 ∧ 2κ0)R0 =: c1R0, there exists a shortest path θ∗ ∈ Path(F0, F1) such
that len(θ∗) ≤ c1R0. Applying Hölder’s inequality, we obtain

Lρ(θ∗) ≤ len(θ∗)
(p−1)/p ‖ρ‖p,θ∗ ≤ c

(p−1)/p
1 R

(p−1)/p
0 ‖ρ‖p .

Since ζ ≥ 1− p and 1 ≤ R0 < λ−1, we see that

R
(p−1)/p
0 = R

−ζ/p
0 R

(ζ+p−1)/p
0 ≤ λ−(ζ+p−1)/pR

−ζ/p
0 .

By Lemma 2.4, we obtain

ModGp ({θ ∈ Path(F1, F2) | diam θ ≤ LR0}) ≥ cRζ
0,

where c > 0 depends only on p, ζ, c1 and λ. �

We also frequently use the following consequence of Theorem 3.2.

Corollary 3.5. Assume that G is bounded degree graph that satisfies p-combinatorial ball
Loewner condition BCLlow

p (ζ) with exponent ζ ∈ [1 − p, 1). There exist constants c > 0
and L ≥ 1 depending only on the constants associated with the assumptions such that if
Fi (i = 1, 2) are connected subsets of V satisfying #Fi ≥ 2, Fi ∩ B 6= ∅ and Fi \ 4B 6= ∅
for some ball B with radius R > 0, then

ModGp (F1, F2; 4LB) ≥ c(R ∨ 1)ζ . (3.19)

Proof. We first consider the case R ≥ 2. Notice that V \ 4B 6= ∅. Since Fi is connected,

we can find a connected subset F̃i of Fi satisfying the following conditions (i)-(iii):

(i) F̃1 ⊆ F1 ∩
(
2B \B

)
and F̃2 ⊆ F2 ∩

(
4B \ 3B

)
.

(ii) F̃1 ∩B 6= ∅ and F̃2 ∩ 3B 6= ∅.

(iii) F̃1 \ 2B 6= ∅ and F̃2 \ 4B 6= ∅.

Then we immediately see that 3R ≥ diam F̃1 ≥ diam F̃2 = d4Re − d3Re ≥ 1
2
R and

8R ≥ dist
(
F̃1, F̃2

)
≥ d3Re − d2Re ≥ 1

2
R.

Hence, by applying Theorem 3.2 for F̃i, there exist c, L > 0 (depending only on the
constants associated with the assumptions) such that

Modp

({
θ ∈ Path

(
F̃1, F̃2

) ∣∣ diam θ ≤ LR
})
≥ cRζ .
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By Lemma 2.3(ii),

ModGp ({θ ∈ Path(F1, F2)
∣∣ θ ⊆ (L+ 1)B}) ≥ ModGp

({
θ ∈ Path

(
F̃1, F̃2

) ∣∣ diam θ ≤ LR
})
,

which implies our assertion in this case.

Next we consider the case R ≤ 2. Let L > 0 be the same as in the previous paragraph.
Then, by (2.2) in Lemma 2.4, we have

ModGp ({θ ∈ Path(F1, F2)
∣∣ θ ⊆ (L+ 4)B})

≥ ModGp ({θ ∈ Path(F1, F2)
∣∣ θ is a shortest path})

≥ 41−p = 41−p(R ∨ 1)−ζ · (R ∨ 1)ζ ≥ 41−p(2−1 ∧ 1
)
(R ∨ 1)ζ ,

where we used (R ∨ 1)−ζ ≥ (R ∨ 1)−1 ∧ 1p−1 and R ≤ 2 in the last inequality. �

4 Discrete (p, p)-Poincaré inequality

Throughout this section, let p ≥ 1 and let G = (V,E) be a locally finite connected simple
non-directed graph.

The goal of this section is to show that the ‘low-dimensional’ p-ball combinatorial
Loewner type property BCLlow

p (ζ) implies a Poincaré inequality. We shall give the defini-
tion of (weak) (p, p)-Poincaré inequality in our setting.

Definition 4.1. Let β > 0. A graph G satisfies (p, p)-Poincaré inequality of order β
(PIp(β) for short) if there exist constants CPI, API ≥ 1 such that for any x ∈ V , R ≥ 1
and f ∈ RV , ∑

y∈B(x,R)

∣∣f(y)− fB(x,R)

∣∣p ≤ CPIR
βEGp,B(x,APIR)(f). (PIp(β))

The main result in this section (Theorem 4.2) tells us that the (p, p)-Poincaré inequality
follows from the the combinatorial ball Loewner-type property BCLlow

p (ζ) and VD. This
result and its proof are inspired by a similar theorem of Heinonen and Koskela [HK98,
Theorem 5.12]. Although the result in [HK98] corresponds to the case ζ = 0 the proof
there works when ζ < 1.

Theorem 4.2. Let G = (V,E) be a graph satisfying VD(α) and BCLlow
p (ζ), where α ≥ 1

and ζ ∈ [1 − p, 1). Then G satisfies PIp(β), where β = α − ζ, API = 2 and CPI depends
only on the constants associated with the assumptions.

The proof of Theorem 4.2 is done in two steps. In the first step, we introduce a two-
point estimate that is a sufficient condition for the Poincaré inequality (see Definition 4.3
and Lemma 4.6). In the second step, we show that the combinatorial ball Loewner-type
property BCLlow

p (ζ) implies the two-point estimate (Lemma 4.7).
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4.1 Equivalence with two-point estimates

We introduce a two-point estimate and show that it is equivalent to the Poincaré inequal-
ity. For f ∈ RV and R ≥ 1, we define

Mp
R[f ](x) = max

0<r<R

EGp,B(x,r)(f)

#B(x, r)
, x ∈ V.

The function Mp
R[f ] is the truncated maximal function of the gradient of f in our setting.

Perhaps, the notation MR(|∇f|p) is more appropriate but we choose the above notation
for brevity. The following definition gives a discrete generalization of pointwise estimates
(see [HK00, (15)] or [HK98, (5.16)] for example).

Definition 4.3. Let β > 0. The graph G satisfies the p-two-point estimate of order β
(TPp(β) for short) if there exists a constant CTP > 0 such that for any z ∈ V , R ≥ 1,
f ∈ RV and x, y ∈ B(z, C−1

TPR),

|f(x)− f(y)|p ≤ CTPER
β
(
Mp

R[f ](x) +Mp
R[f ](y)

)
. (TPp(β))

It is easy to see that VD(α), where α ≥ 1, implies TPp(α + p− 1).

Lemma 4.4. Suppose that G satisfies VD(α) for some α ≥ 1. Then G satisfies TPp(α+
p− 1) with CTP > 1 depending only on α,CD.

Proof. Let C > 1 that will be chosen later. Let [z0, z1, . . . , zl] be a shortest path in G
such that z0 = x and zl = y. Note that l = dG(x, y) ≤ R∗ and zi ∈ B(y,R∗). If C ≥ 2,
then by Hölder’s inequality, we have

|f(x)− f(y)|p ≤ lp−1

l−1∑
i=0

|f(zi)− f(zi+1)|p ≤ Rp−1EG
p,B(y,R/2)

(f).

Thus TPp(α + p− 1) follows by using VD(α). �

A well-known telescoping sum argument show that Poincaré inequality implies the two
point estimate. This follows from a straighforward modification of the proof of [HK98,
Lemma 5.15] or a discrete version of that argument in the special case p = 2 in [Mur20,
Lemma 2.4]. We omit the proof as we will not use the lemma below.

Lemma 4.5. Let G = (V,E) be a graph satisfying VD and PIp(β) for some β > 0. Then
G satisfies TPp(β).

The following lemma is a converse of the previous lemma. Let us recall the notion of
median. For f ∈ RV and A, a median of f on A is a number a ∈ R such that

#{w ∈ A | f(z) ≥ a} ∧#{w ∈ A | f(z) ≤ a} ≥ 1

2
#A.

We write med(f, A) to denote the set of medians of f on A. (It is easy to show that
med(f, A) 6= ∅.)

34



Lemma 4.6. Let G = (V,E) be a graph satisfying VD and TPp(β) for some β > 0. Then
there exist constants C > 0 and A > 0 depending only on p, CD, deg(G), CTP such that∑

B(x,R)

|f − a|p ≤ CRβEGp,B(x,AR)(f), (4.1)

for any x ∈ V , R ≥ 1, f ∈ RV , a ∈ med
(
f,B(x,R)

)
. In particular, G satisfies PIp(β).

Proof. The proof of [HK98, Lemma 5.15] applies to our setting with minor modifications.
For the reader’s convenience, we give a proof.

Let z ∈ V , let R ≥ 1 and let f ∈ RV . Set B := B(z, C−1
TPR) and fix a ∈ med(f,B).

By considering f − a instead of f , we can assume that a = 0, i.e.

#{z ∈ B | f(z) ≥ 0} ∧#{z ∈ B | f(z) ≤ 0} ≥ 1

2
#B. (4.2)

Let s > 0. Suppose that x, y ∈ B satisfy

f(x) ≥ s and f(y) ≤ 0 (resp. f(x) ≤ −s and f(y) ≥ 0). (4.3)

We choose w ∈ {x, y} so that Mp
R[f ](w) = Mp

R[f ](x) ∨ Mp
R[f ](y). Then there exists

R∗ = R∗(w) ∈ (0, R) ∩ N such that

Mp
R[f ](x) +Mp

R[f ](y) ≤ 2
EGp,B(w,R∗)

(f)

#B(w,R∗)
.

By TPp(β), we have

s ≤ |f(x)− f(y)| ≤ 21/pC
1/p
TPR

β/p

(
EGp,B(w,R∗)

(f)

#B(w,R∗)

)1/p

,

which is equivalent to
#B(w,R∗) ≤ C1s

−pRβEGp,B(w,R∗)(f), (4.4)

where C1 := 2CTP.

Next we prove the following weak Lp-type estimates: for any s ∈
(
0, ‖f‖`∞(V )

]
∩ R,

#
(
B ∩ {|f| ≥ s}

)
≤ C2R

βs−pEG
p,B(z,(C−1

TP+1)R)
(f), (4.5)

where C2 > 0 is a constant depending only on CTP and CD. The proof will be divided
into the following two cases.

Case 1: Consider the case where there exists x ∈ {f ≥ s}∩B (resp. x ∈ {f ≤ −s}∩B)
such that, for any y ∈ {f ≤ 0} ∩B (resp. y ∈ {f ≥ 0} ∩B),

Mp
R[f ](y) = Mp

R[f ](x) ∨Mp
R[f ](y).
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In this case, by applying the basic covering lemma (Lemma A.1) for {B(y,R∗(y))}y∈{f≤0}∩B
(resp. {B(y,R∗(y))}y∈{f≥0}∩B), we obtain N ∈ N and {yi}Ni=1 ⊆ {f ≤ 0} ∩ B (resp.
{yi}Ni=1 ⊆ {f ≥ 0} ∩B) such that

B(yi, Ri) ∩B(yj, Rj) = ∅ if i 6= j,

and

{f ≤ 0} ∩B ⊆
N⋃
i=1

B(yi, 4Ri) (resp. {f ≥ 0} ∩B ⊆
N⋃
i=1

B(yi, 4Ri)),

where Ri := R∗(yi) for each i ∈ {1, . . . , N}. Using VD and (4.4), we see that

#
(
{f ≤ 0} ∩B

)
≤

N∑
i=1

#B(yi, 4Ri) ≤ C1C
2
D

N∑
i=1

#B(yi, Ri)

≤ C1C
2
Ds
−pRβ

N∑
i=1

EGp,B(w,R∗)(f)

≤ C1C
2
Ds
−pRβEG

p,B(z,(C−1
TP+1)R)

(f). (4.6)

(resp. #
(
{f ≥ 0} ∩B

)
≤ C1C

2
Ds
−pRβEp,B(z,(C−1

TPE+1)R)(f).) By (4.2), we obtain

#
(
B ∩ {|f| ≥ s}

)
≤ #B ≤ 2C1C

2
Ds
−pRβEG

p,B(z,(C−1
TP+1)R)

(f).

Case 2: Consider the complement of Case 1, i.e. for any x ∈ {f ≥ s} ∩ B (resp.
x ∈ {f ≤ −s} ∩B) there exists yx ∈ {f ≤ 0} ∩B (resp. yx ∈ {f ≥ 0} ∩B) such that

Mp
R[f ](x) = Mp

R[f ](x) ∨Mp
R[f ](yx).

By considering a sequence of balls {B(x,R∗(x))}x∈{f≥s}∩B (resp. {B(x,R∗(x))}x∈{f≤−s}∩B)
instead of ‘{B(y,R∗(y))}y∈{f≤0}∩B’ in Case 1, a similar argument to the derivation of (4.6)
implies that

#
(
{f ≥ s} ∩B

)
≤ C1C

2
Ds
−pRβEG

p,B(z,(C−1
TPE+1)R)

(f).

(resp. #
(
{f ≤ −s} ∩B

)
≤ C1C

2
Ds
−pRβEp,B(z,(C−1

TPE+1)R)(f).) Therefore, we get (4.5).

The desired Poincaré inequality will be shown by a truncation method by using (4.5)
(cf. [Maz]). Define J∗ = J∗(f) := max

{
j ∈ Z

∣∣ 2j ≤ ‖f‖`∞(V )

}
. (If ‖f‖`∞(V ) = +∞, then

we define J∗ = +∞.) For each j ∈ Z ∩ (−∞, J∗], set

Aj := B ∩ {2j ≤ |f| < 2j+1} and fj :=
(
|f| − 2j

)
∨ 0 ∧ 2j.

Note that {|f| ≥ 2j} =
{
|fj| ≥ 2j

}
. By (4.5) and Lemma 2.6(a,d), we have

#
(
B ∩

{
|fj| ≥ 2j

})
≤ C2R

β2−jpEG
p,B(z,(C−1

TP+1)R)
(fj) ≤ C2R

β2−jpEG
p,Aj

(f).

Hence,

‖f‖pp,Aj =
∑
x∈Aj

|f(x)|p ≤ 2(j+1)p#Aj ≤ 2(j+1)p#
(
B ∩

{
|fj| ≥ 2j

})
≤ 2pC2R

βEG
p,Aj

(f).
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Since {Aj}j are disjoint, we note that
∑

j∈J EGp,Aj(f) ≤ 2EGp (f). Hence we obtain

‖f‖pp,B ≤ 2p+1C1R
βEp,B(f) ≤ 2pC1 deg(G)RβEGp,2B(f),

which proves (4.1).

We conclude the proof by observing that (4.1) implies PIp(β). By (4.1),

inf
c∈R

∑
z∈B(x,R)

|f(z)− c|p ≤ CRβEGp,B(x,AR)(f).

Combining with Lemma A.3, we get PIp(β). �

4.2 Two-point estimates are implied by Loewner bounds

We shall see that PIp(β) holds on a graph G satisfying BCLlow
p (ζ), i.e. BCLp(ζ) with

1− p ≤ ζ < 1, and VD with exponent α ≥ 1, where β = α− ζ > 0. By virtue of Lemma
4.6, it is enough to show the following lemma.

Lemma 4.7. Let G = (V,E) be a graph satisfying VD(α) and BCLlow
p (ζ) with the expo-

nent ζ ∈ [1 − p, 1). Then G satisfies TPp(β) and the associated constant CTP depends
only on constants involved in the assumptions.

Proof. We adapt the argument of [HK98, Lemma 5.17] which we briefly outline. The
proof proceeds by contradiction. If the two-point estimate fails, there exists a function
for which the difference |f(x)− f(y)| = 1 but the truncated maximal-function of the
gradient is much smaller than D−β where D is comparable to the distance between x
and y. By using Theorem 3.2 repeatedly at various scales, we find a shortcut in the |∇f|
metric between x and y whose length is strictly less than 1. This contradicts the triangle
inequality as any such path must have length at least 1.

We first prepare estimates, (4.8), to get ‘shortcuts’. Let z ∈ V and let R ≥ 1. Let
C ≥ 1 that will be chosen later and set B := B(z, C−1R). Let x, y ∈ B be distinct.
Pick a shortest path θxy = [x = x0, x1, . . . , xDxy−1, xDxy = y], i.e. Dxy = dG(x, y) and
{xi−1, xi} ∈ E for each i = 1, . . . , Dxy. Set D := dDxy/2e. Note that we always have
2−1Dxy ≤ D ≤ 2Dxy and Dxy ≤ 2R. The assertion in the case D ≤ 2 can be obtained
from Lemma 4.4. So, we consider the case D ≥ 3. Fix κ ≥ 9 and define

n∗ = n∗(κ,Dx,y) := max{j ∈ Z≥0 | κ−3jD − κ−3j−2D ≥ 2}.

Note that D ≥ 3 and κ ≥ 9 imply D − κ−2D ≥ 2. Set

Axj := B(x, κ−3jD) \B(x, κ−3j−2D) for each j ∈ Z≥0.

For each j ∈ {0, . . . , n∗}, let θj be the connected component of θxy ∩ Axj . (Since θxy is a
shortest path, there exists only one connected component of θxy ∩ Axj .) Then we have

diam θj = dκ−3jDe − bκ−3j−2Dc ≥ κ−3jD − κ−3j−2D ≥ 2,
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and thus #θj ≥ 2. Using the fact that θxy is a shortest path, we see that

dist(θj, θj+1)

diam θj ∧ diam θj+1

≤ dκ−3j−2De − bκ−3j−3Dc
dκ−3(j+1)De − bκ−3(j+1)−2Dc

≤ κ−3j−2D − κ−3j−3D + 2

κ−3(j+1)D − κ−3(j+1)−2D
=

1− κ−1 + 2
κ−3j−2D

κ−1 − κ−3
≤ κ4 + κ2 − κ

κ2 − 1
,

where we used κ−3jD ≥ 2 + κ−3j−2D ≥ 2 in the last inequality. By Theorem 3.2, there
exist constants L, c > 0 (depending only on the constants associated with the assumptions)
such that

ModGp (Θj) ≥ c(κ−3jD)ζ , (4.7)

where
Θj :=

{
θ ∈ Path(θj, θj+1)

∣∣ diam θ ≤ Lκ−3jD
}
.

(We do not define {Θj} if n∗ = 0.) Note that θ ⊆ (1 + L)B(x, κ−3jD) =: Bj for any
θ ∈ Θj. By Lemma 2.4 and (4.7), for any ρ ∈ `+(V ), we have

‖ρ‖pp,Bj ≥ cLρ(Θj)
p(κ−3jD)ζ .

Combining with (2.6), we obtain

1

#Bj

∑
x∈Bj

ρ(x)p ≥ cC−1
D Lρ(Θj)

p(κ−3jD)ζ−α. (4.8)

To prove TPp(β) with β = α− ζ, it suffices to show that

1 ≤ C∗R
α−ζ(Mp

C∗R
[f ](x) +Mp

C∗R
[f ](y)

)
(4.9)

for any f ∈ RV with |f(x)− f(y)| = 1, where C∗ is a universal constant. Hereafter, we
fix f ∈ RV satisfying |f(x)− f(y)| = 1. Define |∇f|V ∈ `+(V ) by setting

|∇f|V (z) := max
z′∈V ;{z,z′}∈E

|f(z)− f(z′)|, z ∈ V.

It is enough to consider whether the following case (4.10) occurs or not.

L|∇f|V (Θj)
pκ3j(α−ζ) < C# for any j ∈ {0, . . . , n∗ − 1}, (4.10)

where

C# :=
1

6

(
1

1− κ−3(α−ζ)/p

)−p
. (4.11)

(Here, we let {0, . . . , n∗ − 1} = {0} if n∗ = 0.) Indeed, if there exists j ∈ {0, . . . , n∗ − 1}
such that

L|∇f|V (Θj)
pκ3j(α−ζ) ≥ C#, (4.12)
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then we see that

1
(4.12)

≤ C−1
# L|∇f|V (Θj)

pκ3j(α−ζ)
(4.8)

≤ c−1C−1
# CD ·Dα−ζ 1

#Bj

∑
v∈Bj

|∇f|V (v)p

≤ c−1C−1
# CD ·Dα−ζ 1

#Bj

deg(G)EG
p,Bj

(f)

≤ c−1C−1
# C2

D ·Dα−ζ 1

#Bj

deg(G)EG
p,Bj

(f)

≤ 2α−ζc−1C−1
# C2

D deg(G) · dG(x, y)α−ζMp
2(1+L)R[f ](x).

(4.13)

Since dG(x, y) ≤ 2R and α− ζ ≥ 0, we have (4.9).

We will show that a combination of (4.10) and the failure of (4.9) yields a contradiction.

Suppose that (4.10) holds. Then for any j ∈ {0, . . . , n∗ − 1} there exists θ̃j ∈ Θj such
that

L|∇f|V
(
θ̃j
)p ≤ C#κ

−3j(α−ζ). (4.14)

Note that diam θ̃j ≥ κ−3j−2D − κ−3j−3D ≥ 2 and thus #θ̃j ≥ 2. By using the fact that
θxy is a shortest path, we have

dist
(
θ̃j, θ̃j+1

)
diam θ̃j ∧ diam θ̃j+1

≤ diam θj+1

diam θ̃j ∧ diam θ̃j+1

≤ dκ
−3jDe − bκ−3j−2Dc
κ−3j−2D − κ−3j−3D

≤ κ2(2κ− 1)

κ− 1
.

Again by Theorem 3.2, there exist constants L̃, c̃ > 0 (depending only on the constants
associated with the assumptions) such that, for any j ∈ {0, . . . , n∗ − 1},

Θ̃j :=
{
θ ∈ Path

(
θ̃j, θ̃j+1

) ∣∣ diam θ ≤ L̃κ−3jD
}

satisfies
ModGp

(
Θ̃j

)
≥ c̃
(
κ−3jD

)ζ
. (4.15)

We also define
Θ̃n∗ =

{
θ ∈ Path({x}, θn∗)

∣∣ θ is a shortest path
}
.

By (2.2) in Lemma 2.4, we have

ModGp
(
Θ̃n∗

)
≥
(
κ−3n∗D

)1−p ≥ c1

(
κ−3n∗D

)ζ
, (4.16)

where

c1 = c1(p, ζ, κ) := κ3(p−1)

{(
2

1− κ−2

)1−p−ζ

∨
(

2κ3

1− κ−2

)1−p−ζ
}
.

Indeed, n∗ satisfies
2

1− κ−2
≤ κ−3n∗D <

2

κ−3(1− κ−2)
,
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and thus
(
κ−3n∗D

)1−p ≥ c1

(
κ−3n∗D

)ζ
holds. Note that θ ⊆ B

(
x, (1 + L̃)κ−3jD

)
for any

θ ∈ Θ̃j. By using (4.16) instead of (4.8) in the argument of (4.13), we can show that the
existence of j ∈ {0, . . . , n∗} satisfying

L|∇f|V
(
Θ̃j

)p
κ3j(α−ζ) ≥ C#

implies (4.9) (with C∗ = 2
(
1 + L̃

)
∨ 2
(
4α−ζ

(
c̃−1 ∨ c−1

1

)
C−1

# C2
D deg(G)

)
). So let us suppose

the following case:

L|∇f|V
(
Θ̃j

)p
κ3j(α−ζ) < C# for any j ∈ {0, . . . , n∗}. (4.17)

We will deduce a contradiction by constructing a “too short path joining x and y”. From
(4.17), for each j ∈ {0, . . . , n∗}, we can find a path θ̃′j ∈ Θ̃j such that

L|∇f|V
(
θ̃′j
)p ≤ C#κ

−3j(α−ζ). (4.18)

By concatenating {θj}n∗j=0 and
{
θ̃j
}n∗
j=0

, we obtain a path θ(x) = [x = v0, v1, . . . , vlx ] for

some lx ∈ N such that

(a) vlx ∈ θ0 ⊆ Ax0 ;

(b) L|∇f|V
(
θ(x)
)
≤∑n∗

j=0

(
L|∇f|V (θj) + L|∇f|V

(
θ̃j
))

.

By (4.14), (4.18) and (4.11), the condition (b) implies that

L|∇f|V
(
θ(x)
)
≤ 2C

1/p
#

n∗∑
j=0

κ−3j(α−ζ)/p <
2C

1/p
#

1− κ−3(α−ζ)/p ≤
1

3
.

To summarize, what we have shown in the above argument is that (4.9) holds or

there exists a path θ(x) ∈ Path({x}, Ax0) such that L|∇f|V
(
θ(x)
)
<

1

3
. (4.19)

In a similar way, we also see that (4.9) holds or

there exists a path θ(y) ∈ Path({y}, Ay0) such that L|∇f|V
(
θ(y)
)
<

1

3
, (4.20)

where Ay0 := B(y,D) \B(y, κ−2D).

Next we will construct a “short-cut joining θ(x) and θ(y)”. Recall that θxy = [x =
x0, . . . , xDxy = y] and D = dDxy/2e = ddG(x, y)/2e. We write B := B(xD, (1 − κ−2

0 )D).

Then θw ∩B 6= ∅ for w ∈ {x, y}. If κ0 ∈
(
1,
√

16/15
)
, then we easily see that θw \ 4B 6= ∅

for w ∈ {x, y}. Henceforth, we fix κ0 ∈
(
1,
√

16/15
)
. Applying Corollary 3.5, we have

ModGp

(
θ(x), θ(y); 4LB

)
≥ cDζ
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for some universal constants c > 0 and L ≥ 1 (depending only on the constants as-
sociated with the assumptions). Since 4LB ⊆ B

(
x, (4L(1 − κ−2

0 ) + 1)D
)
, a combina-

tion of this lower bound of p-modulus and Lemma 2.4 implies that there exists a path
θx↔y ∈ Path

(
θ(x), θ(y); 4LB

)
such that

‖|∇f|V ‖
p

p,B(x,(4L(1−κ−2
0 )+1)D)

≥ cL|∇f|V
(
θx↔y

)p
Dζ .

If L|∇f|V
(
θx↔y

)
≥ 1

3
, then the arguments in (4.13) using the above bound instead of (4.8)

implies (4.9) (the associated constant C∗ depends only on the constants associated with
the assumptions.) If L|∇f|V

(
θx↔y

)
< 1/3, then, by concatenating θ(x), θ(y) and θx↔y and

using (4.19) and (4.20), we can find a path θ∗ ∈ Path({x}, {y}) such that L|∇f|V (θ∗) < 1,
which implies a contradiction:

1 = |f(x)− f(y)| ≤ L|∇f|V (θ∗) < 1.

As a result, we obtian (4.9) and finish the proof. �

Proof of Theorem 4.2. Combining Lemmas 4.6 and 4.7, we obtain Theorem 4.2. �

5 Discrete elliptic Harnack inequality

This section is devoted to Harnack type inequalities for discrete p-harmonic functions.
Such estimates are crucial to establish that the Sobolev space we construct has a dense
set of continuous functions.

Throughout this section, let p ∈ (1,∞) and let G = (V,E) be a locally finite connected
simple non-directed graph.

5.1 EHI for discrete p-harmonic functions

The Poincaré inequality introduced in Definition 4.1 implies a lower bound on capacity
across annulus. Let us introduce a matching capacity upper bound which serves to identify
the exponent β introduced in Definition 4.1 as the best possible one.

Definition 5.1. Let β > 0. A graph G satisfies capp,≤(β) if there exist constants Ccap > 0
and Acap ≥ 1 such that for any x ∈ V and R ∈ [1, diam(G)/Acap),

capGp
(
B(x,R), B(x, 2R)c

)
≤ Ccap

#B(x,R)

Rβ
. (capp,≤(β))

The main result of this section is the following elliptic Harnack inequality.
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Theorem 5.2. Let p ∈ (1,∞), df ≥ 1 and β > 0. Assume that G = (V,E) satisfies
AR(df), BCLlow

p (df−β) and capp,≤(β). Then there exist constants δH ∈ (0, 1) and CH ≥ 1
depending only on the constants associated with the assumptions such that, for any x ∈ V
and R ≥ 1 with B(x,R) 6= V , if h : V → [0,∞) is p-harmonic on B(x,R), then

max
B(x,δHR)

h ≤ CH min
B(x,δHR)

h. (5.1)

A standard argument using Moser’s oscillation lemma immediately yields the following
interior Hölder regularity of harmonic functions (see [Sal02, §2.3.2] or [Bar, Proposition
1.45]).

Corollary 5.3. Let p ∈ (1,∞), df ≥ 1 and β > 0. Assume that G = (V,E) satisfies
AR(df), BCLlow

p (df−β) and capp,≤(β). For any λ ∈ (0, 1) there exist constants CHöl, θHöl >
0 depending only on the constants associated with the assumptions such that for any non-
negative function h ∈ RV which is p-harmonic in a ball B with radius R ≥ 1,

|h(x)− h(y)| ≤ CHöl

(
dG(x, y)

R

)θHöl

osc
B
h, for all x, y ∈ λB. (5.2)

To prove Theorem 5.2, we start with a log-Caccioppoli type inequality which plays a
key role in our proof of Theorem 5.2. The following lemma is a generalization of [KZ92,
Lemma 7.5].

Lemma 5.4. Let p ∈ (1,∞). Suppose that F,G ∈ C2((0,+∞);R) satisfy |F ′(s)| > 0,

G′(s) = |F ′(s)|p and G(s) ≤ 0 for any s > 0 and that Ψ(s) := G(s)

|F ′(s)|p−1 is monotone (i.e.

non-decreasing or non-increasing). Let A ⊆ V , let h : V → (0,∞) and let ϕ : V → [0, 1].
If supp[ϕ] ⊆ A, then

1

2

∑
{x,y}∈E(A)

(ϕ(x)p ∧ ϕ(y)p)|F (h(x))− F (h(y))|p − EGp
(
h;ϕp · (G ◦ h)

)
≤ 2p−1(p− 1)p−1

p

∑
{x,y}∈E(A)

{
|Ψ(h(x))|p ∨ |Ψ(h(y))|p

}
|ϕ(x)− ϕ(y)|p. (5.3)

Proof. First, we prepare a notation. For each ψ : V → R and x, y ∈ V , define ψx,y : [0, 1]→
R by

ψx,y(t) := tψ(x) + (1− t)ψ(y), t ∈ [0, 1].

For any h : V → (0,∞), ϕ : V → [0, 1], x, y ∈ V , we can show

ˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddt(F (hx,y(t)))

∣∣∣∣p dt
= sgn(h(x)− h(y))|h(x)− h(y)|p−1{ϕ(x)pG(h(x))− ϕ(y)pG(h(y))

}
− p · sgn

(
h(x)− h(y)

)
(ϕ(x)− ϕ(y))

ˆ 1

0

ϕx,y(t)
p−1

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p−1

Ψ(hx,y(t)) dt.

(5.4)
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Indeed, by simple computations, we have∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p = G′(hx,y(t))

∣∣∣∣ ddthx,y(t)
∣∣∣∣p

=

(
d

dt
G(hx,y(t))

)
|h(x)− h(y)|p−1sgn

(
h(x)− h(y)

)
,

and ˆ 1

0

ϕx,y(t)
p d

dt
G(hx,y(t)) dt

=

ˆ 1

0

d

dt

(
ϕx,y(t)

pG(hx,y(t))
)
dt− p(ϕ(x)− ϕ(y))

ˆ 1

0

ϕx,y(t)
p−1G(hx,y(t)) dt

=
(
ϕ(x)pG(h(x))− ϕ(y)pG(h(y))

)
− p(ϕ(x)− ϕ(y))

ˆ 1

0

ϕx,y(t)
p−1G(hx,y(t)) dt

Using these identities, we see thatˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddt(F (hx,y(t)))

∣∣∣∣p dt
= sgn

(
h(x)− h(y)

)
|h(x)− h(y)|p−1×{(

ϕ(x)pG(h(x))−ϕ(y)pG(h(y))
)
− p(ϕ(x)− ϕ(y))

ˆ 1

0

ϕx,y(t)
p−1G(hx,y(t)) dt

}
.

We now get (5.4) since

G(hx,y(t))|h(x)− h(y)|p−1 =

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p−1

Ψ(hx,y(t)).

On the one hand, by a simple computation: ϕx,y(t)
p ≥ ϕ(x)p ∧ ϕ(y)p, we haveˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p dt ≥ (ϕ(x)p ∧ ϕ(y)p
) ˆ 1

0

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p dt
≥
(
ϕ(x)p ∧ ϕ(y)p

)∣∣∣∣ˆ 1

0

d

dt
F (hx,y(t)) dt

∣∣∣∣p (by Hölder)

≥
(
ϕ(x)p ∧ ϕ(y)p

)
|F (h(x))− F (h(y))|p. (5.5)

On the other hand, by the above Claim, we see that∑
{x,y}∈E(A)

ˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p dt
=

∑
{x,y}∈E(A)

sgn(h(x)− h(y))|h(x)− h(y)|p−1(ϕ(x)pG(h(x))− ϕ(y)pG(h(y))
)

− p
∑

{x,y}∈E(A)

sgn
(
h(x)− h(y)

)
(ϕ(x)− ϕ(y))

ˆ 1

0

ϕx,y(t)
p−1

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p−1

Ψ(hx,y(t)) dt

= EGp
(
h;ϕp · (G ◦ h)

)
+ Ap[ϕ, h] ≤ EGp

(
h;ϕp · (G ◦ h)

)
+ |Ap[ϕ, h]|, (5.6)
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where

Ap[ϕ, h] :=

−p
∑

{x,y}∈E(A)

sgn
(
h(x)− h(y)

)
(ϕ(x)− ϕ(y))

ˆ 1

0

ϕx,y(t)
p−1

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p−1

Ψ(hx,y(t)) dt.

Now, a combination of Hölder’s inequality on E × [0, 1] and Young’s inequality implies
that for any any ε > 0,

|Ap[ϕ, h]| ≤ p

 ∑
{x,y}∈E(A)

ˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p dt
(p−1)/p

×

 ∑
{x,y}∈E(A)

|ϕ(x)− ϕ(y)|p
ˆ 1

0

|Ψ(hx,y(t))|p dt

1/p

≤ (p− 1)εp/(p−1)
∑

{x,y}∈E(A)

ˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p dt
+
ε−p

p

∑
{x,y}∈E(A)

|ϕ(x)− ϕ(y)|p
ˆ 1

0

|Ψ(hx,y(t))|p dt.

By choosing ε =
(
1/2(p− 1)

)(p−1)/p
and combining with (5.6), we obtain

1

2

∑
{x,y}∈E(A)

ˆ 1

0

ϕx,y(t)
p

∣∣∣∣ ddtF (hx,y(t))

∣∣∣∣p dt− EGp (h;ϕp · (G ◦ h)
)

≤ 2p−1(p− 1)p−1

p

∑
{x,y}∈E(A)

|ϕ(x)− ϕ(y)|p
ˆ 1

0

|Ψ(hx,y(t))|p dt

≤ 2p−1(p− 1)p−1

p

∑
{x,y}∈E(A)

{
|Ψ(h(x))|p ∨ |Ψ(h(y))|p

}
|ϕ(x)− ϕ(y)|p. (5.7)

Here we used the monotonicity of Ψ in the last inequality, i.e.

ˆ 1

0

|Ψ(hx,y(t))|p dt ≤ |Ψ(h(x))|p ∨ |Ψ(h(y))|p.

A combination of (5.5) and (5.7) yields (5.3). We complete the proof. �

Particular the case F (t) = log t gives an important inequality so called the log-
Caccioppoli inequality in PDE theory. See also [KZ92, Corollary 7.7] for the case p = 2.
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Corollary 5.5 (Log-Caccioppoli inequality). Let p ∈ (1,∞). Let A ⊆ V and ϕ : V →
[0, 1] with supp[ϕ] ⊆ A. If h : V → (0,∞) satisfies −∆G

p h ≥ η for some η : V → R, then

1

2

∑
(x,y)∈E(A)

(ϕ(x)p ∧ ϕ(y)p)|log h(x)− log h(y)|p

+
1

2(p− 1)

∑
x∈V

η(x)ϕ(x)p

h(x)p−1
degG(x) ≤ CpEGp (ϕ), (5.8)

where Cp := 2p−1

p(p−1)
.

Proof. Set F (t) := log t, G(t) := − 1
p−1

t−(p−1) for t ∈ (0,∞). Note that G : (0,∞) →
(−∞, 0). Then we easily see that

F ′(t) = t−1 > 0,

G′(t) = t−p = |F ′(t)|p,

Ψ(t) :=
G(t)

|F ′(t)|p−1 = − 1

p− 1
.

Since

−EGp
(
h;ϕp · (G ◦ h)

)
=

1

2(p− 1)

〈
−∆G

p h,
ϕp

h1−p

〉
`2(V,deg)

≥ 1

2(p− 1)

〈
η,

ϕp

hp−1

〉
`2(V,deg)

,

we get (5.8) by applying Lemma 5.4. �

The next lemma is immediate by considering p-energies of indicator functions.

Lemma 5.6. For any x ∈ V and R > 0,

capGp
(
B(x,R), B(x, 2R)c

)
≤ #

{
{y, z} ∈ E

∣∣ y ∈ B(x,R), z 6∈ B(x,R)
}
. (5.9)

In particular, if R ∈ (0, 1], then

capp
(
B(x,R), B(x, 2R)c

)
≤ degG(x). (5.10)

Proof. Note that ϕ := 1B(x,R) : V → {0, 1} satisfies ϕ|B(x,R) ≡ 1 and supp[ϕ] ⊆ B(x, 2R).
We then have

capGp
(
B(x,R), B(x, 2R)c

)
≤ Ep(ϕ),

which shows (5.9). We also note that ϕ = δx when R ∈ (0, 1], and hence (5.10) holds. �

The following generalization of capp,≤(β) is done by a standard covering argument
using the metric doubling property.
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Lemma 5.7. Let df ≥ 1, β > 0 and let G = (V,E) satisfy AR(df) and capp,≤(β). For
any δ ∈ (0, 1) there exists Ccap(δ) > 0 depending only on δ and the constants associated
with the assumptions such that for any x ∈ V and R ≥ δ−1,

capGp
(
B(x, δR), B(x,R)c

)
≤ Ccap(δ)

#B(x, δR)

Rβ
.

Proof. Note that G also satisfies VD(df). Let x ∈ V , R ≥ 1 and δ ∈ (0, 1). Let Acap ≥ 1

be the constant in capp,≤(β). Set δ̃ := 1−δ
4
∧ A−1

cap ∈ (0, 1). Fix a maximal δ̃R-net

{xi}Nδi=1 of B(x, δR), i.e. xi ∈ B(x, δR), d(xi, xj) ≥ δ̃R for each i 6= j ∈ {1, . . . , Nδ} and

B(x, δR) ⊆ ⋃Nδ
i=1B(xi, δ̃R). Since G is metric doubling, the number Nδ has an upper

bound depending only on δR/δ̃R = 4δ/(1− δ) ∨ δA−1
cap.

If δ̃R ≥ diam(G)/Acap, thenB(x,R) = V for any x ∈ V and capGp
(
B(x, δR), B(x,R)c

)
=

0. So we consider the case δ̃R < diam(G)/Acap. For each i ∈ {1, . . . , Nδ}, let

ϕi : V → [0, 1] be the minimizer of capGp
(
B(xi, δ̃R), B(xi, 2δ̃R)c

)
such that ϕi|B(xi,δ̃R) ≡ 1

and supp[ϕi] ⊆ B(xi, 2δ̃R). Since δ + 2δ̃ < 1, we also have supp[ϕi] ⊆ B(x,R). Define
ϕ : V → [0, 1] by

ϕ :=

(
Nδ∑
i=1

ϕi

)
∧ 1.

If δ̃R ≥ 1, then we see from capp,≤(β) and VD that,

capp
(
B(x, δR), B(x,R)c

)
≤ Ep(ϕ) ≤ Ep

(
Nδ∑
i=1

ϕi

)

≤ Np−1
δ

Nδ∑
i=1

Ep(ϕi)

≤ CcapN
p−1
δ

Nδ∑
i=1

#B(xi, δ̃R)

(δ̃R)β

≤ CcapCDN
p−1
δ

(
3δ + 1

4δ

)df
(

4

1− δ

)β
#B(x, δR)

Rβ
.

If δ̃R < 1, then we have from Lemma 5.6 that

capGp
(
B(x, δR), B(x,R)c

)
≤ EGp (1B(x,δR)) ≤ #

{
{y, z} ∈ E

∣∣ y ∈ B(x, δR), z 6∈ B(x, δR)
}

≤ deg(G)δR+1 ≤ deg(G)δδ̃
−1+1 = deg(G)4δ/(1−δ)+1.

Note that, by AR(df),

#B(x, δR)

Rβ
≥ C−1

ARδ
dfRdf−β ≥ C−1

ARδ
df

(
δdf−β ∧

(
1− δ

4

)df−β
)
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Therefore, if we put

Ccap(δ)

= CcapCDN
p−1
δ

(
3δ + 1

4δ

)df
(

4

1− δ

)β
∨ CARδ

−df deg(G)4δ/(1−δ)+1

(
δdf−β ∧

(
1− δ

4

)df−β
)−1

,

then the required bound holds. �

Proof of Theorem 5.2. Fix δH ∈
(
0, (4L)−1

)
, where L is the constant appeared in Corol-

lary 3.5. By Lemma 2.3, we can assume that L ≥ 2 without loss of generality. Let ε > 0
and set hε := h+ ε. Note that hε is also p-harmonic on B := B(x,R). Define

m := min
B(x,δHR)

hε and M := max
B(x,δHR)

hε.

If R ≤ 4L, then B(x, δHR) = {x} and thus m = M . Hence it is enough to consider
the case R ≥ 4L. In this case, we always have R − δHR > 4L − 1 > 2, in particular
B(x,R) \B(x, δHR) 6= ∅. Using the maximum/minimum principles (Lemma 2.8), we can
find paths θmin, θmax in G satisfying the following conditions (i) and (ii) (see Figure 5.1).

(i) θmin ⊆ {hε ≤ m} and θmax ⊆ {hε ≥M};

(ii) θmin, θmax ∈ Path
(
∂iB(x, δHR), ∂iB(x,R);B(x,R)

)
.

Since B(x, 4δHR) ⊆ B(x, 1
2
B) by L ≥ 2, it follows from Corollary 3.5 that there exists

c > 0 depending only on the constants associated with the assumptions such that

ModGp (θmin, θmax; δB) ≥ cRdf−β, (5.11)

where δ := 4δHL ∈ (0, 1).

In order to show (5.1), it suffices to consider the case m < M . Define h′ε =
1

logM−logm
(log hε − logm) and h∗ε = (h′ε ∨ 0) ∧ 1. Then we easily see that h̃∗ε ∈

Adm(θmin, θmax), where h̃∗ε : V → [0,∞) is defined as

h̃∗ε(x) := max
y∈V ;{x,y}∈E

|h∗ε(x)− h∗ε(y)| for x ∈ V .

Noting that m ≥ ε > 0, we have

ModGp (θmin, θmax; δB) ≤ CEGp,δB
(
h̃∗ε
)
≤ C deg(G)

(
log

M

m

)−p
EGp,δB(log hε), (5.12)

where C ≥ 1 is the constant in Lemma 2.12. Let ϕ be the equilibrium potential of
capGp (δB,Bc) such that ϕ

∣∣
δB
≡ 1 and ϕ

∣∣
Bc
≡ 0. Since hε is a positive p-harmonic function

on B, the log-Caccioppoli inequality (Corollary 5.5) for the tuple (h, ϕ) yields

EGp,δB(log hε) ≤ CpcapGp (δB,Bc). (5.13)
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B(x, δHR)

B(x,R)

M

θmax

m

θmin

{hε ≥M}

{hε ≤ m}

Figure 5.1: The paths θmin and θmax

From (5.11), (5.12), (5.13), capp,≤(β), Lemma 5.7 and (2.6), we obtain

cRdf−β ≤ CpCcap(δ) · CARδ
df deg(G)

(
log

M

m

)−p
Rdf−β,

which implies

log
M

m
= log

maxδHB h+ ε

minδHB h+ ε
≤
(
c−1CpCcap(4LδH) · CAR(4LδH)df deg(G)

)1/p

:= logCH.

Hence,

max
δHB

h+ ε ≤ CH

(
min
δHB

h+ ε
)
.

Since ε > 0 is arbitrary, (5.1) holds. �

Remark 5.8. The above proof tells us that we can choose δH ∈ (0, 1) arbitrarily small.
Obviously, the constant CH depends on this choice.

5.2 Hölder continuous cut-off functions with controlled energy

In this subsection, we construct globally Hölder continuous cutoff functions with con-
trolled energy. Although energy minimizers for capacity are p-harmonic, the local Hölder
regularity given by Corollary 5.3 is not sufficient to conclude the desired global Hölder
regularity asserted in Theorem 5.9. This requires an additional Harnack-type estimate
near boundary.

The following theorem asserts the existence of Hölder continuous cut-off functions with
controlled energy and is the main result in this subsection. This will in turn be used to
show that our Sobolev spaces have a dense set of continuous functions.
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Theorem 5.9. Let p ∈ (1,∞), df ≥ 1, β > 0 and K > 1. Assume that G = (V,E)
satisfies AR(df), BCLlow

p (df − β) and capp,≤(β). Then there exist constants θ∗, C∗ > 0
depending only on the constants associated to the assumptions such that the following hold:
for any z ∈ V and R ≥ 1 with B(z,KR) 6= V , there exists a function ϕz,R : V → [0, 1]
satisfies

ϕz,R
∣∣
B(z,R)

≡ 1, supp
[
ϕz,R

]
⊆ B(z,KR), (5.14)

EGp (ϕz,R) ≤ C∗R
df−β, (5.15)

and

|ϕz,R(x)− ϕz,R(y)| ≤ C∗

(
dG(x, y)

R

)θ∗
for any x, y ∈ V . (5.16)

Proof. Fix δ ∈
(
0, (4L)−1

)
and set δH = 4δL ∈ (0, 1), where L is the constant in Corollary

3.5. Note that δH is also the same constant as in Theorem 5.2. Then we let

δ∗ :=
K − 1

4δH + δ−1
H + 1

∧ K − 1

1 + 6δ−1
H

∧ δ
2
H

10
> 0,

fix ε ∈ [10−1δ∗, δ∗), and set R∗ := ε−1. The case 1 ≤ R ≤ R∗ is easy. Indeed, let

ϕz,R(x) :=

(dKRe − dG(z, x)

dKRe − bRc

)+

∧ 1.

Then it is immediate that ϕz,R satisfies (5.14). Furthermore, we see that

EGp (ϕz,R) ≤
(
dKRe − bRc

)−pEGp,B(z,KR)

(
dG(z, ·)

)
≤
(
dKRe − bRc

)−p
deg(G)#B(z,KR)

≤ CARK
df deg(G)Rdf ≤ CARK

df deg(G)Rβ
∗ ·Rdf−β,

and that

|ϕz,R(x)− ϕz,R(y)| ≤ |dG(z, x)− dG(z, y)|
dKRe − bRc ≤ dG(x, y) ≤ R∗

dG(x, y)

R
.

Hereafter, we consider the case R ≥ R∗. Define

D := B(z,KR) \

 ⋃
w∈∂iB(z,KR)

B
(
w, 2εδ−1

H R
) ,

and let ϕ = ϕz,R be the equilibrium potential with respect to capGp
(
B(z, R), Dc

)
satisfying

ϕB(z,R) ≡ 1 and supp[ϕ] ⊆ D. (The condition B(z,KR) 6= V implies ∂iB(z,KR) 6= ∅.)
For any w ∈ ∂iB(z,KR) and y ∈ B(w, 2εδ−1

H R),

dG(z, y) ≥ dG(z, w)− dG(w, y) > bKRc − 2εδ−1
H R

≥ (K −R−1 − 2εδ−1
H )R ≥ (K − ε− 2εδ−1

H )R,
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which implies B(z,K ′R) ⊆ D, where K ′ := K ′(ε, δH, K) := K − ε− 2εδ−1
H > 1. Here we

used ε ≤ (K − 1)/(1 + 6δ−1
H ) < (K − 1)/(1 + 2δ−1

H ) to ensure that K ′ > 1. By Lemma
2.10, capp,≤(β), AR(df) and Lemma 5.7,

EGp (ϕ) = capGp
(
B(z,R), Dc

)
≤ capGp

(
B(z, R), B(z,K ′R)c

)
≤ C ′Rdf−β,

where C ′ > 0 depends only on the constants associated to the assumptions.

The rest is proving (5.16). We shall prove that there exist constants C, θ > 0 depending
only on the constants associated with the assumptions such that

|ϕ(x)− ϕ(y)| ≤ C

(
dG(x, y)

R

)θ
for all z′ ∈ D and x, y ∈ B(z′, εR). (5.17)

Fix z′ ∈ D and set B∗ := B(z′, 2εR). We consider the following three cases.

Case 1: δ−1
H B∗ ⊆ D \B(z, R). Note that oscV ϕ = 1 and that ϕ is p-harmonic on δ−1

H B∗.

The estimate (5.17) follows from Corollary 5.3.

Case 2: δ−1
H B∗ ∩B(z,R) 6= ∅. Since diam

(
δ−1

H B∗
)
≤ 4εδ−1

H < K ′−1 by ε < (K−1)/(1+

6δ−1
H ), we have from δ−1

H B∗ ∩B(z,R) 6= ∅ that δ−1
H B∗ ⊆ B(z,K ′R) ⊆ D. If B∗ ⊆ B(z,R),

then
max
x,y∈B∗

|ϕ(x)− ϕ(y)| = |1− 1| = 0.

In the rest of this part, we suppose B(z, R) \B∗ 6= ∅. Define

m∗ := min
B∗

ϕ and M∗ := max
B∗

ϕ.

Clearly, 0 ≤ m∗ ≤ M∗ ≤ 1. By B(z,KR) 6= V , we note that ∂iδ
−1
H B∗ 6= ∅. Since ϕ is

p-superharmonic on D, by the minimum principle (Lemma 2.8), we can seek a path γmin

in G satisfying

γmin ∈ Path(∂iB∗, ∂iδ
−1
H B∗; δ

−1
H B∗) and γmin ⊆ {ϕ ≤ m∗}.

Since

diamB∗ + rad
(
δ−1

H B∗
)
≤
(
4 + δ−1

H

)
εR <

δH

2
·R < R,

where we used ε < δ2
H/10 < δ2

H/(2 + 8δH) to ensure (4 + δ−1
H )ε < 2−1δH, we obtain

z 6∈ δ−1
H B∗. This together with ϕ

∣∣
B(z,R)

≡ maxV ϕ = 1 deduces that there exists a path

γmax in G such that

γmax ∈ Path(∂iB∗, ∂iδ
−1
H B∗; δ

−1
H B∗) and γmax ⊆ {ϕ ≥M∗},

where we used the maximum principle on D\B(z,R) (Lemma 2.8) if necessary. Indeed, for
any x0 ∈ ∂iB(z,R) ∩ δ−1

H B∗, we can easily find a path γ0 ∈ Path({x0}, ∂iδ−1
H B∗; δ

−1
H B∗),

which automatically satisfies γ0 ⊆ {ϕ = 1} ⊆ {ϕ ≥ M∗}. If B∗ ∩ B(z,R) 6= ∅, then
γmax = γ0 is enough. Suppose B∗∩B(z,R) = ∅. Since ϕ is p-harmonic on δ−1

H B∗\B(z,R),
an application of the maximum principle yields a path γ1 ∈ Path(∂iB∗, ∂B(z, R); δ−1

H B∗)
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satisfying γ1 ⊆ {ϕ ≥ M∗}. Let us denote the endpoint of γ1 in ∂B(z,R) by x1. By
choosing x0 ∈ ∂iB(z, R) ∩ δ−1

H B∗ so that {x0, x1} ∈ E, we get the desired path γmax by
concatenating γ0, {x0, x1} and γ1.

Using these paths γmin and γmax, we can cary out the same argument as in the proof
of Theorem 5.2. Indeed, since ϕ is a non-negative p-superharmonic function on D, the
log-Caccioppoli inequality (Corollary 5.5) yields

EGp,B∗(logϕ) ≤ CpcapGp
(
B∗,
(
δ−1

H B∗
)c)
.

Similar to Theorem 5.2, we can obtain

max
B∗

ϕ ≤ CH min
B∗

ϕ,

where CH is the constant in Theorem 5.2. The desired Hölder regularity (5.16) follows
from the above Harnack inequality using the standard Moser’s oscillation lemma argument
similar to Corollary 5.3.

Case 3: δ−1
H B∗ ∩Dc 6= ∅. Let us consider 1−ϕ instead of ϕ. Note that oscA ϕ = oscA(1−

ϕ) for any subset A ⊆ V and that 1 − ϕ is a non-negative p-superharmonic function on
B(z,R)c. For x ∈ δ−1

H B∗ and y ∈ δ−1
H B∗ ∩Dc, we have

dG(z, x) ≥ dG(z, y)− dG(y, x) ≥ K ′R− 4εδ−1
H R = (K − ε− 6δ−1

H ε)R ≥ R.

Here we used ε < (K − 1)/(1 + 6δ−1
H ) to ensure K − ε − 5δ−1

H ≥ 1. In particular,
B(z,R)∩δ−1

H B∗ = ∅. Also, we observe from the definition of D that δ−1
H B∗∩∂iB(z,KR) =

∅ and thus δ−1
H B∗ ⊆ B(z,KR). Indeed, if there exists x ∈ δ−1

H B∗ ∩ ∂iB(z,KR), then
dG(x, z′) < 2εδ−1

H R, i.e. z′ ∈ B(x, 2εδ−1
H R). This is a contradiction since x ∈ ∂iB(z,KR)

and z′ ∈ D ⊆ B(z,KR) \B(x, 2εδ−1
H R).

Similar to Case 2, we define

m∗ := min
B∗

(1− ϕ) and M∗ := max
B∗

(1− ϕ).

Then, by the minimum principle (Lemma 2.8), we can seek a path σmin in G such that

σmin ∈ Path
(
∂iB∗, ∂iδ

−1
H B∗; δ

−1
H B∗

)
and σmin ⊆ {1− ϕ ≤ m∗}.

Since δ−1
H B∗ ∩ Dc 6= ∅ and we know that 1 − ϕ takes its maximum on Dc, by using

maximum principle if necessary, we can find a path σmax such that

σmax ∈ Path
(
∂iB∗, ∂iδ

−1
H B∗; δ

−1
H B∗

)
and σmax ⊆ {1− ϕ ≥M∗}.

Indeed, we can construct σmax as follows. If B∗ ⊆ D, then, by an application of the
maximum principle (Lemma 2.8) , we can get a path σ1 such that

σ1 ∈ Path
(
∂iB∗, ∂iD ∩ δ−1

H B∗, δ
−1
H B∗

)
and σ1 ⊆ {1− ϕ ≥M∗}.

Since the endpoint of σ1, say x1, is in ∂iD ∩ δ−1
H B∗, there exist w ∈ ∂iB(z,KR) and

y1 ∈ B
(
w, 2εδ−1

H R
)

satisfying {x1, y1} ∈ E. By concatenating σ1, {x1, y1} and a path
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joining y1 and w in B
(
w, 2εδ−1

H R
)

in a suitable way, we get a path containing the required
path σmax. If B∗ ∩ Dc 6= ∅, then a path joining x2 ∈ ∂iB∗ ∩ Dc and w ∈ ∂iB(z,KR) in
B
(
w, 2εδ−1

H R
)
, where w satisfies x2 ∈ B

(
w, 2εδ−1

H R
)
, satisfies the required properties of

σmax since δ−1
H B∗ ⊆ B(z,KR).

The same argument as Case 2 using these paths σmin and σmax gives Harnack inequality
for 1− φ, which in turn yields the desired Hölder regularity. �

6 Sobolev space via a sequence of discrete energies

We consider a sequence of finite graphs that can be regarded as approximations of a metric
space on a sequence of increasingly finer scales. The Sobolev space on a metric space is
then defined using this sequence of discrete energies.

6.1 Approximating a metric space by a sequence of graphs

We introduce our assumptions on a sequence of graphs.

Definition 6.1. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs. We say that a family of surjective maps {πn,k : Vn → Vk | 1 ≤ k <
n, (n, k) ∈ N2} is projective if πn,k is surjective for all k < n and

πl,k ◦ πn,l = πn,k, for all k < l < n with k, l, n ∈ N.

Given {Gn}n∈N and a projective family of maps {πn,k : k < n}, we say that a sequence
of probability measures {mn ∈ P(Vn)}n∈N, where P(Vn) denotes the set of probability
measure on Vn, is consistent if

(πn,k)∗mn = mk for all k < n.

Given a sequence of finite connected graphs {Gn}n∈N, a projective family of maps {πn,k |
k < n}, and a consistent family of probability measures {mn}n∈N, we say that a sequence
of functions {fn : Vn → R}n∈N is conditional with respect to {mn}n∈N if

fk(v) =
1

mk(v)

∑
w∈π−1

n,k({v})

fn(w)mn(w) for all k < n, v ∈ Vk. (6.1)

Equivalently, fk is the conditional expectation fk(v) = Emn [fn(W ) | πn,k(W ) = v], where
mn is the law of W .

In the above definition, the graphs Gn can be regarded as approximating a metric
space (K, d) at a sequence of increasingly finer scales, while the measures mn can be
considered to approximate a measure m on K. A conditional sequence of functions can
be considered to approximate a function f on the metric space (K, d).

The sequence of measures {mn}n∈N in the above definition is often assumed to satisfy
the condition given by the following definition.
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Definition 6.2. Let {mn ∈ P(Vn)}n∈N be a sequence of probability measures on a family
of finite sets Vn. We say that such a sequence {mn}n∈N is roughly uniform if there exists
Cu ≥ 1 such that

C−1
u mn(v) ≤ 1

#Vn
≤ Cumn(v), for all n ∈ N, v ∈ Vn. (6.2)

We introduce a geometric condition on the sequence of graphs which relates different
graphs in the sequence. Roughly speaking, the following condition states that diam(Gn)
grows like Rn

∗ and π−1
n+k,k(w) are ‘roundish’ in an uniform fashion; that is π−1

n+k,k(w) behave
like balls in the graph Gn+k for all w ∈ Vk.
Definition 6.3. Let R∗ ∈ (1,∞), let {Gn = (Vn, En)}n∈N be a sequence of finite, simple
non-directed connected graphs, and let {πn,k : Vn → Vk | 1 ≤ k < n} be a family of pro-
jective maps. We say that the sequence of graphs {Gn}n∈N equipped with the projective
maps {πn,k : Vn → Vk | k < n} is R∗-scaled if there exist constants A1, A2 ∈ (1,∞) so that
the following holds: for any n, k ∈ N, for all w ∈ Vk, there exists cn(w) ∈ Vn+k such that

Bdn+k
(cn(w), A−1

1 Rn
∗ ) ⊂ π−1

n+k,k(w) ⊂ Bdn+k
(cn(w), A1R

n
∗ ) (6.3)

and

dn+k(cn(w), cn(w′)) ≤ A2R
n
∗ whenever w,w′ ∈ Vk satisfy dk(w,w

′) = 1, (6.4)

where dn denotes the graph distance of Gn.

We next discuss discrete approximations of a metric space. Any compact metric
space can be approximated by a sequence of graphs on increasing finer scales. This idea is
present in various (closely related) notions such as hyperbolic filling [BBS22, BP03, BS18,
BS], K-approximation [BK02], quasi-visual approximation [BM22], generalized dyadic
cubes [HK12, Sas23], and partitions of a metric space indexed by tree [Kig20]. The
following definition describes yet another way in which a sequence of graphs ‘approximate’
a compact metric space.

Definition 6.4 (compatibility). Consider a compact metric space (K, d) and let R∗ ∈
(1,∞), θ ∈ (0, 1]. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs and let {πn,k : Vn → Vk | 1 ≤ k < n} be a family of projective maps. Let
dn : Vn × Vn → Z≥0, n ∈ N denote the corresponding graph metrics. We say that {Gn}
along with {πn,k : Vn → Vk | 1 ≤ k < n} is R∗-compatible with (K, d) if there exists a

sequence of maps {pn : Vn → K}n∈N, a collection of Borel set
{
K̃v | v ∈ Vn, n ∈ N

}
and

C ∈ [1,∞) such that the following hold:

(i) (comparision of metrics)

C−1dn(x, y)

Rn
∗
≤ d(pn(x), pn(y)) ≤ C

dn(x, y)

Rn
∗

(6.5)

for all x, y ∈ Vn and for all n ∈ N.
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(ii) (partition) For all n ∈ N, the collection of sets
{
K̃v

}
v∈Vn

form a partition of K; that

is
⋃
v∈Vn K̃v = K and K̃u ∩ K̃w = ∅ for all u,w ∈ Vn with u 6= w.

(iii) (compatibility with projections) For all 1 ≤ k < n and for all v ∈ Vk, we have

K̃v =
⋃

w∈π−1
n,k(v)

K̃w. (6.6)

(iv) (roundness of partition) For all n ∈ N, v ∈ Vn, we have

Bd(pn(v), C−1R−n∗ ) ⊂ K̃v ⊂ Bd(pn(v), CR−n∗ ). (6.7)

Note that (6.5) implies that the points {pn(v) | v ∈ Vn} are C−1R−n∗ -separated and
that diam(Vn, dn) � Rn

∗ .

We introduce a uniform notion of AR(df) for a sequence of graphs.

Definition 6.5. We shall say that the sequence {Gn}n∈N satisfies df-Ahlfors regularity
condition uniformly, U-AR(df) for short, if there exists CAR ≥ 1 such that for any n ∈ N,
x ∈ Vn, R ∈ [1, diam(Gn)],

C−1
ARR

df ≤ #Bdn(x,R) ≤ CARR
df . (U-AR(df))

The following elementary lemma explains the relationship between a metric space and
a sequence of graphs approximating it in the sense of Definition 6.4 and the notions in
Definition 6.1 and 6.2.

Lemma 6.6. Let (K, d) be a compact metric space and let m be a df -Ahlfors regular
probability measure on (K, d). Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected
simple non-directed graphs and let {πn,k : Vn → Vk | 1 ≤ k < n} be a projective family of
maps. Suppose that {Gn)} along with {πn,k | 1 ≤ k < n} is R∗-compatible with (K, d).

Let
{
K̃v ∈ B(K)

∣∣ v ∈ Vn, n ∈ N
}

be a collection of Borel sets as given in Definition 6.4.
Let

mn(v) := m(K̃v)

for all n ∈ N, v ∈ Vn. Then

(i) The sequence of graphs {Gn} satisfies U-AR(df).

(ii) The family of measures {mn} is roughly uniform, and is consistent with respect to
{πn,k | 1 ≤ k < n}.

(iii) For any f ∈ L1(K,m), the family of functions Mnf : Vn → R defined by

(Mnf)(v) =
1

m(K̃v)

ˆ
K̃v

f dm, for all n ∈ N, v ∈ Vn, (6.8)

is conditional with respect to {mn} and {πn,k | 1 ≤ k < n}.
The operator Mn converts a function on K to a function on Vn. We would sometimes

like to construct functions on K using functions on Vn by defining

Jnf(·) :=
∑
v∈Vn

f(v)1K̃v(·), for all f : Vn → R, n ∈ N. (6.9)
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6.2 Hypotheses on a sequence of graphs

A sequence of graphs approximating a metric space often satisfies some analytic properties
in an uniform manner. To this end, we introduce uniform versions of analytic conditions
such as capp,≤(β), BCLp(ζ), and PIp(β).

Definition 6.7. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs and let dn be the graph metric of Gn. Let p ∈ (1,∞), df > 0, β > 0 and
ζ ∈ R.

(1) We shall say that the sequence {Gn}n∈N satisfies p-capacity upper bound with order
β uniformly, U-capp,≤(β) for short, if there exist constants Ccap > 0 and Acap ≥ 1
such that for any n ∈ N, x ∈ Vn and R ∈ [1, diam(Gn)/A),

capGnp
(
Bdn(x,R), Bdn(x, 2R)c

)
≤ Ccap

#Bdn(x,R)

Rβ
. (U-capp,≤(β))

(2) We shall say that the sequence {Gn}n∈N satisfies ball combinatorial p-Loewner prop-
erty with order ζ uniformly, U-BCLp(ζ) for short, if there exists A ≥ 1 such that
the following hold: for any κ > 0 there exist cBCL(κ) > 0 and LBCL(κ) > 0 such
that

ModGn
p ({θ ∈ PathGn(B1, B2) | diam(θ, dn) ≤ LBCL(κ)R}) ≥ cBCL(κ)Rζ

(U-BCLp(ζ))
whenever n ∈ N, R ∈ [1, diam(Gn)/A) and Bi (i = 1, 2) are balls in Gn with radii
R satisfying distdn(B1, B2) ≤ κR. We also say that {Gn}n∈N satisfies U-BCLlow

p (ζ)
if {Gn}n∈N satisfies U-BCLp(ζ) with ζ < 1.

(3) We shall say that the sequence of graphs {Gn}n∈N satisfies p-Poincaré inequality
with order β uniformly, U-PIp(β) for short, if there exist constants CPI, API ≥ 0
such that for any n ∈ N, x ∈ Vn, R ≥ 1 and f : Vn → R,∑

y∈Bdn (x,R)

∣∣f(y)− fBdn (x,R)

∣∣p ≤ CPIR
βEGnp,Bdn (x,APIR)(f). (U-PIp(β))

Using the above definition, we can rephrase Theorem 4.2 for a sequence of graphs as
follows.

Proposition 6.8. Let {Gn = (Vn, En)}n∈N be a sequence of finite connected graphs. Let
p ∈ (1,∞), df ≥ 1 and β > 0. Suppose that {Gn} satisfies U-AR(df) and U-BCLlow

p (df −
β). Then {Gn}n∈N satisfies U-PIp(β) (the associated constants CPI > 0 and API ≥ 1
depend only on the constants involved in the assumptions).

Definition 6.9. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs and let dn be the graph metric of Gn.

(1) Define L∗ := L∗({Gn}n∈N) := supn∈N deg(Gn).
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(2) We shall say that {Gn}n∈N is uniformly metric doubling, U-MD for short, if there
exists ND ≥ 2 such that given n ∈ N, x ∈ Vn, R ≥ 1 there exist y1, . . . , yN ∈ Vn
satisfying Bdn(x,R) ⊆ ⋃ND

i=1Bdn(yi, R/2).

Then the following property is an easy consequence of Remark 2.15.

Lemma 6.10. Let {Gn}n∈N be a sequence of graphs satisfying U-AR(df) for some df > 0.
Then L∗ <∞ and {Gn}n∈N is U-MD. In addition, the doubling constant ND can be chosen
so that ND depends only on CAR.

In order to state a version of Theorem 5.9 for a sequence of graphs, we introduce the
following definition.

Definition 6.11. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected graphs.
Let p ∈ (1,∞), β > 0, ϑ ∈ (0, 1]. We say that the sequence of graphs {Gn} satisfies
U-CFp(ϑ, β) if there exists C∗ ∈ (0,∞) so that the following holds: for all n ∈ N, v ∈
Vn, R ≥ 1 there exists ϕv,R : Vn → [0, 1], so that

ϕv,R
∣∣
Bdn (v,R)

≡ 1, supp[ϕv,R] ⊆ Bdn(v, 2R) (6.10)

EGnp (ϕv,R) ≤ C∗
#Bdn(v,R)

Rβ
, (6.11)

|ϕv,R(x)− ϕv,R(y)| ≤ C∗

(
dn(x, y)

R

)ϑ
for all x, y ∈ Vn. (6.12)

The next result provides a family of Hölder continuous cut-off functions whose energies
are controlled in a uniform manner. This is an immediate consequence of Theorem 5.9.

Proposition 6.12. Let {Gn = (Vn, En)}n∈N be a sequence of finite connected graphs. Let
p ∈ (1,∞), df ≥ 1 and β > 0. Suppose that {Gn} satisfies U-AR(df), U-BCLlow

p (df − β)
and U-capp,≤(β). Then {Gn} satisfies U-CFp(ϑ, β) (the associated constants C∗, ϑ > 0
depend only on the constants involved in the assumptions).

We would like to define p-energy as limit of re-scaled discrete energies. The following
result suggests the re-scaling factor. The main result of this section is the weak mono-
tonicity of energy.

Theorem 6.13. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs equipped with the projective maps {πn,k : Vn → Vk; k < n} and let {mn ∈
P(Vn)}n∈N be a consistent sequence of probability measures. Suppose that {Gn} along
with {πn,k; k < n} is R∗-scaled for some R∗ ∈ (1,∞) and the sequence {mn} is roughly
uniform. Let p ∈ (1,∞), df ≥ 1, β > 0 and we further suppose that the sequence {Gn}n∈N
satisfies U-AR(df) and U-PIp(β). There exists CWM ∈ (1,∞) depending only on the
constants associated to the assumptions such that for any conditional sequence of functions
{fn : Vn → R}n∈N (with respect to mn, πn,k), we have

EGkp (fk) ≤ CWMR
l(β−df)
∗ EGk+l

p (fk+l) for all k, l ∈ N. (6.13)
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Proof. Let fn : Vn → R, n ∈ N denote an arbitrary conditional sequence of functions as
above. Let A1, A2 ∈ (1,∞) be the constants as given in Definition 6.3, Cu ∈ (1,∞) be the
constant in Definition 6.2. Set A3 = 2A1 +A2. For any v, w ∈ Vk such that dk(v, w) = 1,
we have

π−1
k+l,k(v) ∪ π−1

k+l,k(w) ⊂ Bdk+l
(cl(v), A3R

l
∗) (by (6.3) and (6.4)). (6.14)

There is C1 ∈ [1,∞) depending only on the constants involved in U-AR(df), roughly
uniform, and R∗-scaled properties such that

C−1
1 R−ndf

∗ ≤ mn(v) ≤ C1R
−ndf
∗ for all n ∈ N, v ∈ Vn. (6.15)

For any v, w ∈ Vk such that dk(v, w) = 1 and for all α ∈ R, we have

|fk(v)− fk(w)| ≤ |fk(v)− α|+ |fk(w)− α|

≤

∣∣∣∣∣∣∣
∑

v1∈π−1
k+l,k(v)

fk+l(v1)
mk+l(v1)

mk(v)
− α

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑

w1∈π−1
k+l,k(w)

fk+l(w1)
mk+l(w1)

mk(w)
− α

∣∣∣∣∣∣∣
≤

∑
v1∈π−1

k+l,k(v)

mk+l(v1)

mk(v)
|fk+l(v1)− α|+

∑
w1∈π−1

k+l,k(w)

mk+l(w1)

mk(w)
|fk+l(w1)− α|

(6.15)

≤ C2
1R
−ldf
∗

 ∑
v1∈π−1

k+l,k(v)

|fk+l(v1)− α|+
∑

w1∈π−1
k+l,k(w)

|fk+l(w1)− α|


(6.14)

≤ 2C2
1R
−ldf
∗

∑
v1∈Bdk+l

(cl(v),A3Rl∗)

|fk+l(v1)− α|

.
1

#Bdk+l
(cl(v), A3Rl

∗)

∑
v1∈Bdk+l

(cl(v),A3Rl∗)

|fk+l(v1)− α|, (6.16)

where in the last line, we used the U-AR(df). Let us choose α = (fk+l)Bdk+l
(cl(v),A3Rl∗)

in

(6.16) and use Poincaré inequality U-PIp(β) to obtain

|fk(v)− fk(w)|p . 1

#Bdk+l
(cl(v), A3Rl

∗)

∑
v1∈Bdk+l

(cl(v),A3Rl∗)

∣∣∣fk+1(v1)− (fk+1)Bdk+l
(cl(v),A3Rl∗)

∣∣∣p
.

Rlβ
∗

#Bdk+l
(cl(v), A3Rl

∗)
EGk+l

p,Bdk+l
(cl(v),APIA3Rl∗)

(fk+l) (by U-PIp(β))

. Rl(β−df)
∗ EGk+l

p,Bdk+l
(cl(v),APIA3Rl∗)

(fk+l) (6.17)

for any v, w ∈ Vk such that dk(v, w) = 1. Using Lemma 6.10, we obtain

EGkp (fk) =
∑

{v,w}∈Ek

|fk(v)− fk(w)|p
(6.17)

. Rl(β−df)
∗

∑
v∈Vk

EGk+l

p,Bdk+l
(cl(v),APIA3Rl∗)

(fk+l). (6.18)
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By (6.3), the points {cl(v) | v ∈ Vk} are 2A−1
1 Rl

∗-separated for all k, l ∈ N. Since {Gn}n∈N
are U-MD by Lemma 6.10, there exists C2 > 1 (depending only on API, A1, A2 and the
constants involved in U-AR(df)) such that∑

v∈Vk

1Bdk+l
(cl(v),APIA3Rl∗)

≤ C2, for all k, l ∈ N. (6.19)

The desired estimate (6.13) follows immediately from (6.18) and (6.19). �

Remark 6.14. In the work [Kig23], the notion of conductive homogeneity plays an impor-
tant role to develop the theory of (1, p)-Sobolev spaces via discretizations. The estimate
(6.17) can be regarded as a variant of this condition.

6.3 Sobolev space and cutoff functions

We now explain our strategy to construct p-energy as a scaling limit of discrete p-energies
in a general setting. The following assumption guarantees that our Sobolev space satisfies
good properties.

Assumption 6.15. Let p ∈ (1,∞), df ∈ [1,∞), β > 0 and ϑ ∈ (0, 1]. Let (K, d)
be a connected compact metric space with #K ≥ 2 and let m be a df-Ahlfors regular
probability measure on (K, d). Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected
simple non-directed graphs and let {πn,k | 1 ≤ k < n} denote a projective family of maps.
There exists R∗ ∈ (1,∞) such that {Gn} along with {πn,k} is R∗-scaled and R∗-compatible
with (K, d). Furthermore, {Gn} satisfies U-PIp(β) and U-CFp(ϑ, β).

The weak monotonicity of discrete energies (Theorem 6.13) suggests the following
definition of Sobolev space.

Definition 6.16. Under the setting of Assumption 6.15, we define the normalized energy
of f ∈ Lp(K,m) for any n ∈ N and A ⊆ Vn as

Ẽ (n)
p,A(f) := Rn(β−df)

∗ EGnp,A(Mnf), (6.20)

where Mnf is as given in (6.8). For simplicity, Ẽ (n)
p (f) := Ẽ (n)

p,Vn
(f). Define our (1, p)-

Sobolev space Fp(K, d,m) by

Fp(K, d,m) :=

{
f ∈ Lp(K,m)

∣∣∣∣ sup
n∈N
Ẽ (n)
p (f) <∞

}
. (6.21)

We also set |f|Fp(K,d,m) :=
(

supn∈N Ẽ (n)
p (f)

)1/p

and ‖f‖Fp(K,d,m) := ‖f‖Lp(m) + |f|Fp(K,d,m).

For simplicity, we use Fp instead of Fp(K, d,m) in these notations when no confusion can
occur.
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Hereafter in this section, we always assume that Assumption 6.15 holds. Thanks to
Theorem 6.13 and Lemma 6.6, we have

lim inf
n→∞

Ẽ (n)
p (f) � lim sup

n→∞
Ẽ (n)
p (f) � sup

n∈N
Ẽ (n)
p (f), for all f ∈ Lp(K,m). (6.22)

In particular,

Fp =

{
f ∈ Lp(K,m)

∣∣∣∣ lim inf
n→∞

Ẽ (n)
p (f) <∞

}
=

{
f ∈ Lp(K,m)

∣∣∣∣ lim sup
n→∞

Ẽ (n)
p (f) <∞

}
.

Some properties of Fp are already mentioned in [Kig23, Section 3.2] in the framework
of weighted partition theory developed in [Kig20]. We summarize the basic properties of
the Sobolev space (Fp, ‖ · ‖Fp) in the following theorem.

Theorem 6.17. Let (K, d) be a connected compact metric space with a df-Ahlfors regular
probability measure m and let {Gn = (Vn, En)}n∈N be a sequence of finite connected graphs
satisfying Assumption 6.15. Let (Fp, ‖ · ‖Fp) denote the normed linear space in Definition

6.16. Then (Fp, ‖ · ‖Fp) satisfies the following properties.

(i) (Fp, ‖ · ‖Fp) is a Banach space.

(ii) (Fp, ‖ · ‖Fp) admits an equivalent uniformly convex norm. In particular, (Fp, ‖ · ‖Fp)
is a reflexive Banach space.

(iii) The Banach space (Fp, ‖ · ‖Fp) is separable.

(iv) Fp ∩ C(K) is dense in C(K) with respect to the uniform norm.

(v) Fp ∩ C(K) is dense in the Banach space (Fp, ‖ · ‖Fp).

The combination of properties (iv) and (v) is referred to as regularity in the theory of
Dirichlet forms [FOT, CF]. The proof of Theorem 6.17 will be completed over this section
and the next.

Proof of Theorem 6.17(i). We will give a complete proof because known detailed proofs
for the required statement (see [Kig23, Lemmas 3.15 and 3.16] or [Shi+, Theorem 5.2])
are limited to the case where Fp is continuously embedded into C(K) and [Kig23, Lemma
3.24] is just a sketch. Let {fn}n≥1 be a Cauchy sequence in (Fp, ‖ · ‖Fp). Since the

convergence in Fp implies the convergence in Lp, the sequence {fn}n≥1 converges in Lp to
some f ∈ Lp(K,m). By the dominated convergence theorem, for any k ∈ N and w ∈ Vk,
we have Mkfn(w)→Mkf(w) as n→∞. Also, since {fn}n≥1 is a Cauchy sequence in Fp,
for any ε > 0 there exists N(ε) ∈ N such that

sup
n∧l≥N(ε)

sup
k∈N
Ẽ (k)
p (fn − fl) ≤ ε.
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Letting l → ∞ in the estimate Ẽ (k)
p (Mkfn −Mkfl) ≤ ε and taking the supremum over

k ∈ N and n ≥ N(ε), we obtain

sup
n≥N(ε)

sup
k∈N
Ẽ (k)
p (fn − f) ≤ ε. (6.23)

Therefore, for any k ∈ N,

Ẽ (k)
p (f)1/p ≤ Ẽ (k)

p (fN(ε) − f)1/p + Ẽ (k)
p (fN(ε))

1/p ≤ ε1/p + sup
n≥1
|fn|Fp .

This implies |f|Fp ≤ supn≥1 |fn|Fp <∞ and thus f ∈ Fp. The required convergence fn → f

in Fp is also deduced from the Lp-convergence of fn and (6.23). �

Next, we will prove reflexivity and separability of the Banach space Fp. The reflexivity
of such a function space is proved by the second-named author in [Shi+] by showing the
existence a comparable uniform convex norm. To construct a uniformly convex norm on
Fp which is equivalent to ‖ · ‖Fp , we need the notion of Γ-convergence; see [Dal] for details.
We first recall the definition.

Definition 6.18 ([Dal, Definition 4.1 and Proposition 8.1]). Let X be a first-countable
topological space and let F : X → R ∪ {±∞}. A sequence of functionals {Fn : X →
R ∪ {±∞}}n∈N Γ-converges to F if the following hold for any x ∈ X:

• (liminf inequality) If xn → x in X, then F (x) ≤ lim infn→∞ Fn(xn).

• (limsup inequality) There exists a sequence {xn}n∈N in X such that

xn → x in X and lim sup
n→∞

Fn(xn) ≤ F (x). (6.24)

A sequence {xn}n∈N satisfying (6.24) is called a recovery sequence of {Fn}n∈N at x.

The following compactness result is fundamental and useful.

Proposition 6.19 ([Dal, Theorem 8.5]). Suppose that X is a topological space with a
countable base. Then any sequence of functionals {Fn : X → R ∪ {±∞}}n∈N has a Γ-
convergent subsequence.

Now we can establish reflexivity.

Proof of Theorem 6.17(ii). The proof is essentially the same as in [Shi+, Theorem 5.9],
so we briefly outline the proof. By Proposition 6.19, we have a Γ-cluster point Ep of

the sequence of functionals
{
Ẽ (n)
p

}
n∈N on Lp(K,m). It is easy to show that Ep( · )1/p is

a semi-norm on Fp. The liminf inequality implies Ep( · )1/p ≤ |·|Fp . A combination of

limsup inequality and weak monotonicity (Theorem 6.13) implies the converse estimate
Ep( · )1/p & |·|Fp . Hence,

|||f ||| :=
(
‖f‖pLp + Ep(f)

)1/p
for f ∈ Lp(K,m)
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defines a norm on Fp which is equivalent to ‖ · ‖Fp . Noting that ||| · ||| is a Γ-cluster point

of ‖ · ‖p,n :=
(
‖ · ‖pLp + Ẽ (n)

p ( · )
)1/p

, which can be regarded as the Lp-norm on K t En, we

easily obtain p-Clarkson’s inequality of ||| · |||, i.e., for all f, g ∈ Lp(K,m),{
|||f + g|||p/(p−1) + |||f − g|||p/(p−1) ≤ 2

(
|||f |||p + |||g|||p)

)1/(p−1)
if p ≤ 2,

|||f + g|||p + |||f − g|||p ≤ 2
(
|||f |||p/(p−1) + |||g|||p/(p−1))p−1

if p ≥ 2.
(6.25)

Since p-Clarkson’s inequality implies the uniform convexity [Cla36, p. 403], the Milman–
Pettis theorem (see [HKST, Theorem 2.49] for example) deduces the reflexivity of Fp. �

In [Shi+, Theorem 5.10], the separability of Fp has shown by using its reflexivity in
the situation that Fp is continuously embedded into C(K) (cf. [Kig23, Theorem 3.22]
or [Shi+, Theorem 5.1]). The proof of [Shi+, Theorem 5.10] essentially relies on this
embedding. Here, we will adopt another simple way to show the separability by using an
idea in [AHM23].

Proof of Theorem 6.17(iii). The Banach space Fp is reflexive by Theorem 6.17(ii), and
Lp(K,m) is separable since K is separable. Clearly, the identity mapping i : Fp →
Lp(K,m) is a bounded linear injective map, so Fp is separable by [AHM23, Proposi-
tion 4.1]. �

We will next show the density of Fp ∩ C(K) in C(K) with respect to the uniform
norm. To show such the density, a standard idea is to use Stone–Weierstrass theorem by
showing that Fp∩C(K) is an algebra that separates points of K. We recall Arzelá–Ascoli
type theorem for (possibly) discontinuous functions in order to construct a function in
Fp∩C(K) that separates two distinct points (a cutoff function). The proof that Fp∩C(K)
is an algebra will be done in the next subsection.

Lemma 6.20. Let (X, d) be a totally bounded metric space. Let un : X → R for any
n ∈ N. Assume that there exist a non-decreasing function η : [0,∞) → [0,∞) and a
sequence {δn}n∈N of non-negative numbers such that limt↓0 η(t) = 0, limn→∞ δn = 0,
supn∈N,x∈X |un(x)| <∞ and

|un(x)− un(y)| ≤ η(d(x, y)) + δn for all x, y ∈ X and n ∈ N. (6.26)

Then there exist a subsequence {unk}k∈N and u ∈ C(X) with

|u(x)− u(y)| ≤ η(d(x, y)) for all x, y ∈ X,

such that supx∈X |unk(x)− u(x)| → 0 as k →∞.
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Proof. This is a simplified version of [Kig23, Lemma D.1]. Indeed, the case (Y, dY ) =
(R, |·|) in [Kig23, Lemma D.1] is enough to obtain the required statement. �

The next proposition constructs cutoff functions with controlled energy in Fp ∩C(K).
We use the following useful notation. For A ⊆ K, we define

Vn(A) :=
{
w ∈ Vn

∣∣ K̃w ∩ A 6= ∅
}
.

Proposition 6.21. There exists C ∈ (1,∞) depending only on the constants associated
with Assumption 6.15 such that for any r > 0, x ∈ K such that Bd(x, 2r) 6= K, we have
a function ψx,r ∈ Fp ∩ C(K) such that ψx,r

∣∣
Bd(x,r)

= 1, supp[ψx,r] ⊆ Bd(x, 2r) and

sup
n∈N
Ẽ (n)
p (ψx,r) ≤ Crdf−β.

Proof. Let {K̃v | v ∈ Vn, n ∈ N}, C ∈ (1,∞) be as given in Definition 6.4. By (6.5) and
(6.7), we have

K̃w ⊂ Bd(x, r + 2CR−n∗ + CRR−n∗ ) for any w ∈ ⋃v∈Vn(Bd(x,r))Bdn(v,R). (6.27)

We choose Rn > 0 so that CRnR
−n
∗ = r/2 and a maximal Rn/2-separated subset N of

Vn(Bd(x, r)) (with respect to the metric dn), so that
⋃
w∈N Bdn(w,Rn/2) ⊃ Vn(Bd(x, r)).

Since {pn(w) | w ∈ N} is C−1(Rn/2)R−n∗ -separated and satisfies {pn(w)}w∈N ⊂ Bd(x, r+
CR−n∗ ). Therefore by the df-Ahlfors regularity of m, we obtain

#N .

(
r + cR−n∗
RnR

−n
∗

)df

.

(
RnR

−n
∗ +R−n∗
RnR

−n
∗

)df

. 1 (6.28)

for all n large enough so that Rn ≥ 1.

For n large enough so that 2CR−n∗ < r/2, we have Rn ≥ 2 and K̃w ⊂ Bd(x, 2r)
for any w ∈ ⋃v∈Vn(Bd(x,r))Bdn(v,Rn) (by (6.27)). Therefore by applying U-CFp(ϑ, β),

for each w ∈ N , there exists ϕw,Rn/2 : Vn → [0, 1] such that ϕw,Rn/2
∣∣
Bdn (w,Rn/2)

≡ 1,

supp[ϕw,Rn/2] ⊆ Bdn(w,Rn),
EGnp (ϕw,Rn/2) . Rdf−β

n ,

and ϕw,Rn/2 satisfies the Hölder regularity condition (6.12). Hence by (6.27) and (6.28),
the function ϕn : Vn → R defined by

ϕn := max
w∈N

ϕw,R/2

satisfies Jnϕn
∣∣
Bd(x,r)

≡ 1, suppm[Jnϕn] ⊆ Bd(x, 2r),

ϕn ≡ 1 on Vn(Bd(x, r)), EGnp (ϕn) . Rdf−β
n . rdf−βRn(df−β)

∗ , (6.29)

and

|ϕn(v1)− ϕn(v2)| .
(
dn(v1, v2)

Rn

)ϑ
, for all v1, v2 ∈ Vn, (6.30)
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for all n ∈ N so that 2CR−n∗ < r/2. To estimate the energy, we used the elementary
inequality EGnp (maxw∈N ϕw,R/2) ≤ ∑

w∈N EGnp (ϕw,R/2) (see Lemma 2.6(b)). By Lemma
6.20, (6.30), (6.5), and (6.7), there exists a subsequence {Jnkφnk}k of {Jnφn}n which
converges uniformly to ψx,r ∈ C(K). Then it is clear that ψx,r

∣∣
Bd(x,r)

≡ 1 and supp[ψx,r] ⊆
Bd(x, 2r). Using weak monotonicity (Theorem 6.13) and dominated convergence theorem,
we obtain

Ẽ (n)
p (ψx,r) = Rn(β−df)

∗ EGnp (Mnψx,r) = lim
nk→∞

Rn(β−df)
∗ EGnp (MnJnkϕnk)

(6.13)

. lim inf
nk→∞

R
nk(β−df )
∗ EGnkp (ϕnk)

(6.29)

. rdf−β.

Therefore ψx,r ∈ Fp ∩ C(K) and it satisfies the desired bound on energy. �

6.4 Scaling limit of discrete energies and regularity

In the rest of this section, we suppose that Assumption 6.15 holds as in the previous
subsection. In this setting, we will construct an ‘improved’ p-energy type functionals on
(K, d,m), which verifies that Fp ∩ C(K) is an algebra. In the following main theorem
of this subsection, such a good p-energy is constructed as a sub-sequential Γ-limit of the
re-scaled discrete p-energies

{
Ẽ (n)
p

}
n∈N .

Theorem 6.22. There exist a constant C ≥ 1 (depending only on the constants associated
with Assumption 6.15) and EΓ

p : Fp → [0,∞) such that the following hold:

(i) The functional EΓ
p ( · )1/p is a semi-norm on Fp and

C−1|f|Fp ≤ E
Γ
p (f)1/p ≤ |f|Fp for all f ∈ Fp; (6.31)

Moreover, EΓ
p satisfies p-Clarkson’s inequality: for any f, g ∈ Fp,{

EΓ
p (f + g)1/(p−1) + EΓ

p (f − g)1/(p−1) ≤ 2
(
EΓ
p (f) + EΓ

p (g)
)1/(p−1)

if p ≤ 2,

EΓ
p (f + g) + EΓ

p (f − g) ≤
(
EΓ
p (f)1/(p−1) + EΓ

p (g)1/(p−1)
)p−1

if p ≥ 2,

(6.32)

In particular, EΓ
p ( · )1/p is uniformly convex.

(ii) For any f ∈ Fp and 1-Lipschitz function ϕ ∈ C(R), ϕ ◦ f ∈ Fp and

EΓ
p

(
ϕ ◦ f

)
≤ EΓ

p (f).

(iii) If f, g ∈ Fp ∩ L∞(K,m), then f · g ∈ Fp and

EΓ
p (f · g) ≤ 2p−1

(
‖g‖pL∞ EΓ

p (f) + ‖f‖pL∞ EΓ
p (g)

)
.

63



(iv) EΓ
p is lower semi-continuous on Lp(K,m). (Here we regard EΓ

p as a [0,∞]-valued
functional by defining EΓ

p (f) :=∞ for f ∈ Lp(K,m) \ Fp.)

(v) Let T : (K,B(K),m)→ (K,B(K),m) be a measure preserving transformation, i.e.,
T is Borel measurable and m(T−1(A)) = m(A) for any Borel set A of K. Then
f ◦ T ∈ Fp for any f ∈ Fp and EΓ

p (f ◦ T ) = EΓ
p (f).

Proof. Let EΓ
p = Ep be a Γ-cluster point of

{
Ẽ (n)
p

}
n∈N as the proof of Theorem 6.17(ii).

The comparability (6.31) is already shown there. If we consider Ẽ (n)
p ( · )1/p instead of

‖ · ‖p,n in the argument showing (6.25), then we obtain p-Clarkson’s inequality of EΓ
p .

(ii) The proof is very similar to [Kig23, Theorem 3.21], but we will give the details
because the embedding Fp ⊆ C(K) is used in [Kig23]. We start by an observation on
Lp-approximation. Let f ∈ Lp(K,m) and let fn = Jn

(
Mnf

)
for n ∈ N, where Jn : RVn →

L0(K,m) be the operator defined in (6.9). We will prove ‖f − fn‖Lp → 0 as n → ∞.
Note that |Mnf(z)|p ≤

ffl
K̃z
|f|p dm for all z ∈ Vn by Jensen’s inequality. Then we have

ˆ
K

|fn|p dm =
∑
z∈Vn

ˆ
K̃z

|Mnf(z)|pm(dx) ≤
ˆ
K

|f|p dm <∞.

Let M : Lp(K,m) → Lp(K,m) be the Hardy–Littlwood maximal operator, i.e., for f ∈
Lp(K,m) and x ∈ K,

M f(x) = sup
r>0

 
Bd(x,r)

f(y)m(dy).

Since m is Ahlfors regular (by Assumption 6.15), M is Lp-bounded (see [HKST, Theorem
3.5.6] for example), i.e., there exists a constant C > 0 such that

‖M f‖Lp ≤ C ‖f‖Lp for all f ∈ Lp(K,m).

For x ∈ K, let z ∈ Vn be the unique element such that x ∈ K̃z. Then, by (6.7),

|fn(x)| = |Mnf(z)| ≤ m
(
Bd(x, 2CR

−n
∗ )
)

m(K̃z)
M |f|(x),

where C ≥ 1 is the constant in (6.7). By VD of m and (6.7),

sup
n∈N,z∈Vn,x∈Kz

m(Bd(x, 2CR
−n
∗ ))

m(K̃z)
<∞. (6.33)

Thus each fn is dominated by C ′M |f| ∈ Lp(K,m) for some universal constant C ′ > 0.

We next consider about m-a.e. convergence of {fn}. Since m is Ahlfors regular, the
Lebesgue differentiation theorem on (K, d,m) holds (see [HKST, Section 3.4] for example),
i.e., the set Lf (Lebesgue points of f) defined by

Lf :=

{
x ∈ K

∣∣∣∣∣ lim
r↓0

 
Bd(x,r)

|f(x)− f(y)|m(dy) = 0

}
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is a Borel set and m(K \Lf ) = 0. Let x ∈ Lf and let z ∈ Vn be the unique element such

that x ∈ K̃z. Then we see that

|f(x)− fn(x)| ≤
 
K̃z

|f(x)− f(y)|m(dy) ≤ m(Bd(x, 2CR
−n
∗ ))

m(K̃z)

 
Bd(x,2CR−n∗ )

|f(x)− f(y)|m(dy).

By (6.33), we get limn→∞ |f(x)− fn(x)| = 0 for all x ∈ Lf . The dominated convergence
theorem deduces ‖f − fn‖Lp → 0.

We now finish the proof of the property (ii). It is enough to consider the case that
ϕ ∈ C(R) is a 1-Lipschitz function. Let {gk}k be a recovery sequence of f with respect to
EΓ
p , i.e. gk converges in Lp to f and

lim sup
k→∞

Ẽ (nk)
p (gk) ≤ EΓ

p (f).

We note that

‖ϕ ◦ f − ϕ ◦ JnkMnkgk‖Lp
≤ ‖ϕ ◦ f − ϕ ◦ JnkMnkf‖Lp + ‖ϕ ◦ JnkMnkf − ϕ ◦ JnkMnkgk‖Lp
≤ ‖f − fnk‖Lp + ‖JnkMnk(f − gk)‖Lp ≤ ‖f − fnk‖Lp + ‖f − gk‖Lp → 0 as k →∞,

and that

Mnk

(
ϕ ◦ JnkMnkgk

)
(w) =

 
K̃w

ϕ
(
JnkMnkgk(x)

)
µ(dx)

=

 
K̃w

ϕ
(
Mnkgk(w)

)
dµ = ϕ

(
Mnkgk(w)

)
for all w ∈ Vnk .

Therefore, we have

EΓ
p (ϕ ◦ f) ≤ lim inf

k→∞
Ẽ (nk)
p (ϕ ◦ JnkMnkgk)

= lim inf
k→∞

R
nk(β−df )
∗ EGnkp (ϕ ◦Mnkgk)

≤ lim inf
k→∞

R
nk(β−df )
∗ EGnkp (Mnkgk) ≤ lim sup

k→∞
Ẽ (nk)
p (gk) ≤ EΓ

p (f).

(iii) This is immediate from Lemma 2.6(c). Indeed, let {fk}k, {gk}k be recovery
sequences at f, g ∈ Fp ∩ L∞(K,m). Then we see that

EΓ
p (f · g) ≤ lim inf

k→∞
Ẽ (nk)
p (Mnkf ·Mnkg)

≤ 2p−1
(
‖g‖pL∞ lim sup

k→∞
Ẽ (nk)
p (Mnkf) + ‖f‖pL∞ lim sup

k→∞
Ẽ (nk)
p (Mnkg)

)
(by Lemma 2.6(c))

≤ 2p−1
(
‖g‖pL∞ EΓ

p (f) + ‖f‖pL∞ EΓ
p (g)

)
.

(iv) This follows from an elementary fact on the Γ-convergence [Dal, Proposition 6.8].
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(v) Let f ∈ Fp and let {fk}k be a recovery sequence at f . Since Mng = Mn(g ◦ T )
for any n ∈ N and g ∈ Lp(K,m), we have f ◦ T ∈ Fp. Note that ‖f ◦ T − fk ◦ T‖Lp =
‖f − fk‖Lp → 0. Then

EΓ
p (f ◦ T ) ≤ lim inf

k→∞
Ẽ (nk)
p (Mnk(fk ◦ T )) = lim inf

k→∞
Ẽ (nk)
p (Mnkfk) ≤ EΓ

p (f).

The converse EΓ
p (f) ≤ EΓ

p (f ◦T ) can be shown by considering a recovery sequence at f ◦T .
We complete the proof. �

Combining Proposition 6.21 and Theorem 6.22(iii), we can show the density of Fp ∩
C(K) in C(K). The density of Fp ∩ C(K) in Fp requires a long preparation and will be
shown in Section 7.

Proof of Theorem 6.17(iv). By Proposition 6.21, Fp ∩ C(K) separates points of K. We
note that, by Theorem 6.22(iii), Fp ∩ C(K) is a sub-algebra of C(K). So by Stone-
Weierstrass theorem, Fp ∩ C(K) is dense in C(K) with respect to the uniform norm. �

6.5 Poincaré type inequalities and partition of unity

In this subsection, we prove Poincaré type inequality and provide a partition of unity with
low energies.

Since we have no energy measures, which play the role of “|∇f|p dm”, at this stage,
we need to describe “p-energy on a given subset of K” in terms of re-scaled discrete
p-energies. The following lemma allows us to get the desired Poincaré inequality from
U-PIp(β).

Lemma 6.23. There exists a constant C > 0 (depending only on p and the doubling
constant of m) such that the following holds: for any x ∈ K, r > 0 and f ∈ Lp(K,m), 
Bd(x,r)

∣∣f(x)− fBd(x,r)

∣∣pm(dx) ≤ C lim inf
n→∞

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣∣Mnf(w)− f
K̃

(n)
x,r

∣∣∣pm(K̃w

)
,

where we set K̃
(n)
x,r =

⋃
w∈Vn(Bd(x,r)) K̃w (n ∈ N) for ease of notation.

Proof. Let x ∈ K, r > 0 and f ∈ Lp(K,m). For each n ∈ N, let fn := Jn(Mnf), where
Jn : RVn → L0(K,m) is the same as in (6.9). We observe that, for large n ∈ N so that

K̃
(n)
x,r ⊆ Bd(x, 2r),

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣∣Mnf(w)− f
K̃

(n)
x,r

∣∣∣pm(K̃w

)
=

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

ˆ
K̃w

∣∣∣fn − fK̃(n)
x,r

∣∣∣p dm
&
 
Bd(x,r)

∣∣∣fn − fK̃(n)
x,r

∣∣∣p dm
&
 
Bd(x,r)

∣∣fn − (fn)Bd(x,r)

∣∣p dm,
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where we used the volume doubling property of m in the second line, and Lemma A.3
in the last line. Since ‖f − fn‖Lp → 0 by the same argument as in Theorem 6.22, the
dominated convergence theorem yields

lim
n→∞

 
Bd(x,r)

∣∣fn − (fn)Bd(x,r)

∣∣p dm =

 
Bd(x,r)

∣∣f − fBd(x,r)

∣∣p dm,
which proves our assertion. �

Now we prove a (p, p)-Poincaré-like inequality.

Lemma 6.24. There exist constants C > 0 and A ≥ 1 (depending only on the constants
associated with Assumption 6.15) such that for all x ∈ K, r > 0 and f ∈ Lp(K,m),ˆ

Bd(x,r)

∣∣f − fBd(x,r)

∣∣p dm ≤ Crβ lim inf
n→∞

Ẽ (n)
p,Vn(Bd(x,Ar))(f). (6.34)

Proof. Let x ∈ K, r > 0 and f ∈ Fp. Let K̃
(n)
x,r be the same as in the previous lemma

for each n ∈ N. Let C ≥ 1 be the constant in Definition 6.4 and choose Rn > 0 so that
RnR

−n
∗ = 2Cr. Note that Rn ↑ +∞ as n → ∞. Since

{
K̃w

}
w∈Vn

is a partition of K,

there exists a unique cn ∈ Vn(Bd(x, r)) such that x ∈ K̃cn . For all w ∈ Vn(Bd(x, r)), by

(6.5), (6.7), and picking a point y ∈ Bd(x, r) ∩ K̃v,

dn(cn, w) ≤ CRn
∗d(pn(cn), pn(w)) ≤ CRn

∗
(
d(x, pn(cn)) + d(x, y) + d(y, pn(v))

)
< CRn

∗
(
CR−n∗ + r + CR−n∗

)
= 2C2 +

Rn

2
.

Hence we have Vn(Bd(x, r)) ⊆ Bdn(cn, Rn) for all large enough n ∈ N. By U-PIp(β), for
all large n ∈ N,

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣Mnf(w)− (Mnf)Bdn (wn,Rn)

∣∣pm(K̃w

)
≤ 1

m(Bd(x, r))

∑
v∈Bdn (cn,Rn)

∣∣Mnf(w)− (Mnf)Bdn (wn,Rn)

∣∣pm(K̃w

)
. r−dfR−ndf

∗

∑
v∈Bdn (cn,Rn)

∣∣Mnf(w)− (Mnf)Bdn (wn,Rn)

∣∣p
. r−dfR−ndf

∗ Rβ
nEGnp,Bdn (cn,APIRn)(Mnf) . r−df+βRn(β−df)

∗ EGnp,Bdn (cn,APIRn)(Mnf).

For any v ∈ Bdn(cn, APIRn), by (6.5) and (6.7),

K̃v ⊆ Bd

(
x, 2CR−n∗ + CAPIRnR

−n
∗
)
⊆ Bd

(
x, (2C2API + 1)r

)
,

for all large n ∈ N so that 2CR−n∗ ≤ r. Let A′PI := 2C2API + 1. Combining with Lemma
A.3, we get

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣∣Mnf(w)− f
K̃

(n)
x,r

∣∣∣pm(K̃w

)
. r−df+βẼ (n)

p,Vn(Bd(x,A′PIr))
(f).
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Letting n→∞ and using Lemma 6.23 complete the proof. �

We conclude this section by constructing partition of unity with continuous functions
of controlled energy.

We need the following elementary properties of EΓ
p , which are consequences of (6.32)

and ‘Leibniz rule’ in Theorem 6.22(iii). This is an analogue of [FOT, Theorem 1.4.2(i)]
and [MR, I-Exercise 4.16] in the theory of Dirichlet forms.

Proposition 6.25. (i) For f ∈ Fp, we have

EΓ
p (h) ≤ EΓ

p (f), ∀h ∈ {|f|, f+, f−}.

Furthermore, there exists a constant Cp ≥ 1 depending only on p such that for any
f, g ∈ Fp,

EΓ
p (f ∧ g) + EΓ

p (f ∨ g) ≤ Cp
(
EΓ
p (f) + EΓ

p (g)
)
. (6.35)

(ii) Let c,M > 0 and let f, g ∈ Fp be non-negative functions such that f + g ≥ c and
f ≤M . Then there exists a constant Dc,M depending only on p, c,M such that

EΓ
p

(
f

f + g

)
≤ Dc,M

(
EΓ
p (f) + EΓ

p (g)
)
. (6.36)

Proof. (i) The first assertion immediately follows from the Lipschitz contractivity since
|h(x)− h(y)| ≤ |f(x)− f(y)| for all h ∈ {|f|, f+, f−} and x, y ∈ K. The estimate (6.35)
can be shown by noting that

f ∧ g =
1

2

(
f + g − |f − g|

)
, f ∨ g =

1

2

(
f + g + |f − g|

)
,

and using (6.32).

(ii) Define ϕ : R→ R by

ϕ(x) := (−c2x+ c−1 + c3)1{x<c} + x−11{x≥c}, (x ∈ R).

Then we easily see that ϕ ∈ C1(R) and |ϕ′(x)| ≤ c2 for all x ∈ R. Since f + g ≥ c, we
have ϕ(f + g) = 1

f+g
. By the Leibniz rule and Lipschitz contractivity,

Ep
(

f

f + g

)
= Ep

(
f · ϕ(f + g)

)
≤ 2p−1

(
‖f‖pL∞ Ep

(
ϕ(f + g)

)
+ ‖ϕ(f + g)‖pL∞ Ep(f)

)
≤ 2p−1Mpc2pEp(f + g) + 2p−1c−pEp(f)

≤ 2p−1(c−p + 2p−1c2pMp)Ep(f) + 4p−1MpEp(g),

which shows (6.36). �

Following a standard argument (for example, [Mur20, Lemma 2.5]), we construct a
good partition of unity using the cutoff functions of Proposition 6.21.
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Lemma 6.26. Let ε ∈ (0, 1) and let V be a maximal ε-net of (K, d). Then there exists a
family of functions {ψz}z∈V that satisfies the following properties:

(i) As a function
∑

z∈V ψz ≡ 1;

(ii) For any z ∈ V , we have ψz ∈ Fp ∩ C(K) with 0 ≤ ψz ≤ 1, ψz
∣∣
Bd(z,ε/4)

≡ 1 and

supp[ψz] ⊆ Bd(z, 5ε/4);

(iii) If z ∈ V and z′ ∈ V \ {z}, then ψz′
∣∣
Bd(z,ε/4)

≡ 0.

(iv) There exists a constant C ≥ 1 (depending only on the constants associated with
Assumption 6.15) such that for all z ∈ V ,

|ψz|pFp ≤ Cεdf−β. (6.37)

Proof. For z ∈ V , we define the ‘Voronoi cell’ Rz as

Rz =
{
x ∈ K

∣∣∣ d(x, z) = min
v∈V

d(x, v)
}
,

and write Rε/4
z for its ε/4-neighborhood, i.e. Rε/4

z =
⋃
x∈Rz Bd(x, ε/4). As shown in

[Mur20, Lemma 2.5], we know that
⋃
z∈V Rz = K,

Bd(z, ε/2) ⊆ Rz ⊆ Bd(z, ε)

and
Bd(z, ε/4) ∩Rε/4

w = ∅ for v, w ∈ V with v 6= w.

For z ∈ V , we fix a maximal ε/8-net Nz of Rz. Then, by Rz ⊆ Bd(z, ε), there exists a
constant M > 0 (depending only on the doubling constant) such that supz∈V #Nz ≤ M .
By Proposition 6.21, for any z ∈ V and any w ∈ Nz, we have a non-negative function
ρw ∈ Fp ∩ C(K) satisfying

ρw
∣∣
Bd(w,ε/8)

≡ 1, supp[ρw] ⊆ Bd(w, ε/4), 0 ≤ ρw ≤ 1, EΓ
p (ρw) . εdf−β.

Next, define φz := maxw∈Nz ρw. Since
⋃
w∈Nz Bd

(
w, ε/8

)
⊇ Rz, we have φz

∣∣
Rz
≡ 1.

From supp[ρw] ⊆ Bd(w, ε/4) and Nz ⊆ Rz, we have supp[φz] ⊆ Rε/4
z . Using the triangle

inequality of EΓ
p ( · )1/p and (6.35), we see that

EΓ
p (φz) = EΓ

p

(
max
w∈Nz

ρw

)
≤ (4 ∨ 4p−1)M

∑
w∈Nz

EΓ
p (ρw) . εdf−β. (6.38)

Note that
∑

w∈V φw ≥ 1 since φw
∣∣
Rw
≡ 1. Now we define {ψz}z∈V by

ψz :=
φz∑
w∈V φw

, z ∈ V.
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Then the property (i) is clear. The conditions (ii) and (iii) follow fromBd(z, ε/4)∩Rε/4
z′ = ∅

whenever z, z′ ∈ V satisfy z 6= z′. We will show the condition (iv). Note that φw(x) = 0
whenever x ∈ Bd(z, 5ε/4) and Bd(w, 5ε/4) ∩Bd(z, 5ε/4) 6= ∅. Hence

ψz = φz ·

 ∑
w∈V ;Bd(w,5ε/4)∩Bd(z,5ε/4)6=∅

φw

−1

.

The metric doubling property implies that there exists a constant M2 (depending only on
the doubling constant) such that

sup
z∈V

#{w ∈ V | Bd(w, 5ε/4) ∩Bd(z, 5ε/4) 6= ∅} ≤M2.

Set V (z) := {w ∈ V | Bd(w, 5ε/4) ∩Bd(z, 5ε/4) 6= ∅} \ {z}. By (6.36) and (6.38),

EΓ
p (ψz) . EΓ

p (φz) + EΓ
p

( ∑
w∈V (z)

φw

)
≤ EΓ

p (φz) +Mp−1
2

∑
w∈V (z)

EΓ
p (φw) . εdf−β.

This completes the proof. �

7 Comparison with Korevaar–Schoen energies

In this section, we will give a characterization of Fp in terms of fractional Korevaar–Schoen
energies. The associated function spaces are also called Lispchitz–Besov spaces. For
Dirichlet forms on fractals endowed with nice heat kernel estimates, such characterizations
are well-known (cf. [GHL03, Jon96, Kum00, PP99]2).

In this section, we will always assume that the metric measure space (K, d,m) satisfies
Assumption 6.15. The following main result in this section claims that our (1, p)-Sobolev

space Fp coincides with the critical fractional Korevaar-Schoen space B
β/p
p,∞ in this setting

(recall Definition 1.3).

Theorem 7.1. Let (K, d,m) be a metric measure space satisfying Assumption 6.15.
Then, there exists a constant C ≥ 1 (depending only on the constants associated with
Assumption 6.15) such that

C−1|f|pFp ≤ lim inf
r↓0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx)

≤ sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) ≤ C|f|pFp for all f ∈ Lp(K,m).

(7.1)

2The proofs in these works rely on two-sided heat kernel estimates.
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In particular, Fp = B
β/p
p,∞ and

sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx)

≤ C2 lim inf
r↓0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) for all f ∈ Lp(K,m).

Moreover, β/p = sp, where sp is the critical exponent defined in (1.2).

Before moving to the proof, let us make a remark on Sobolev embeddings for Fp.

Remark 7.2. Combining the above characterization of Fp and the methods of [BCLS],
we immediately obtain analogues of the classical Sobolev embeddings (see also [Bau22+,
Theorem 4.3]). Indeed, we can easily check the truncation properties, namely the condi-
tions (H+

∞) and (Hp) in [BCLS], of |·|Fp from (7.1), and apply [BCLS, Theorems 3.4 and

9.1] by choosing a family of operators {M̃r} as

M̃rf(x) :=

 
Bd(x,rp/β)

f dm for r > 0, f ∈ Lp(K,m), x ∈ K.

We will not write the details because we do not use these results in this paper. Fur-
thermore, a straightforward modification of [AB23+, Theorems 4.2 and 4.3], where the
authors modify the arguments in [HK00, Section 8] to fit with fractal settings in the case
p = 2, yields Rellich–Kondrachov type compactness results in this context.

The proof of Theorem 7.1 will be divided into two parts. We start by showing

sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) . |f|pFp .

To get this bound, we will use a standard argument using “Poincaré inequality”.

Lemma 7.3. There exists a constant C > 0 (depending only on the constants associated
with Assumption 6.15) such that for all Borel set U of K and f ∈ Lp(K,m),

lim
r↓0

ˆ
U

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) ≤ C lim
r↓0

lim
n→∞

Ẽ (n)
p,Vn(Ur)

(f),

where Uδ denotes the δ-neighborhood of U , i.e., Uδ =
⋃
y∈U Bd(y, δ) for δ > 0. Moreover,

sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) ≤ C|f|pFp .
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Proof. Let r > 0 and let Nr ⊆ U be a maximal r-net of U (with respect to the metric d).
Note that Bd(x, r) ⊆ Bd(y, 2r) for y ∈ Nr and x ∈ Bd(y, r). We see that

ˆ
U

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx)

≤
∑
y∈Nr

ˆ
Bd(y,r)

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx)

.
∑
y∈Nr

ˆ
Bd(y,2r)

 
Bd(y,2r)

|f(x)− f(y)|p
rβ

µ(dy)µ(dx) (by VD)

.
∑
y∈Nr

ˆ
Bd(y,2r)

 
Bd(y,2r)

{∣∣f(x)− fBd(y,2r)

∣∣p
rβ

+

∣∣f(y)− fBd(v,2r)

∣∣p
rβ

}
m(dy)m(dx)

.
∑
y∈Nr

lim inf
n→∞

Ẽ (n)
p,Vn(Bd(y,2Ar))(f). (by Lemma 6.24) (7.2)

For any y ∈ Nr and w ∈ Vn(Bd(y, 2Ar)), it is immediate that w ∈ Vn(U2Ar). The overlap
of
{
Vn(Bd(y, 2Ar))

}
y∈Nr

can be controlled in the following manner. Let y ∈ Nr and let

n ∈ N be large enough so that CR−n∗ < r, where C ≥ 1 is the constant in Definition 6.4.
Then we easily see that {pn(w)}w∈Vn(Bd(y,2Ar)) ⊆ Bd(y, (2A+ 1)r). In particular, we have

max
w∈Vn

#
{
y ∈ Nr

∣∣ w ∈ Vn(Bd(y, 2Ar))
}
≤ sup

x∈K
#
{
y ∈ Nr

∣∣ x ∈ Bd(y, (2A+ 1)r)
}
. 1,

(7.3)

where we used the metric doubling property in the last inequality.

Let us go back to the estimate on
∑

y∈Nr lim infn→∞ Ẽ (n)
p,Vn(Bd(y,2Ar))(f). By (7.3),∑

y∈Nr

lim
n→∞

Ẽ (n)
p,Vn(Bd(y,2Ar))(f) ≤ lim

n→∞

∑
y∈Nr

Ẽ (n)
p,Vn(Bd(y,2Ar))(f) . lim

n→∞
Ẽ (n)
p,Vn(U2Ar)

(f). (7.4)

Combining with (7.2) and taking the limsup, we get the first assertion.

In the case U = K, by considering |f|pFp instead of lim infn→∞ Ẽ (n)
p,Vn(U2Ar)

(f) in (7.4),
we get ˆ

K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) . |f|pFp .

Taking the supremum completes the proof. �

Next we move to the converse bound:

lim inf
r↓0

ˆ
K

 
B(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) & |f|pFp .

Our approach is similar to [Bau22+, Theorem 5.2] but we give a local version as well.
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Lemma 7.4. There exists a constant C > 0 (depending only on the constants associated
with Assumption 6.15) such that the following hold. For all U ⊆ K and f ∈ Fp,

lim sup
n→∞

Ẽ (n)
p,Vn(U)(f) ≤ C lim

δ↓0
lim inf
r↓0

ˆ
Uδ

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx), (7.5)

where Uδ denotes the δ-neighborhood of U . Furthermore, for all f ∈ Lp(K,m),

|f|pFp ≤ C lim
r↓0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx). (7.6)

Proof. Let r ∈ (0, 1) and fix a maximal r-net Nr(U) ⊆ U of U . Let Nr be a maximal
r-net of (K, d) such that Nr(U) ⊆ Nr. We first observe that, by (6.5) and (6.7), for large
enough n ∈ N,

K̃v ∪ K̃w ⊆ Bd(z, 5r/4) whenever z ∈ K, {v, w} ∈ En and v ∈ Vn(Bd(z, r)) .

Therefore, for all large n ∈ N and f ∈ Lp(K,m),

Ẽ (n)
p,Vn(U)(f) ≤

∑
z∈Nr(U)

Ẽ (n)
p,Vn(Bd(z,5r/4))(f).

To estimate Ẽ (n)
p,Vn(Bd(z,5r/4))(f), we consider ‘discrete convolution operators’. (Such

type approximation is originally considered by Coifman and Weiss [CW].) Let {ψz,r}z∈Nr
satisfy the conditions (i)-(iv) in Lemma 6.26 and define a linear operator Ar : Lp(K,m)→
Lp(K,m) by

Arf :=
∑
z∈Nr

fBd(z,r/4)ψz,r, f ∈ Lp(K,m).

Note that Arf ∈ Fp ∩ C(K). We can show that Ar is a bounded linear operator whose
norm ‖Ar‖Lp→Lp has a uniform bound with respect to r. Indeed, for any f ∈ Lp(K,m),

‖Arf‖pLp =

ˆ
K

∣∣∣∣∣∑
z∈Nr

fBd(z,r/4)ψz,r(x)

∣∣∣∣∣
p

m(dx)

≤
ˆ
K

(∑
z∈Nr

∣∣fBd(z,r/4)

∣∣pψz,r(x)

)(∑
z∈Nr

ψz,r(x)

)p−1

m(dx) (by Hölder’s inequality)

≤
ˆ
K

(∑
z∈Nr

1

m
(
Bd(z, r/4)

) ˆ
Bd(z,r/4)

|f|p dm
)
ψz,r(x)m(dx) (by Hölder’s inequality)

≤
ˆ
K

(∑
z∈Nr

1

m
(
Bd(z, r/4)

) ˆ
Bd(z,r/4)

|f|p dm
)
1Bd(z,r)(x)m(dx)

=
∑
z∈Nr

m
(
Bd(z, r)

)
m
(
Bd(z, r/4)

) ˆ
Bd(z,r/4)

|f|p dm .
(

sup
x∈K

#{z ∈ Nr | x ∈ Bd(z, r/4)}
)
‖f‖pLp .

73



Since supx∈X #{z ∈ Nr | x ∈ Bd(z, r/4)} . 1 by the metric doubling property, we get
‖Arf‖Lp→Lp ≤ C0, where C0 > 0 is a constant depending only on the doubling constant
of m.

For g ∈ C(K), we easily show that Arg → g in the uniform norm as r ↓ 0 by virtue
of the uniform continuity of g. Indeed, for any ε > 0 there exists r(ε) > 0 such that
|g(x)− g(y)| < ε whenever d(x, y) < 3r(ε)/2. Then for all r < r(ε),

|g(x)− Arg(x)| ≤
∑
z∈Nr

∣∣g(x)− gBd(z,r/4)

∣∣ψz,r(x) =
∑

z∈Nr;d(z,x)<5r/4

∣∣g(x)− gBd(z,r/4)

∣∣ψz,r(x).

Let x ∈ K and z ∈ Nr such that d(x, z) < 5r/4. Since d(x, y) < 3r/2 for any y ∈
Bd(z, r/4), we have∣∣g(x)− gBd(z,r/4)

∣∣ ≤  
Bd(z,r/4)

|g(x)− g(y)|m(dy) < ε.

Hence
|g(x)− Arg(x)| < ε

∑
z∈Nr

ψz,r(x) = ε, ∀r < r(ε),

which implies supx∈K |g(x)− Arg(x)| → 0 as r ↓ 0. In particular, ‖g − Arg‖Lp → 0 as
r ↓ 0 when g ∈ C(K).

Now we can show that ‖f − Arf‖Lp → 0 as r ↓ 0. Let ε > 0, f ∈ Lp(K,m) and
gε ∈ C(K) such that ‖f − gε‖Lp < ε. Then we have

‖f − Arf‖Lp ≤ ‖f − gε‖Lp + ‖gε − Argε‖Lp + ‖Argε − Arf‖Lp
≤ ε+ ‖gε − Argε‖Lp + C0ε,

and hence
lim sup

r↓0
‖f − Arf‖Lp ≤ (1 + C0)ε.

This shows ‖f − Arf‖Lp → 0.

With these preparations, we can estimate Ẽ (n)
p,Vn(Bd(z,5r/4))(f). For z ∈ Nr and x ∈

Bd(z, 3r/2), we easily see that

Arf(x) = fBd(z,r/4) +
∑

w∈Nr∩Bd(z,11r/4)

(
fBd(w,r/4) − fBd(z,r/4)

)
ψw,r(x).

We note that there exists a constant M ∈ N depending only on the metric doubling
property such that

sup
w∈Nr

#
(
Nr ∩Bd(w, 11r/4)

)
≤M.

Also, since
⋃
w∈Vn(Bd(z,5r/4)) K̃w ⊆ Bd(z, 3r/2) for all large n ∈ N, we see that

Mn(Arf) = fBd(z,r/4) +
∑

w∈Nr∩Bd(z,11r/4)

(
fBd(w,r/4)− fBd(z,r/4)

)
Mnψw,r on Vn

(
Bd(z, 5r/4)

)
.
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Hence we have

Ẽ (n)
p,Vn(Bd(z,5r/4))(Arf) = Ẽ (n)

p,Vn(Bd(z,5r/4))

 ∑
w∈Nr∩Bd(z,11r/4)

(
fBd(w,r/4) − fBd(z,r/4)

)
Mnψw,r


≤Mp−1

∑
w∈Nr∩Bd(z,11r/4)

∣∣fBd(w,r/4) − fBd(z,r/4)

∣∣pẼ (n)
p,Vn(Bd(z,5r/4))(ψw,r)

. rdf−β
∑

w∈Nr∩Bd(z,11r/4)

∣∣fBd(w,r/4) − fBd(z,r/4)

∣∣p. (7.7)

For z, w ∈ Nr with w ∈ Bd(z, 11r/4), we note that Bd(z, r/4)∪Bd(w, r/4) ⊆ Bd(w, 3r)∩
Bd(z, 3r). Let v ∈ {z, w}. By Hölder’s inequality and df-Ahlfors regularity of m,

rdf
∣∣fBd(v,r/4) − fBd(w,3r)

∣∣p = rdf

∣∣∣∣ 
Bd(v,r/4)

 
Bd(w,3r)

(f(x)− f(y))m(dy)m(dx)

∣∣∣∣p
≤ rdf

 
Bd(v,r/4)

 
Bd(w,3r)

|f(x)− f(y)|pm(dy)m(dx)

.
ˆ
Bd(w,3r)

 
Bd(w,3r)

|f(x)− f(y)|pm(dy)m(dx)

.
ˆ
Bd(w,3r)

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx).

In particular,

rdf
∣∣fBd(w,r/4) − fBd(z,r/4)

∣∣p . rdf

(∣∣fBd(w,r/4) − fBd(w,3r)

∣∣p +
∣∣fBd(w,3r) − fBd(z,r/4)

∣∣p)
.
ˆ
Bd(w,3r)

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx),

and thus (7.7) yields

Ẽ (n)
p,Vn(Bd(z,5r/4))(Arf)

. r−β
∑

w∈Nr∩Bd(z,11r/4)

ˆ
Bd(w,3r)

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx). (7.8)

Let us fix δ > 0. Then, for all small enough r > 0 and z ∈ Nr(U), we have⋃
w∈Nr∩Bd(z,11r/4)Bd(w, 3r) ⊆ Uδ. Summing (7.8) over z ∈ Nr(U), we obtain

Ẽ (n)
p,Vn(U)(Arf) ≤

∑
z∈Nr(U)

Ẽ (n)
p,Vn(Bd(z,5r/4))(Arf)

. (9r)−β
ˆ
Uδ

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx), (7.9)

where we used the metric doubling property in order to control the overlap of {Bd(w, 3r) |
w ∈ Nr ∩ Bd(z, 11r/4)} in the second inequality. We remark that (7.9) holds for large
enough n ∈ N so that R−n∗ < εr for some fixed small ε > 0.
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The estimate (7.5) is trivial when lim infr↓0
´
Uδ

ffl
Bd(x,r)

|f(x)−f(y)|p
rβ

m(dy)m(dx) =∞, so

we suppose that this liminf is finite. Pick a sequence {rk}k∈N such that rk ↓ 0 as k →∞
and

lim
k→∞

ˆ
Uδ

 
Bd(x,rk)

|f(x)− f(y)|p

rβk
m(dy)m(dx) = lim inf

r↓0

ˆ
Uδ

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx).

If f ∈ Fp, then (7.9) with U = K and Lemma 7.3 tell us that∣∣Ark/9f∣∣pFp . ˆ
K

 
Bd(x,rk)

|f(x)− f(y)|p

rβk
m(dy)m(dx) . |f|pFp <∞.

In particular, {Ark/9f}k∈N is bounded in Fp. Hence, by taking a subsequence, we can
assume that fk := Ark/9f converges weakly in Fp to some function f∞ ∈ Fp. Since Fp is
continuously embedded in Lp(K,m), we have f∞ = f . By Mazur’s lemma and (7.9), we
obtain (7.5).

We next consider the case f ∈ Lp(K,m) and U = K. Similarly to the previous case, we

assume that lim infr↓0
´
K

ffl
Bd(x,r)

|f(x)−f(y)|p
rβ

m(dy)m(dx) <∞ and pick a sequence {rk}k∈N
of positive numbers converging to 0 and realizing this liminf. By (7.9),∣∣Ark/9f∣∣pFp . ˆ

K

 
Bd(x,rk)

|f(x)− f(y)|p

rβk
m(dy)m(dx),

which implies the boundedness of {Ark/9f}k∈N in Fp since we suppose

lim
k→∞

ˆ
K

 
Bd(x,rk)

|f(x)− f(y)|p

rβk
m(dy)m(dx) <∞.

Similar arguments using Mazur’s lemma as in the previous paragraph yield (7.6). �

Proof of Theorem 7.1. The desired comparability follows from Lemmas 7.3 and 7.4.

We prove β/p = sp. Since Fp = B
β/p
p,∞, it is immediate that

β

p
≤ sp = sup

{
s > 0

∣∣ Bs
p,∞(K, d,m) contains a non-constant function

}
.

To prove the converse, let s > β/p and let f ∈ Fp ⊇ Bs
p,∞ such that |f|Fp > 0, i.e. f is

a function in Fp that is not constant. Let An := AR−n∗ /9, where Ar (r > 0) is the same
operator as in the proof of Lemma 7.4. Then, by (7.9) with r = R−n∗ /9 for large enough
n ∈ N and Theorem 6.22, we have

R−nβ∗
R−nsp∗

EΓ
p (Anf) .

ˆ
K

 
Bd(x,R−n∗ )

|f(x)− f(y)|p
R−nsp∗

m(dy)m(dx).

Since lim infn→∞ EΓ
p (Anf) & |f|pFp > 0, letting n→∞ yields

lim inf
r↓0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rsp

m(dy)m(dx) =∞ whenever f ∈ Fp \ R1K ,

which completes the proof. �
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Finally, we can prove the density of Fp ∩ C(K) in Fp.

Proof of Theorem 6.17(v). For simplicity, let F̂p := Fp ∩ C(K)
‖ · ‖Fp . The inclusion F̂p ⊆

Fp is obvious. So, we will prove Fp ⊆ F̂p.
By Theorem 7.1, we know that Fp = B

β/p
p,∞. Let f ∈ Fp and let Ar (r > 0) be the

operators defined in the proof of Lemma 7.4. Then Arf ∈ Fp∩C(K) ⊆ F̂p. By (7.9) with
U = K, we have

|Arf|pFp . sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) . |f|pFp <∞.

Combining with ‖Arf‖Lp . ‖f‖Lp , we conclude that {Arf}r>0 is bounded in Fp. Let
{Arkf}k∈N be a convergent subsequence of {Arf}r>0 (with respect to the weak topology
of Fp). Applying Mazur’s lemma, we get

f ∈
{

convex combinations of {Arkf}k∈N
}‖ · ‖Fp ⊆ Fp ∩ C(K)

‖ · ‖Fp = F̂p,

which completes the proof of Theorem 6.17. �

The following corollary concerns the case p = 2.

Corollary 7.5. Suppose that Assumption 6.15 holds with p = 2. Then (EΓ
2 ,F2) is a

m-symmetric regular Dirichlet form on L2(K,m).

Proof. We know that EΓ
2 is a non-negative quadratic form on F2 since EΓ

2 is a Γ-limit
of non-negative quadratic forms (see [Dal, Theorem 11.10]). Since F2 is a Hilbert space,
(EΓ

2 ,F2) defines a m-symmetric Dirichlet form on L2(K,m). By Theorem 6.17, the Dirich-
let form (EΓ

2 ,F2) is regular. �

8 Self-similar sets and self-similar energies

From this section, we move to the case of self-similar sets. The main result in this section
ensures the existence of a “good” p-energy reflecting geometric properties of the underlying
space such as self-similarity and symmetry.

8.1 Self-similar sets and related notations

First, we give definitions of self-similar structure and related notations from the viewpoint
of weighted partition theory by following [Kig01, Kig20].
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Definition 8.1 (Shift space). Let S be a finite set with #S ≥ 2. For convention, we
set S0 := {φ}, where φ is an element called the empty word. The collection of one-sided
infinite sequences of symbols S is denoted by Σ(S), that is,

Σ(S) = {ω = ω1ω2ω3 · · · | ωi ∈ S for any i ∈ N},

which is called the one-sided shift space of symbols S. We define the shift map σ :
Σ(S) → Σ(S) by σ(ω1ω2 · · · ) = ω2ω3 · · · for each ω1ω2 · · · ∈ Σ(S). The branches of σ
are denoted by σi (i ∈ S), i.e. σi : Σ(S) → Σ(S) is defined as σi(ω1ω2 · · · ) = iω1ω2 · · ·
for each i ∈ S and ω1ω2 · · · ∈ Σ(S). For ω = ω1ω2 · · · ∈ Σ(S) and k ∈ Z≥0, we define
[ω]k = ω1 · · ·ωk ∈ Sk. For ω = ω1ω2 · · · ∈ Σ(S) and τ = τ1τ2 · · · ∈ Σ(S), define the
confluent ω ∧ τ ∈ ⋃k≥0 S

k of ω and τ by

ω ∧ τ = ω1 · · ·ωk, where k = min{n | [ω]n 6= [τ ]n} − 1.

If k = 0, then ω ∧ τ is defined as the empty word φ (see also Definition 8.3).

We use Σ to denote Σ(S) when no confusion can occur. We always consider Σ = SN

as a compact metrizable space equipped with the product topology. It is known that, for
any α ∈ (0, 1), the function δα : Σ× Σ→ [0,∞) defined by

δα(ω, τ) :=

{
αmin{n|[ω]n 6=[τ ]n}−1 if ω 6= τ ,

0 if ω = τ ,
(8.1)

gives a metric on Σ and its topology coincides with that of Σ.

Definition 8.2 (self-similar structure). Let (K,O) be a compact metrizable space without
isolated points, where O is the collection of open sets. Let S be a finite set with #S ≥ 2
and let {Fi}i∈S be a family of continuous injections from K to itself. Then (K,S, {Fi}i∈S)
is called a self-similar structure if there exists a continuous surjection χ : Σ → K such
that Fi ◦ χ = χ ◦ σi for all i ∈ S. The map χ is called the canonical projection (or coding
map) of (K,S, {Fi}i∈S).

We provide standard notations and facts about self-similar structures.

Definition 8.3. Let (K,S, {Fi}i∈S) be a self-similar structure. Define Wk := Sk =
{w1 · · ·wk | wi ∈ S for i ∈ {1, . . . , k}} for k ∈ N and W# :=

⋃∞
k=1Wk. We also set

W0 = {φ}, where φ is the empty word, and W∗ :=
⋃
k≥0Wk. For w = w1w2 · · ·wk ∈ Wk,

the length |w|W∗ of w is defined as
|w|W∗ = k.

If no confusion can occur, then we write |w| for |w|W∗ for simplicity.

For k ≥ n ≥ 0 and w = w1w2 · · ·wk ∈ Wk, define [w]n ∈ Wn by

[w]n := w1 · · ·wn. (8.2)

We also define ik := i · · · i ∈ Wk for each i ∈ S and k ∈ Z≥0. For w ∈ W∗ and n ∈ N,
define

Sn(w) :=
{
v ∈ Wn+|w|

∣∣ [v]|w| = w
}
.
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We use S(w) to denote S1(w) for simplicity.

For w = w1w2 · · ·wk ∈ W∗, we define

Fw := Fw1 ◦ Fw2 ◦ · · · ◦ Fwk , (8.3)

and Kw := Fw(K). We also define σw = σw1 ◦ σw2 ◦ · · · ◦ σwk and Σw := σw(Σ).

Remark 8.4. We also use Wn(S) and Σw(S) to denote Wn and Σw respectively.

Proposition 8.5 ([Kig00, Proposition 1.3.3]). If (K,S, {Fi}i∈S) is a self-similar structure,
then its canonical projection χ is uniquely determined in the following way: for any ω =
ω1ω2 · · · ∈ Σ, {

χ(ω)
}

=
⋂
k≥0

Kω1···ωk . (8.4)

We prepare fundamental notations on self-similar structures.

Definition 8.6. Let L = (K,S, {Fi}i∈S) be a self-similar structure. Define

CL =
⋃

i 6=j∈S

(Ki ∩Kj), CL = χ−1(CL) and PL =
⋃
n≥1

σn(CL).

Also, define V0 = χ(PL).

Remark 8.7. Usually the notation V0 is used to denote V0. We employ V0 in order to
avoid a conflict of notations. We use Vn to denote the vertex set of Gn.

The set V0 describes the ‘boundary’ of K in the following sense.

Proposition 8.8 ([Kig01, Proposition 1.3.5(2)]). Let L = (K,S, {Fi}i∈S) be a self-similar
structure. If Σv ∩ Σw = ∅, then Kv ∩Kw = Fv(V0) ∩ Fw(V0).

We next recall a class of natural measures on a self-similar structure, which is called
self-similar measures.

Proposition 8.9 (e.g. [Kig01, Proposition 1.4.4] and [Hut81]). Let (θi)i∈S satisfy θi ∈
(0, 1) for all i ∈ S and

∑
i∈S θi = 1. Then there exists the unique Borel regular probability

measure m on K such that, for every A ∈ B(K),

m(A) =
∑
i∈S

θim
(
F−1
i (A)

)
.

Such the measure m is called self-similar measure on K with weight (θi)i∈S.

We introduce a useful notation. Let (ai)i∈S ∈ (0,∞)S be a sequence of positive
numbers. For w = w1w1 · · ·wk ∈ W∗, define

aw := aw1aw2 · · · awk .
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Proposition 8.10 ([Kig09, Theorems 1.2.4 and 1.2.7]). Suppose that K 6= V0. Let m be a
self-similar measure with weight (θi)i∈S. Then m(Kw) = θw for any w ∈ W∗. Furthermore,
if v 6= w ∈ W∗ with Kv ∪Kw 6= Kz for some z ∈ {v, w}, then m(Kv ∩Kw) = 0.

In practice, many examples of self-similar structure are realized as self-similar sets in
RD. The main object in this paper, namely the planar Sierpiński carpet in Section 10,
also belongs to this class, so we provide the setting of it here. Let D ∈ N. Let S be a
non-empty finite set and let (ri)i∈S ∈ (0, 1)S. For each i ∈ S, let fi : RD → RD be an
ri-similitude, i.e. the map fi is given by fi(x) = riUix+ qi (x ∈ RD) for some Ui ∈ O(D)
and qi ∈ RD. Here, O(D) denotes the orthogonal group in dimension D. Let K be the
unique non-empty compact subset of RD such that

⋃
i∈S fi(K) = K and let Fi := fi

∣∣
K

.
Such K is called the self-similar set associated with the iterated function system {fi}i∈S.
It is easy to check that (K,S, {Fi}i∈S) is a self-similar structure.

The reader can find many examples (and figures) of self-similar sets in fundamental
textbooks on fractal geometry (see [Kig01, Section 1] for example), so we skip concrete
examples here.

We next recall the famous open set condition, which is introduced by Moran [Mor46].
The self-similar set (K,S, {Fi}i∈S) in RD satisfies the open set condition if there exists a
bounded open non-empty subset O of RD such that⋃

i∈S

Fi(O) ⊆ O and Fi(O) ∩ Fj(O) = ∅ for i 6= j ∈ S.

This condition allows us to determine the Hausdorff dimension of K with respect to the
Euclidean metric. Let d be the normalized Euclidean metric of RD so that diam(K, d) = 1.
Let df > 0 be the number satisfying ∑

i∈S

rdf
i = 1, (8.5)

and suppose that (K,S, {Fi}i∈S) satisfies the open set condition. Then, by Moran’s
theorem (see [Mor46, Hut81] or [Kig01, Corollary 1.5.9]), the Hausdorff dimension of
(K, d) is df . Moreover, there exists a constant C ≥ 1 such that

C−1m(A) ≤ Hdf (A) ≤ Cm(A) for all A ∈ B(RD),

where Hdf is the df-dimensional Hausdorff measure (with respect to the metric d) and
m is the self-similar measure with weight

(
rdf
i

)
i∈S. For a proof of this result, see [Kig01,

Theorem 1.5.7] for example.

8.2 Self-similar p-energy

We now provide a general construction of self-similar energies. To state the result, we
introduce the notion of closed invariant sub-cone with respect to the renormalization.
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Definition 8.11. Let (K,S, {Fi}i∈S) be a self-similar structure and let m be a Borel-
regular probability measure on K. Let p ∈ (1,∞) and ρ = (ρi)i∈S ∈ (0,∞)S. Let F be a
linear subspace of Lp(K,m) with f ◦ Fi ∈ F for any i ∈ S and f ∈ F .

(1) For any functional E : F → [0,∞), define SρE : F → [0,∞) by

SρE(f) :=
∑
i∈S

ρiE(f ◦ Fi) for f ∈ F .

(2) Let U ⊆ {E : F → [0,∞) | E1/p is a semi-norm}. The set U is said to be a closed
invariant sub-cone with respect to Sρ if it satisfies the following conditions (a)-(c).

(a) a1E
(1) + a2E

(2) ∈ U for any a1, a2 ≥ 0 and E(1), E(2) ∈ U .

(b) If
{
E(n)

}
n∈N ⊆ U and limn→∞E

(n)(f) =: E(f) exists for any f ∈ F , then
E ∈ U .

(c) SρE ∈ U for any E ∈ U .

The following theorem gives a self-similar energy as a fixed point of Sρ [Kig00, Theorem
1.5]. In Section 10, we will apply this theorem with D = Fp and E = EΓ

p (in Theorem 6.22)
to get a “canonical” self-similar p-energy on the Sierpiński carpet. The condition (PSS)
in the following theorem plays a crucial role in the existence of a self-similar p-energy. It
is not hard to see that this condition is necessary for the conclusion to hold and hence
can be thought of as a pre-self-similarity condition.

Theorem 8.12 ([Kig00, Theorem 1.5]). Let (K,S, {Fi}i∈S) be a self-similar structure
and let m be a Borel-regular probability measure on K. Let p ∈ (1,∞) and let D be a
linear subspace of Lp(K,m). Suppose that there exists a functional E : D → [0,∞) such
that E( · )1/p is a semi-norm and (D, ‖ · ‖D) is a separable Banach space, where ‖f‖D :=
‖f‖Lp(m) + E(f)1/p. In addition, we suppose that the following condition (PSS) holds.

(PSS) It holds that f ◦ Fi ∈ D for any f ∈ D and i ∈ S. Furthermore, there exist
ρ = (ρi)i∈S ∈ (0,∞)S and C ≥ 1 such that for any k ∈ Z≥0 and f ∈ D,

C−1E(f) ≤
∑
w∈Wk

ρwE(f ◦ Fw) ≤ CE(f), (8.6)

where we set ρφ := 1.

Then there exists Ep : D → [0,∞) satisfying the following conditions (i)-(iii).

(i) Ep( · )1/p is a semi-norm and C−1E(f) ≤ Ep(f) ≤ CE(f) for every f ∈ D, where
C ≥ 1 is the same as in (8.6).

(ii) Ep is self-similar, i.e. for every f ∈ D and k ∈ Z≥0,

Ep(f) =
∑
w∈Wk

ρwEp(f ◦ Fw). (8.7)
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(iii) If U is a closed invariant sub-cone with respect to Sρ and E ∈ U , then Ep ∈ U .

Proof. This result follows from [Kig00, Theorem 1.5] by choosing T, u, V in the notation
of [Kig00, Theorem 1.5] as Sρ,E,U respectively. �

Next we will explain how to apply Theorem 6.22 in the self-similar setting. To this
end, we introduce a sequence of finite graphs equipped with a family of projective maps
(Definition 6.1) associated with the underlying self-similar structure. Let us fix R∗ ∈
(1,∞) and let (K,S, {Fi}i∈S) be a self-similar structure. We also fix a metric d on K
so that the metric topology induced by d coincides with the original topology of K and
diam(K, d) = 1. Then, by [Kig01, proposition 1.3.6], we have

lim
n→∞

max
w∈Wn

diam(Kw, d) = 0. (8.8)

For n ∈ N, define a graph Gn = (Vn, En) by setting

Vn :=
{
w ∈ Wn

∣∣ R−n∗ ≤ diam(Kw, d) < R−n+1
∗

}
(8.9)

and
En :=

{
{v, w} ∈ Vn × Vn

∣∣ v 6= w,Kv ∩Kw 6= ∅
}
. (8.10)

(The vertex set Vn is the same as Λd
R−1
∗

in [Kig20, Definition 2.3.1].) For k, n ∈ N with

k < n and w ∈ Vn, define πn,k(w) as the unique element of Vk such that [w]|v| = v. Then it
is immediate that the map πn,k : Vn → Vk is surjective. Also, we note that Σ =

⊔
w∈Vn Σw

for each n ∈ N.

We next introduce a partition K̃w (w ∈ W∗) associated with the self-similar struc-

ture. Let N∗ := #S and enumerate S as {i(1), . . . , i(N∗)}. Define K̃i(j) (j = 1, . . . , N∗)

inductively as follows. Let K̃i(1) := Ki(1). For j = 1, . . . , N∗ − 1, define

K̃i(j+1) := Ki(j+1) \
j⋃

k=1

K̃i(k). (8.11)

Then K̃i(j) (j = 1, . . . , N∗) are pairwise disjoint and
⋃N∗
j=1 K̃i(j) = K. Suppose that a

family
{
K̃w

}
w∈

⋃
m≤nWm

is chosen so that it satisfies the following conditions:

⋃
w∈Wm

K̃w = K for each m ∈ {1, . . . , n},

K̃v ∩ K̃w = ∅ for any distinct v, w ∈
⋃
m≤n

Wm with |v| = |w|,

and
K̃w =

⋃
i∈S

K̃wi for any m ∈ {1, . . . , n− 1}, w ∈ Wm and i ∈ S.
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We now define
{
K̃v

}
v∈Wn+1

as follows. Let w ∈ Wn and K̃wi(1) := Kwi(1) ∩ K̃w. For

j = 1, . . . , N∗ − 1, we inductively define

K̃wi(j+1) :=

(
Kwi(j+1) \

j⋃
k=1

K̃wi(k)

)
∩ K̃w.

This construction yields a family
{
K̃w

}
w∈W∗

satisfying the conditions (ii) and (iii) in
Definition 6.4.

As in Lemma 6.6, let mn(v) := m
(
K̃v

)
for each n ∈ N and v ∈ Vn, where m is a fixed

self-similar probability measure. We note that, by Proposition 8.10, mn(v) = m(Kv) for
all v ∈ Vn if K 6= V0. Also, the self-similarity of m implies that (mn)n∈N is consistent
under K 6= V0.

We now introduce the analogue of Assumption 6.15 when the underlying space is a
self-similar set.

Assumption 8.13. Let p ∈ (1,∞). Let (K,S, {Fi}i∈S) be a self-similar set such that K
is connected, #K ≥ 2 and K 6= V0. Let (ri)i∈S ∈ (0, 1)S so that Fi is an ri-similitude.
Let d be the normalized Euclidean metric on K so that diam(K, d) = 1 and let m be a
self-similar probability measure with weight

(
rdf
i

)
i∈S ∈ (0, 1)S, where df is the Hausdorff

dimension of (K, d). Let R∗ ∈ (1,∞), let {Gn = (Vn, En)}n∈N, πn,k (n, k ∈ N with k < n)

and K̃w (w ∈ W∗) be defined as above in (8.10), (8.9), and (8.11). Let mn(w) = m
(
K̃w

)
for w ∈ Wn. We consider the following geometric and analytic conditions.

• Geometric conditions: The measure m is df-Ahlfors regular. In addition, {Gn}n∈N
is R∗-scaled and R∗-compatible with (K, d), i.e. (6.3), (6.4), (6.5) and (6.7) hold.

• Analytic conditions: The sequence {Gn}n∈N satisfies U-PIp(β) and U-CFp(ϑ, β) for
some β > 0 and ϑ ∈ (0, 1].

Obviously, Assumption 8.13 for a self-similar set (K,S, {Fi}i∈S) implies Assumption
6.15. Note that the Banach space Fp is separable by Theorem 6.17(iii). Now the following
corollary is immediate from Theorems 6.17, 6.22 and 8.12.

Corollary 8.14. Suppose that a self-similar set (K,S, {Fi}i∈S) satisfies Assumption 8.13
and let (EΓ

p ,Fp) be the p-energy on (K, d,m) in Theorem 6.22. In addition, assume that
the p-energy EΓ

p satisfies the pre-selfi-similarity condition (PSS) in Theorem 8.12. Then
there exists a ‘canonical p-energy’ (Ep,Fp) satisfying the conditions (i)-(iii) in Theorem
8.12. Furthermore, Fp ∩ C(K) is dense both in (C(K), ‖ · ‖∞) and in (Fp, ‖ · ‖Fp).

Remark 8.15. In light of Theorem 6.22(i), the pre-self-similarity condition (PSS) can be
regarded as a property of (1, p)-Sobolev space Fp and its semi-norm |·|Fp .

9 Associated self-similar energy measures

In this section, we construct energy measures associated with a ‘canonical p-energy’ as
constructed in Corollary 8.14 and study its basic properties. Our construction follows an
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approach of Hino that heavily depends on the self-similarity of both the underlying space
and the energy [Hin05, Lemma 4.1].

First, we fix our framework in this section.

Assumption 9.1. Let (K,S, {Fi}i∈S) be a self-similar structure equipped with a com-
patible metric d such that diam(K, d) = 1 and such that K is connected. Let m be a
Borel-regular probability measure on K. Let p ∈ (1,∞) and let (D, |·|D) be a non-empty
semi-normed space such that D is a linear subspace of Lp(K,m). Let Ep : D → [0,∞).

(1) Let ‖ · ‖D := |·|D + ‖ · ‖Lp(m), which defines a norm on D. The normed space

(D, ‖ · ‖D) is a reflexive Banach space. Furthermore,
{
f ∈ D

∣∣ |f|D = 0
}

= R1K .

(2) Ep( · )1/p is a semi-norm on D and there exist a constant C ≥ 1 and a weight
ρ = (ρi)i∈S ∈ (0,∞)S such that, for any f ∈ D and m ∈ Z≥0,

C−1|f|pD ≤ Ep(f) ≤ C|f|pD, and Ep(f) =
∑
w∈Wm

ρwEp(f ◦ Fw).

Furthermore, for any f ∈ D and 1-Lipschitz function ϕ ∈ C(K),

ϕ ◦ f ∈ D and Ep(ϕ ◦ f) ≤ Ep(f).

We always suppose Assumption 9.1 in this section. (Note that the assumptions in
Corollary 8.14, namely Assumption 8.13 and (PSS) imply Assumption 9.1.) In this setting,
we can introduce energy measures with respect to (Ep,D) in the following manner. Let

f ∈ D and n ∈ Z≥0. Define a finite measure m
(n)
p 〈f〉 on Wn by setting m

(n)
p 〈f〉({w}) :=

ρwEp(f ◦ Fw) for each w ∈ Wn. Due to the following equalities:∑
v∈S(w)

m(n+1)
p 〈f〉({v}) = ρw

∑
i∈S

ρiEp
(
(f ◦ Fw) ◦ Fi

)
= m(n)

p 〈f〉({w}),

we can use Kolmogorov’s extension theorem (see [Dud, Theorem 12.1.2] for example) to
get a finite Borel measure mp〈f〉 on Σ = SN such that

mp〈f〉(Σw) = ρwEp(f ◦ Fw) for any n ∈ Z≥0 and w ∈ Wn.

Clearly, mp〈f〉(Σ) = Ep(f).

Now we define a measure Γp〈f〉 on K as Γp〈f〉 := χ∗
(
mp〈f〉

)
, where χ is the coding

map of (K,S, {Fi}i∈S) (recall Definition 8.2). Note that Γp〈f〉 is a finite Borel-regular
measure on K (see [Dud, Theorem 7.1.3] for example). We shall say that Γp〈f〉 is the
Ep-energy measure of f . To summarize, the self-similarity of Ep (on a self-similar structure
(K,S, {Fi}i∈S)) is enough to define p-energy measure Γp〈 · 〉.
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9.1 Basic properties of self-similar energy measures

We record some fundamental properties of energy measures Γp〈 · 〉.

Proposition 9.2. Let f ∈ D. Then Γp〈f〉 ≡ 0 if and only if f is constant.

Proof. It is clear from Γp〈f〉(K) = Ep(f), Ep(f) � |f|pD and |f|D = 0⇔ f ∈ R1K . �

It is natural to consider that Γp〈 · 〉(A)1/p also behaves like the Lp-norm. The following
proposition corresponds to the triangle inequality of “Γp〈 · 〉(dx)1/p”.

Proposition 9.3. For any f1, f2 ∈ D and g ∈ B+(K),(ˆ
K

g dΓp〈f1 + f2〉
)1/p

≤
(ˆ

K

g dΓp〈f1〉
)1/p

+

(ˆ
K

g dΓp〈f2〉
)1/p

. (9.1)

In particular, for all A ∈ B(K),

Γp〈f1 + f2〉(A)1/p ≤ Γp〈f1〉(A)1/p + Γp〈f2〉(A)1/p. (9.2)

Proof. First, we prove (9.2) when A is a closed set of K. Let f1, f2 ∈ D and define

Cn := {w ∈ Wn | Σw ∩ χ−1(A) 6= ∅}, n ∈ N.

Then, as seen in the proof of [Hin05, Lemma 4.1], one can show that
{

ΣCn

}
n≥1

is a

decreasing sequence and
⋂
n∈N ΣCn = χ−1(A), where ΣCn := {ω ∈ Σ(S) | [ω]n ∈ Cn}.

Indeed, for any α ∈ (0, 1), we easily see that

ΣCn =
{
ω ∈ Σ

∣∣∣ distδα
(
ω, χ−1(A)

)
≤ αn−1

}
,

where δα is the metric defined in (8.1). Hence
⋂
n∈N ΣCn =

{
ω ∈ Σ

∣∣ distδα
(
ω, χ−1(A)

)
=

0
}

= χ−1(A). Using the triangle inequalities of Ep( · )1/p and of the `p-norm on Cn, we see
that(∑
w∈Cn

ρwEp
(
(f1 + f2) ◦ Fw

))1/p

≤
(∑
w∈Cn

ρw

(
Ep(f1 ◦ Fw)1/p + Ep(f2 ◦ Fw)1/p

)p)1/p

≤
(∑
w∈Cn

ρwEp(f1 ◦ Fw)

)1/p

+

(∑
w∈Cn

ρwEp(f2 ◦ Fw)

)1/p

,

and hence
mp〈f1 + f2〉

(
ΣCn

)1/p ≤ mp〈f1〉
(
ΣCn

)1/p
+ mp〈f2〉

(
ΣCn

)1/p
.

Letting n→∞, we obtain (9.2) for any closed set A.
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Next, let A ∈ B(K). Since Γp〈f1 +f2〉 is Borel-regular, there exists a sequence {Fn}n≥1

of closed subsets of K such that Fn ⊆ A and limn→∞ Γp〈f1 + f2〉(Fn) = Γp〈f1 + f2〉(A).
Then, for any n ∈ N,

Γp〈f1 + f2〉(Fn)1/p ≤ Γp〈f1〉(Fn)1/p + Γp〈f2〉(Fn)1/p ≤ Γp〈f1〉(A)1/p + Γp〈f2〉(A)1/p.

We get (9.2) by letting n→∞.

Finally, we prove (9.1). Let N ∈ N. Let ai ≥ 0 and Ai ∈ B(K) such that h :=∑N
i=1 ai1Ai ≤ g. Then, (9.2) together with the triangle inequality of the `p-norm on

{1, . . . , N} implies(ˆ
K

h dΓp〈f1 + f2〉
)1/p

≤
(ˆ

K

h dΓp〈f1〉
)1/p

+

(ˆ
K

h dΓp〈f2〉
)1/p

≤
(ˆ

K

g dΓp〈f1〉
)1/p

+

(ˆ
K

g dΓp〈f2〉
)1/p

.

Taking the supremum over h, we obtain (9.1). �

The following proposition gives the self-similarity of our energy measures.

Proposition 9.4. For any n ∈ N and f ∈ D,

Γp〈f〉 =
∑
w∈Wn

ρw(Fw)∗
(
Γp〈f ◦ Fw〉

)
, (9.3)

that is, Γp〈f〉(A) =
∑

w∈Wn
ρwΓp〈f ◦ Fw〉

(
F−1
w (A)

)
for any A ∈ B(K).

Proof. The proof is exactly the same as in [Shi+, Theorem 7.5] although the generalized
Sierpiński carpets are considered in [Shi+]. �

Energy measures inherit ‘nice’ properties of the self-similar p-energy Ep. Here, we
focus only on the Lipschitz contractivity.

Proposition 9.5. Let f ∈ D and let ϕ : R→ R be a 1-Lipschitz function. Then, for any
g ∈ B+(K), ˆ

K

g dΓp〈ϕ ◦ f〉 ≤
ˆ
K

g dΓp〈f〉.

In particular, for any A ∈ B(K),

Γp〈ϕ ◦ f〉(A) ≤ Γp〈f〉(A).

Proof. Similar arguments in the proof of Proposition 9.3 tells us that the following is
enough: for any n ∈ N and A ⊆ Wn,∑

w∈A

ρwEp
(
(ϕ ◦ f) ◦ Fw

)
≤
∑
w∈A

ρwEp
(
f ◦ Fw

)
.

This is immediate from Assumption 9.1(2-c). �
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9.2 Chain rule of energy measures and strong locality

We next show chain rule of energy measures. The following ‘weak locality’ of energy
measures corresponds to the condition (H5) in [BV05], which is a consequence of the
self-similarity of energies.

Lemma 9.6. Let U be an open subset of K. If f, g ∈ D satisfy f = g m-a.e. on U , then
Γp〈f〉(U) = Γp〈g〉(U).

Proof. By the inner regularity of Γp〈f〉 and Γp〈g〉, it suffices to show Γp〈f〉(A) = Γp〈g〉(A)
for any closed subset A of U . Pick δ ∈ (0, distd(A,K \ U)) and N ∈ N so that
maxw∈Wn diam(Kw, d) < δ for any n ≥ N . For n ∈ N, define Cn := {w ∈ Vn |
Σw ∩ χ−1(A) 6= ∅}. Since f ◦ Fw = g ◦ Fw (m-a.e. on K) for any w ∈ Cn with n ≥ N , we
have

mp〈f〉(ΣCn) =
∑
w∈Cn

ρwEp(f ◦ Fw) =
∑
w∈Cn

ρwEp(g ◦ Fw) = mp〈g〉(ΣCn).

Letting n→∞ proves Γp〈f〉(A) = Γp〈g〉(A), which completes the proof. �

The following theorem states the chain rule of our energy measures, which is the main
result in this section.

Theorem 9.7 (Chain rule). For any Ψ ∈ C1(R) and f ∈ D ∩ C(K),

Γp〈Ψ ◦ f〉(dx) = |Ψ′(f(x))|pΓp〈f〉(dx), (9.4)

that is,

Γp〈Ψ ◦ f〉(A) =

ˆ
A

|Ψ′(f(x))|p Γp〈f〉(dx) for any A ∈ B(K).

Proof. The idea is very similar to [BV05, Proposition 4.1]. We present a complete proof
because the framework of [BV05] is slightly different from our setting. Let f ∈ D∩C(K),
Ψ ∈ C1(R) and ε > 0. Then there exists δ > 0 such that

|Ψ′(f(x))−Ψ′(f(y))| < ε for any x, y ∈ K with d(x, y) < δ.

Let {xj}j∈J be a family such that xj ∈ K (j ∈ J), #J <∞ and K =
⋃
j∈J Bd(xj, δ). For

j ∈ J , we define Ψj : R→ R by

Ψj(t) =
Ψ(f(xj))

|Ψ′(f(xj))|+ ε
+

ˆ t

f(xj)

[(
Ψ′(s)

|Ψ′(f(xj))|+ ε
∧ 1

)
∨ (−1)

]
ds.

Then, it is clear than Ψj ∈ C1(R) and
∣∣Ψ′j(t)∣∣ ≤ 1 for all t ∈ R. We note that if s ∈ R

satisfies |Ψ′(s)−Ψ′(f(xj))| ≤ ε, then(
Ψ′(s)

|Ψ′(f(xj))|+ ε
∧ 1

)
∨ (−1) =

Ψ′(s)

|Ψ′(f(xj))|+ ε
.
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In particular,

Ψj(f(x)) =
Ψ(f(x))

|Ψ′(f(xj))|+ ε
and Ψ′j(f(x)) =

Ψ′(f(x))

|Ψ′(f(xj))|+ ε
for any x ∈ Bd(xj, δ).

Set aj = |Ψ′(f(xj))| + ε for simplicity. By Lemma 9.6, Proposition 9.5 and the outer
regularity of energy measures, for any E ∈ B(K) with E ⊆ Bd(xj, δ), we see that

Γp〈Ψ ◦ f〉(E) = Γp
〈
aj(Ψj ◦ f)

〉
(E) = apjΓp〈Ψj ◦ f〉(E) ≤

(
|Ψ′(f(xj))|+ ε

)p
Γp〈f〉(E).

Therefore, for E ∈ B(K) with E ⊆ Bd(xj, δ),

Γp〈Ψ ◦ f〉(E) ≤
ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) +

ˆ
E

[(
|Ψ′(f(xj))|+ ε

)p − |Ψ′(f(x))|p
]

Γp〈f〉(dx)

≤
ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) +

ˆ
E

∣∣∣∣∣
ˆ |Ψ′(f(xj))|+ε

|Ψ′(f(x))|
psp−1 ds

∣∣∣∣∣Γp〈f〉(dx)

≤
ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) + ε · Cp,Ψ,fΓp〈f〉(E), (9.5)

where Cp,Ψ,f is a constant depending only on p and supt∈f(K) |Ψ′(t)|.
Now let A ∈ B(K) and let J = {1, . . . , N}. We inductively define Aj by A1 :=

A∩Bd(x1, δ) and Aj+1 :=
(
A∩Bd(xj+1, δ)

)
\Aj so that A =

⊔N
j=1Aj. By summing (9.5)

with E = Aj over j and letting ε ↓ 0, we obtain

Γp〈Ψ ◦ f〉(A) ≤
ˆ
A

|Ψ′(f(x))|p Γp〈f〉(dx) for any A ∈ B(K). (9.6)

Next, we prove the converse inequality of (9.6). For n ∈ N, we define a closed set Fn
of K by Fn :=

{
x ∈ K

∣∣ |Ψ′(f(x))| ≥ n−1
}

. Note that
⋃
n≥1 Fn = {Ψ′ ◦ f 6= 0}. For each

n ∈ N there exists δn > 0 such that

|Ψ′(f(x))−Ψ′(f(y))| < 1

2n
for any x, y ∈ K with d(x, y) < δn.

Pick ln ∈ N so that maxw∈Wln
diam(Kw, d) < δn. Let

F+
n :=

{
x ∈ K

∣∣ Ψ′(f(x)) ≥ n−1
}

= (Ψ′ ◦ f)−1
([
n−1,∞

))
,

F−n :=
{
x ∈ K

∣∣ Ψ′(f(x)) ≤ −n−1
}

= (Ψ′ ◦ f)−1
((
−∞,−n−1

])
,

and Wln [F±n ] := {w ∈ Wln | Kw ∩ F±n 6= ∅}. Then, we easily see that

Fn = F+
n t F−n ⊆

 ⋃
w∈Wln [F+

n ]

Kw

 ∪
 ⋃
w∈Wln [F−n ]

Kw

 ,
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and Ψ′(f(y)) ≥ (2n)−1 (resp. Ψ′(f(y)) ≤ −(2n)−1) for any y ∈ ⋃w∈Wln [F+
n ] Kw (resp.

y ∈ ⋃w∈Wln [F+
n ] Kw). Since f(Kw) is a connected subset of R, f and Ψ′ ◦ f are uniformly

continuous on K, we can pick δ′n > 0 and a collection of open intervals {Iw}w∈Wln [F±n ] so
that

f
(
(Kw)δ′n

)
⊆ Iw and inf

t∈Iw
|Ψ′(t)| > 0 for any w ∈ Wln [F+

n ] tWln [F−n ].

Since Ψ ∈ C1(R), Ψ′ is strictly increasing or strictly decreasing on each Iw. Applying
the inverse function theorem (e.g. [Jost, Theorem 2.7]), we get the inverse functions
Υw : Ψ(Iw)→ R of Ψ. For any w ∈ Wln [F+

n ]tWln [F−n ] and any E ∈ B(K) with E ⊆ Kw,
by Lemma 9.6 and the inequality (9.6) as measures,

ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) =

ˆ
E

|Ψ′(f(x))|p Γp〈Υw ◦Ψ ◦ f〉(dx)

≤
ˆ
E

|Υ′w(Ψ(f(x)))|p|Ψ′(f(x))|p Γp〈Ψ ◦ f〉(dx)

=

ˆ
E

dΓp〈Ψ ◦ f〉 = Γp〈Ψ ◦ f〉(E).

A similar covering argument as in the previous paragraph yields, for any A ∈ B(K),

ˆ
A∩Fn

|Ψ′(f(x))|p Γp〈f〉(dx) ≤ Γp〈Ψ ◦ f〉(A ∩ Fn).

By letting n→∞, we get

ˆ
A

|Ψ′(f(x))|p Γp〈f〉(dx) =

ˆ
A∩{Ψ′◦f 6=0}

|Ψ′(f(x))|p Γp〈f〉(dx)

≤ Γp〈Ψ ◦ f〉(A ∩ {Ψ′ ◦ f 6= 0}) ≤ Γp〈Ψ ◦ f〉(A),

which together with (9.6) implies the assertion. �

As an immediate consequence of Theorem 9.7, we can prove the following theorem
called energy image density property.

Corollary 9.8. For any f ∈ D ∩ C(K), it holds that the image measure of Γp〈f〉 by f is
absolutely continuous with respect to the one-dimensional Lebesgue measure L 1 on R. In
particular, Γp〈f〉({x}) = 0 for any x ∈ K.

Proof. The proof is essentially the same as in [Shi+, Proposition 7.6] although the gen-
eralized Sierpiński carpets are considered in [Shi+]. See also [CF, Theorem 4.3.8] for the
case p = 2. (Let us remark that the reflexivity of D is needed to follow the argument of
[Shi+, Proposition 7.6].) �

Finally, we can show the ‘strong locality in a measure sense’.
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Corollary 9.9. Let f, g ∈ D∩C(K). If (f−g)|A is constant for some Borel set A ∈ B(K),
then Γp〈f〉(A) = Γp〈g〉(A).

Proof. Let f ∈ D ∩ C(K) and let A ∈ B(K). Suppose that f |A ≡ c for some c ∈ R.
Then, by Corollary 9.8, we have Γp〈f〉

(
f−1({c})

)
= 0, which implies that Γp〈f〉(A) = 0.

Combining this result and Proposition 9.3, we finish the proof. �

Remark 9.10. Theorem 9.7, Corollaries 9.8 and 9.9 are restricted to the functions in

D∩C(K). One might expect that these statements can be extended to
(
D ∩ C(K)

‖ · ‖D)∩
L∞(K,m), but there is a possibility of m ⊥ Γp〈f〉. Indeed, for canonical Dirichlet forms on
many fractals, such a singularity is expected [Hin05, KM20]. We need to consider quasi-
continuous modification of function in D with respect to our p-energy Ep and establish
some fundamental results on nonlinear potential theory associated with Ep. We will not
obtain such results in this paper because it is not needed for our purpose.

9.3 Minimal energy-dominant measures

We conclude this section by giving a natural extension of the notion called minimal energy-
dominant measure (cf. [Hin10]). Let Ep satisfy Assumption 9.1 and let Γp〈 · 〉 denote the
associated energy measures.

Definition 9.11. A Borel-regular finite measure ν is called minimal energy-dominant
measure of (Ep,D) if the following two conditions hold.

• (Domination) For every f ∈ D, we have Γp〈f〉 � ν.

• (Minimality) For another Borel-regular finite measure ν ′ satisfying the above ‘dom-
ination’ property, we have ν � ν ′.

In Dirichlet form theory, the existence of such a measure is shown in [Nak85, Lemma
2.2]. We verify the existence of minimal energy-dominant measure of (Ep,D) in Lemma
9.13 later. To prove it, we need the following lemma (cf. [Hin10, Lemma 2.2]).

Lemma 9.12. Let ν be a Borel-regular finite measure on K and let f, fn ∈ D (n ∈ N)
such that Ep(f − fn) → 0 as n → ∞. Suppose that Γp〈fn〉 � ν for any n ∈ N. Then
Γp〈f〉 � ν.

Proof. Let A ∈ B(K) such that ν(A) = 0. Then we have Γp〈fn〉(A) = 0 for any n ∈ N.
We also note that Γp〈f − fn〉(A) ≤ Ep(f − fn)→ 0. By Proposition 9.3,

Γp〈f〉(A)1/p ≤ Γp〈fn〉(A)1/p + Γp〈f − fn〉(A)1/p = Γp〈f − fn〉(A)1/p → 0,

which proves our assertion. �
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We now prove the existence of minimal energy-dominant measure (cf. [Hin10, Lemma
2.3]).

Lemma 9.13. Suppose that {fn ∈ D}n∈N is a dense subset of D. Let {an}n∈N be a se-
quence of positive numbers such that

∑∞
n=1 anEp(fn) converges. Then ν :=

∑∞
n=1 anΓp〈fn〉

defines a minimal energy-dominant measure of (Ep,D).

Proof. By the definition of ν, we note that Γp〈fn〉(A) = 0 for any n ∈ N and A ∈ B(K)
with ν(A) = 0. Hence the density of {fn}n∈N and Lemma 9.12 imply Γp〈f〉 � ν for any
f ∈ D. So it is enough to show the minimality of ν. Let ν ′ be another Borel-regular
measure on K such that Γp〈f〉 � ν ′ for any f ∈ D. If A ∈ B(K) satisfies ν ′(A) = 0, then
we have Γp〈fn〉(A) = 0 for any n ∈ N. Now it is immediate that ν(A) = 0, which means
ν � ν ′ and we finish the proof. �

The next proposition corresponds to [Hin10, Lemma 2.4]. This states that any two
minimal energy-dominant measures are mutually absolutely continuous.

Proposition 9.14. Suppose that D is separable with respect to ‖ · ‖D. Let ν be a minimal
energy-dominant measure of (Ep,D) and let A ∈ B(K). Then ν(A) = 0 if and only if
Γp〈f〉(A) = 0 for any f ∈ D.

Proof. It is clear that, for A ∈ B(K), ν(A) = 0 implies Γp〈f〉(A) = 0 by the ‘domination’
property of ν.

For the converse, suppose that A ∈ B(K) and Γp〈f〉(A) = 0 for any f ∈ D. Let
{fn}n∈N be a dense subset of D and let {an}n∈N be a sequence of positive numbers such
that

∑∞
n=1 anEp(fn) converges. (For example, an = 2−n

(
Ep(fn)−1 ∧ 1

)
.) Then, by Lemma

9.13, the new measure ν ′ :=
∑∞

n=1 anΓp〈fn〉 is also a minimal energy-dominant measure of
(Ep,D). Hence Proposition 9.14 tells us that ν and ν ′ are mutually absolutely continuous.
The assumption Γp〈f〉(A) = 0 for any f ∈ D implies ν ′(A) = 0, and thus ν(A) = 0. This
completes the proof. �

9.4 Estimates of energy measures

In this subsection, we investigate ‘local behavior of p-energy’, which will be described
in terms of Ep-energy measures. Throughout this section, we suppose Assumption 8.13
and the pre-self-similarity condition (PSS) in Theorem 8.12 (with D = Fp and E( · ) =
|·|pFp). Hence, by Corollary 8.14, there exists a self-similar p-energy (Ep,Fp) satisfying

Assumption 9.1. Let Γp〈f〉, f ∈ Fp, denote the energy measure with respect to (Ep,Fp).
The following lemma gives behaviors of ‘p-energy on each cells’.

Lemma 9.15. For any f ∈ Fp, w ∈ W∗ and n ∈ N,

ρwEp(f ◦ Fw) ≤ Γp〈f〉(Kw) ≤
∑

v∈Wn;Kv∩Kw 6=∅

ρvEp(f ◦ Fv).
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Proof. The lower bound is immediate from Σw ⊆ χ−1(Kw). The upper bound follows
from χ−1(Kw) ⊆ ⋃v∈Wn;Kv∩Kw 6=∅Σv. �

Hereafter in this subsection, we will assume the following extra conditions to control
the ‘geometry of {wv | v ∈ Vn}’ for all w ∈ W∗. Recall that (K,S, {Fi}i∈S) is a self-similar
set such that Fi is an ri-similitude for each i ∈ S. We suppose that there exists a sequence
(li)i∈S of positive integers such that the following hold: for each i ∈ S,

ri = R−li∗ , (9.7)

and
ρi = Rli(β−df)

∗ . (9.8)

Remark 9.16. The condition (9.7) involves the notion of rationally ramified self-similar
structure in [Kig09]. It might be hard to deal with the graph approximation Gn when we
have no such a condition. Indeed, the proof below does not work if {wv | v ∈ Vn} is not a
subset of Vm for some m ≥ n. We can avoid such a situation by assuming (9.7). On the
other hand, condition (9.8) seems to be natural once one knows how to determine β in a
practical situation. For details, see Section 10.

We obtain the following (p, p)-Poincaré inequality in this setting.

Theorem 9.17. Suppose that (9.7) and (9.8) hold. Then there exist constants CP > 0
and AP ≥ 1 (depending only on the constants associated with Assumption 8.13) such that

ˆ
Bd(x,r)

∣∣f(y)− fBd(x,r)

∣∣pm(dy) ≤ CPr
β

ˆ
Bd(x,APr)

dΓp〈f〉 for any f ∈ Fp, x ∈ K, r > 0.

(9.9)

Proof. Let m ∈ Z≥0, w = w1 . . . wm ∈ Wm and f ∈ Fp. By the change-of-variable formula,
for any n ∈ N and z ∈ Vn,

Mnf ◦ Fw(z) =
1

m(Kz)

ˆ
Kz

(f ◦ Fw)(z) dm =
1

m(Kz)m(Kw)

ˆ
Kwz

f dm = Mn+l(w)f(wz),

where we used Proposition 8.10 in the first and second equalities. Recall Vn = {v ∈ W∗ |
R−n∗ ≤ diam(Kv, d) < R−n+1

∗ }. Then we note that V w
n := {wv | v ∈ Vn} ⊆ Vn+l(w), where

l(w) :=
∑m

i=1 lwi Therefore, we see that

Ẽ (n)
p (f ◦ Fw) = Rn(β−df)

∗ EGnp
(
Mn+l(w)f(w •)

)
= R−l(w)(β−df)

∗ Ẽ (n+l(w))
p,V wn

(f) = cwẼ (n+l(w))
p,V wn

(f),

where Mn+l(w)f(w •) : Vn → R denotes the function defined as v 7→ Mn+l(w)f(wv). In
particular, we obtain

Ẽ (n+l(w))
p,V wn

(f) = ρwẼ (n)
p (f ◦ Fw) ≤ ρw|f ◦ Fw|pFp . ρwEp(f ◦ Fw) ≤ Γp〈f〉(Kw), (9.10)

where we used Lemma 9.15 in the last inequality

92



Let x ∈ K, r > 0 and let A ≥ 1 be the constant in Lemma 6.24. Then there exists
n0 = n0(r, A) such that

⋃
w∈Vn(Bd(x,Ar))Kw ⊆ Bx(x, 2Ar) for any n ≥ n0. Next we let

l∗ := maxw∈Vn0
l(w) ∈ N. For any n > n0 ∨ l∗, we see that

Ẽ (n)
p,Vn(Bd(x,Ar))(f) ≤

∑
w∈Vn0 (Bd(x,Ar))

Ẽ (n)
p,V w

n−l(w)
(f)

(9.10)

.
∑

w∈Vn0 (Bd(x,Ar))

Γp〈f〉(Kw)

. Γp〈f〉
(
Bd(x, 2Ar)

)
,

where we used Lemma 6.10 (L∗ < ∞) in the last inequality. Combining with Lemma
6.24, we get the desired Poincaré inequality (9.9). �

The next two propositions obtain bounds on p-energy measure expressed using the
underlying metric and measure. By using (9.9) instead of (6.34) in the proof of Lemma 7.3,
we immediately achieve the following ‘local behavior of p-energy in terms of (fractional)
Korevaar–Schoen expression’.

Proposition 9.18. In the same setting of Theorem 9.17, there exists a constant C > 0
(depending only on the constant associated with Assumption 8.13) such that for any Borel
set U of K and f ∈ Fp,

lim sup
r↓0

ˆ
U

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) ≤ CΓp〈f〉(U). (9.11)

Proof. The same argument using a maximal r-net Nr(⊆ U) of U to get (7.2) yields

ˆ
U

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx) .
∑
y∈Nr

Γp〈f〉
(
Bd(y, 2APr)

)
.

Since
∑

y∈Nr 1Bd(y,2APr) . 1U2APr
by the metric doubling property, we get (9.11). �

We record a converse bound to the previous result (A corresponding bound in the case
p = 2 plays an important role in [Mur23+]).

Proposition 9.19. In the same setting of Theorem 9.17, there exists a constant C > 0
(depending only on the constant associated with Assumption 8.13) such that for any Borel
set U of K and f ∈ Fp,

Γp〈f〉(U) ≤ C lim
δ↓0

lim inf
r↓0

ˆ
Uδ

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx). (9.12)

Proof. Let U ∈ B(K), δ > 0 and f ∈ Fp. Then Lemma 7.4 tells us that

lim sup
n→∞

Ẽ (n)
p,Vn(U)(f) ≤ C0 lim inf

r↓0

ˆ
Uδ

 
Bd(x,r)

|f(x)− f(y)|p
rβ

m(dy)m(dx), (9.13)
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where C0 > 0 is independent of U, δ, f . Let m ∈ N be large enough so that
⋃
w∈Vm(U) ⊆ Uδ

(R−m+1
∗ < δ is enough). Then we see that

Γp〈f〉(U) ≤ mp〈f〉

 ⋃
w∈Vm(U)

Σw

 =
∑

w∈Vm(U)

ρwEp(f ◦ Fw)

.
∑

w∈Vm(U)

ρw lim
n→∞

Ẽ (n)
p (f ◦ Fw) =

∑
w∈Vm(U)

lim
n→∞

Ẽ (n+l(w))
p,V wn

(f),

where V w
n and l(w) are the same as in the proof of Theorem 9.17. For w ∈ Vm(U), we

observe that V w
n ⊆ Vn+l(w)(Uδ). Therefore,

Γp〈f〉(U) . lim inf
n→∞

∑
w∈Vm(U)

Ẽ (n+l(w))
p,V wn

(f) ≤ lim sup
n→∞

Ẽ (n)
p,Vn(Uδ)

(f).

Combining with (9.13) for Uδ, we obtain (9.12). �

Remark 9.20. Once we get energy measures and Poincaré inequality, minor modifications
of the proof of [Mur23+, Theorem 2.9] shows the following result: for any uniform domain
U of K in the sense of [Mur23+, Definition 2.3] and f ∈ Fp, we have Γp〈f〉(∂U) = 0.

10 Self-similar energies on the Sierpiński carpet

10.1 Checking all assumptions

In the rest of the paper, we focus on the planar standard Sierpiński carpet and we will
prove the main results.

First, recall the definition of the Sierpiński carpet.

Definition 10.1 (Planar Sierpiński carpet). (1) Let a∗ = 3, N∗ = 8, S = {1, . . . , N∗}
and define qi ∈ R2 as

q1 = (−1,−1) = −q5, q2 = (0,−1) = −q6,

q3 = (1,−1) = −q7, q4 = (1, 0) = −q8.

Let fi : R2 → R2, i ∈ S denote the similitude fi(x) = a−1
∗ (x − qi) + qi. Let K be

the unique non-empty compact subset such that K =
⋃
i∈S fi(K) and set Fi = fi

∣∣
K

.
Let d denote the normalized Euclidean metric on K so that diam(K, d) = 1. The
self-similar structure (K,S, {Fi}i∈S) is called the planar standard Sierpiński carpet
(PSC for short). Let m be the self-similar measure with weight (1/N∗, . . . , 1/N∗).

(2) Let

`L = {−1}×[−1, 1], `T = [−1, 1]×{1}, `R = {1}×[−1, 1], `B = [−1, 1]×{−1},

so that V0 = ∂[−1, 1]2 = `L ∪ `T ∪ `R ∪ `B.
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(3) Let D4 be the dihedral group of order 8 (the symmetry of the square), i.e.

D4 = {Rk, Sk | k = 0, 1, 2, 3},

where

Rk =

[
cos kπ

2
− sin kπ

2

sin kπ
2

cos kπ
2

]
and Sk =

[
cos kπ

2
sin kπ

2

sin kπ
2
− cos kπ

2

]
.

Then it is clear that Φ(K) = K for all Φ ∈ D4.

Hereafter, we let (K,S, {Fi}i∈S) be PSC, d be the normalized metric, and m be the

self-similar measure on K as given in Definition 10.1. Let us fix a partition
{
K̃w

}
w∈W∗

as

constructed in Section 8. Note that intR2 Kw ⊆ K̃w ⊆ Kw for all w ∈ W∗. To construct
a ‘canonical’ p-energy on PSC, we need to check Assumption 8.13, especially ‘Analytic
conditions’, and (8.6). Recall that the approximating graphs {Gn = (Vn, En)}n∈N in (8.9)
are given by

Vn = Wn = Sn, En =
{
{v, w} ∈ Vn × Vn

∣∣ v 6= w,Kv ∩Kw 6= ∅
}
,

and that Mn : Lp(K,m)→ RVn in (6.8) is defined as

Mnf(w) =

 
K̃w

f dm for f ∈ Lp(K,m) and w ∈ Wn.

The following theorem is the main result of this subsection whose proof is divided into
several steps.

Theorem 10.2. PSC satisfies Assumption 8.13 for all p ∈ (1,∞), that is,

(a) (K, d,m) is df-Ahlfors regular, where df := logN∗/ log a∗ = log 8/ log 3. In addition,
the sequence of graphs {Gn = (Vn, En)}n∈N equipped with the projective map πn,k (1 ≤
k < n), which is defined as the map Vn 3 w1w2 · · ·wn 7→ w1w2 · · ·wk = [w]k ∈ Vk,
is a∗-scaled and a∗-compatible with (K, d).

(b) The sequence {Gn}n∈N satisfies U-PIp(dw(p)) and U-CFp(ϑ, dw(p)) for some ϑ ∈
(0, 1], where dw(p) = logN∗ρ(p)/ log a∗ and ρ(p) ∈ (0,∞) is given later (see (10.3)).

(c) f ◦ Fi ∈ Fp for all i ∈ S and f ∈ Fp. Furthermore, the semi-norm |f|Fp =(
a
n(dw(p)−df)
∗ EGnp (Mnf)

)1/p

satisfies the following: there exists C ≥ 1 such that for

all n ∈ N and f ∈ Fp,

C−1|f|pFp ≤ ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp ≤ C|f|pFp .

We start by observing the geometry of PSC, namely Theorem 10.2(a). The next
proposition gives a collection of geometric properties of PSC.

95



Proposition 10.3. (i) For all n ∈ Z≥0 and distinct v, w ∈ Wn, we have m(Kw) = N−n∗
and m(Kv ∩Kw) = 0.

(ii) There exists a constant C ≥ 1 (depending only on a∗) such that the following hold:
for all n ∈ Z≥0 and w ∈ Wn, there exists x ∈ Kw satisfying

Bd(x,C
−1a−n∗ ) ⊆ Kw ⊆ Bd(x,Ca

−n
∗ ).

In particular, (6.7) holds.

(iii) There exists CAR depending only on a∗ and N∗ such that

C−1
ARr

df ≤ m(Bd(x, r)) ≤ CARr
df for all x ∈ K, r ∈ (0, 1],

i.e., (K, d,m) is df-Ahlfors regular.

(iv) The sequence of graph {Gn}n∈N equipped with the projective maps {πn,k | n, k ∈
N, k < n} is a∗-scaled.

(v) The sequence of graph {Gn}n∈N equipped with the projective maps {πn,k | n, k ∈
N, k < n} is a∗-compatible.

(vi) For any Φ ∈ D4, there exists a bijection τΦ : W∗ → W∗ such that |τΦ(w)| = |w| and
Φ
(
Kw

)
= KτΦ(w) for any w ∈ W∗. Moreover, UΦ,w := F−1

τΦ(w) ◦ Φ ◦ Fw ∈ D4.

In particular, Theorem 10.2(a) holds.

Proof. The properties (ii), (vi) are easy and (iii) is a consequence of (i), (iii). So we will
prove (i), (iv) and (v).

(i) This follows from V0 6= K and Proposition 8.10.

(iv) Recall that dn denotes the graph distance of Gn. Let n,m ∈ N and w ∈ Wm. Let
cn(w) = w15n−1 ∈ Vn+m. Then it is clear that Bdn+m

(
cn(w), an−1

∗
)
⊆ π−1

n+m,m(w). (The set
π−1
n+m,m(w) is the same as Sn(w) in [Kig20, Definition 3.5.3(1)].) Since we can easily see

that diam
(
π−1
n+m,m(w), dn+m

)
≤ 2an∗ , we obtain π−1

n+m,m(w) ⊆ Bdn+m

(
cn(w), 3an∗

)
. Hence

we have (6.3) with A1 = 3 ∨ a∗. Also, the bound on the diameter of π−1
n+m,m( · ) implies

(6.4) with A2 = 4. This completes the proof.

(v) Note that the conditions in Definition 6.4(ii), (iii) are already verified. Let pn(v) =
Fv
(
F1(1, 1)

)
∈ Kv for n ∈ N and v ∈ Vn. Then the condition in Definition 6.4(iv) is

evident. So we will prove the Hölder comparison (6.5). Let v, w ∈ Vn with v 6= w. Pick a
path [z(0), . . . , z(l)] in Gn such that {z(0), z(l)} = {v, w} and l ≤ dn(v, w). Then

d(pn(v), pn(w)) ≤ diam

(
l⋃

j=0

Kz(j), d

)
≤ 2la−n∗ ,

which implies the upper bound in (6.5) (with C = 2).
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The desired lower bound requires a geometric observation. Let πi : R2 → R (i = 1, 2)
denote the projection map of R2 onto i-th coordinate, i.e. πi(x1, x2) = xi for (x1, x2) ∈ R2.
Then we observe that

|π1(pn(v))− π1(pn(w))| ∨ |π2(pn(v))− π2(pn(w))| ≥ dn(v, w)

2
· 2a−n−1

∗ ,

which implies d(pn(v), pn(w)) ≥ (2
√

2a∗)
−1dn(v, w)a−n∗ . Therefore, (6.5) holds with C =

2
√

2a∗. �

We next move to Theorem 10.2(b). Thanks to Propositions 6.8 and 6.12, checking
U-capp,≤(dw(p)) and U-BCLlow

p (df − dw(p)) is enough for this purpose. The planarity is
crucial to ensure df − dw(p) < 1 for all p ∈ (1,∞). We start with the definition of dw(p)
which is the quantity called p-walk dimension of PSC (see Definition 10.6). This value is
closely related with the following behavior of discrete p-capacities.

Theorem 10.4 ([BK13, Lemma 4.4]). Let p ∈ [1,∞). Define

C(n)
p := sup

m∈N,w∈Vm
capGn+m

p

(
π−1
n+m,m(w), Vn+m \ π−1

n+m,m(Bdm(w, 2))
)
. (10.1)

Then there exists a constant C ≥ 1 (depending only on p, L∗) such that

C−1 · C(n)
p C(m)

p ≤ C(n+m)
p ≤ C · C(n)

p C(m)
p for all n,m ∈ N. (10.2)

In particular, the limit

lim
n→∞

(
C(n)
p

)−1/n
=: ρ(p) ∈ (0,∞) (10.3)

exists, and
C−1ρ(p)−n ≤ C(n)

p ≤ Cρ(p)−n for all n ∈ N. (10.4)

We call ρ(p) the p-scaling factor of PSC.

Remark 10.5. (1) The work [BK13] has dealt with a slightly different version of C(n)
p ,

but this is not an issue because the value Mn is uniformly comparable with C(n)
p (cf.

Lemma 2.12, Lemma 10.9 and the last line in [BK13, page 66]).

(2) In [Kig20], Kigami has introduced refined versions of (10.1). See also the val-
ues EM,p,n(w, T|w|), EM,p,m,n and EM,p,m, which are called conductance constants, in

[Kig23]. Our C(n)
p corresponds to E1,p,n in his notation.

(3) The sub-multiplicative inequality in (10.2):

C(n+m)
p ≤ C · C(n)

p C(m)
p for all n,m ∈ N,

is shown in various general frameworks by using combinatorial modulus (see [BK13,
Proposition 3.6], [CP13, Lemma 3.7] and [Kig20, Lemma 4.9.3] for example). It
is rather difficult to show the converse, namely the super-multiplicative inequality.
Indeed, the argument in [BK13, Lemma 4.4] requires the planarity and symmetries
of PSC.
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Definition 10.6. Let p ≥ 1. Define

dw(p) :=
logN∗ρ(p)

log a∗
. (10.5)

We call dw(p) the p-walk dimension of PSC.

The next proposition is a collection of properties concerning ‘analytic conditions’.

Proposition 10.7. (i) df − dw(p) < 1 for all p ∈ [1,∞).

(ii) The sequence {Gn}n∈N satisfies U-capp,≤(dw(p)) for all p ∈ [1,∞).

(iii) The sequence {Gn}n∈N satisfies U-BCLp(df − dw(p)) for all p ∈ (1,∞).

The Loewner type condition (iii) requires a few steps, so we first prove (i) and (ii).

Proof of Proposition 10.7(i) and (ii). (i) Since df < 2 and dw(p) ≥ p (see [Shi+, Proposi-
tion 3.5] or [Kig20, Lemma 4.6.15]), we have df − dw(p) < 2− p ≤ 1 for all p ≥ 1.

(ii) By virtue of a similar argument to the last part in Lemma 5.7, it is enough to
estimate discrete p-capacities for large enough R, say R ≥ 2a∗ + 1. Let n ∈ N, x ∈ Vn
and R ∈ [2a∗ + 1, diam(Gn)). Let n(R) ∈ Z be the unique integer such that

2an(R)
∗ < R ≤ 2an(R)+1

∗ .

Then 1 ≤ n(R) < n since R > 2a∗ and R ≤ 2an∗ .

For each w ∈ Vn(R), let ϕw : Vn → [0, 1] satisfy ϕw
∣∣
Sn−n(R)(w)

≡ 1, supp[ϕw] ⊆⋃
v∈Vn(R);dn(R)(v,w)≤1 S

n−n(R)(v) and EGnp (ϕw) = capGn+m
p

(
Sn−n(R)(w), Vn\Sn−n(R)(Bdn(R)

(w, 2))
)
.

Let
N (x,R) :=

{
w ∈ Vn(R)

∣∣ Bdn(x,R) ∩ Sn−n(R)(w) 6= ∅
}
.

Since Gn is metric doubling and its doubling constant depends only on a,N∗, we easily see
that #N (x,R) . 1, where the bound also depends only on a,N∗. Let ϕ :=

∑
w∈N (x,R) ϕw.

Then ϕ
∣∣
Bdn (x,R)

≡ 1, supp[ϕ] ⊆ Bdn(x, 2R) and EGnp (ϕ) ≤ (#N (x, r))p−1C(n)
p . ρ(p)−n.

Since ρ(p)−n = a
n(df−dw(p))
∗ . #Bdn(x,R)/Rdw(p), we get U-capp,≤(dw(p)). �

Let us introduce some useful notations and a new graph approximation as a prepara-
tion to prove U-BCLp(df − dw(p)). Recall that

L∗ := sup
n∈N,w∈Vn

degGn(w) ≤ 8.

We also define
E#
n :=

{
{v, w} ∈ En

∣∣ v 6= w,#(Kv ∩Kw) ≥ 2
}
,

and G#
n := (Vn, E

#
n ) (see Figure 10.1). We use d#

n to denote the graph distances of G#
n .

Then d#
n (v, w) ≤ 2 for all {v, w} ∈ En \ E#

n . Therefore, by Proposition A.4, discrete

p-energies EGnp and EG#
n

p are uniformly comparable. In particular, we obtain the following
comparability of discrete p-capacity and p-modulus.
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Figure 10.1: The graphs G3 (left) and G#
3 (right)

Proposition 10.8. Let p > 0. Then there exists a constant C ≥ 1 (depending only on
p, L∗) such that the following hold.

(i) For any n ∈ N and non-empty disjoint subsets A,B of Vn,

C−1capG
#
n

p (A,B) ≤ capGn
p (A,B) ≤ CcapG

#
n

p (A,B).

(ii) For any n ∈ N and non-empty disjoint subsets A,B of Vn,

C−1ModG
#
n

p (A,B) ≤ ModGn
p (A,B) ≤ CModG

#
n

p (A,B).

Proof. The statement (i) is immediate from Proposition A.4. The second assertion follows
from (i) and Lemma 2.12. �

We next consider the ‘p-conductance between opposite faces’ whose behavior is the
same as C(n)

p . For A ⊆ K and n ∈ N, define

Wn[A] := {w ∈ Wn | Kw ∩ A 6= ∅}.

Lemma 10.9 ([Shi+, Lemma 4.13]). There exists a constant C ≥ 1 depending only on
p, L∗ such that

C−1ρ(p)−n ≤ ModGn
p

(
Wn[`1],Wn[`2]

)
≤ Cρ(p)−n for all n ∈ N,

whenever {`1, `2} = {`L, `R} or {`1, `2} = {`T, `B}.

The following notation and result are needed to describe ‘local symmetry’ of PSC. For
{v, w} ∈ E#

m, define
`v,w = Kv ∩Kw.

We let Rv,w : R2 → R2 be the reflection in the line containing `v,w.

Proposition 10.10. For any {v, w} ∈ Em, there exists a bijection τv,w :
⋃
n∈N S

n({v, w})→⋃
n∈N S

n({v, w}) such that Rv,w(Kz) = Kτv,w(z) for all z ∈ ⋃
n∈N S

n({v, w}), where
Sn({v, w}) := Sn(v) ∪ Sn(w) = {z ∈ Wn+m | [z]m ∈ {v, w}}. Moreover, τv,w

(
Sn(v)

)
=

Sn(w) for all n ∈ N.
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Proof. We observe that for any {v, w} ∈ Em there exists a unique Φ ∈ D4 such that
Fw ◦ Φ ◦ F−1

v = Rv,w on Kv. Then it is easy to see that

τv,w(z) :=

{
wτΦ(zm+1 · · · z|z|) if [z]m = v,

vτΦ(zm+1 · · · z|z|) if [z]m = w,
for z ∈

⋃
n∈N

(
Sn(v) ∪ Sn(w)

)
,

is the map satisfying the required properties. �

We recall a useful fact on combinatorial modulus due to Kigami.

Lemma 10.11 ([Kig23, Lemma C.4]). Let p > 0. Let Gi = (Vi, Ei) (i = 1, 2) be two
graphs with deg(Gi) < ∞ and let H : V1 → 2V2 be a function such that #H(v) < ∞ for
all v ∈ V1. Let Θ1,Θ2 be two path families of paths in G1, G2 respectively such that for
each θ ∈ Θ1, there exists θ′ ∈ Θ2 such that θ′ ⊆ ⋃v∈θH(v). Then

ModG1
p (Θ1) ≤ C

(
sup
v∈V1

#H(v)

)p
sup
v′∈V2

#
{
v ∈ V1

∣∣ v′ ∈ H(v)
}

ModG2
p (Θ2). (10.6)

where C > 0 is a constant depending only on p, deg(G1) and deg(G2).

With these preparations, we now check U-BCLp(df − dw(p)) for PSC. The following
lemma is a key ingredient.

Lemma 10.12. Let p ≥ 1 and let L ≥ 1. There exists a constant c > 0 (depending
only on p, L, L∗) such that the following hold: for any k,m ∈ N and v, w ∈ Vm with
dm(v, w) ≤ L,

ModGm+k
p

(
{θ ∈ Path(Sk(v), Sk(w);Gk+m) | diam(θ, dk+m) ≤ 2Lak∗}

)
≥ cρ(p)−k. (10.7)

Proof. The idea goes back to [BK13, Lemma 4.4]. (See also [Kig23, Theorem 4.8].) We
first note that

Θk(v, w) := {θ ∈ Path(Sk(v), Sk(w);Gk+m) | diam(θ, dk+m) ≤ 2Lak∗} 6= ∅

since diam(Sk(z), dk+|z|) ≤ 2ak∗ for all k ∈ N and z ∈ W∗.
If v = w, then Θk(v, w) contains{

[vz(0), . . . , vz(l)]
∣∣ [z(0), . . . , z(l)] ∈ Path

(
Wk[`L],Wk[`R];Gk

)}
.

Therefore, by Lemmas 2.3(ii) and 10.9, we get

ModGk+m
p

(
Θk(v, w)

)
≥ C−1ρ(p)−k,

where C ≥ 1 is the same constant as in Lemma 10.9.
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For v, w ∈ Vm with v 6= w, we fix a simple path γ = [z(0), z(1), . . . , z(l)] in G#
m (NOT

in Gm!) such that z(0) = v and z(l) = w. We will prove

ρ(p)−k . ModGk+m
p

({
θ ∈ Θk(v, w)

∣∣∣∣ θ ⊆ l⋃
j=0

Sk
(
z(j)

)})
.

For ease of notation, set

Θk(v, w; γ) :=

{
θ ∈ Path(Sk(v), Sk(w);Gk+m)

∣∣∣∣ θ ⊆ l⋃
j=0

Sk
(
z(j)

)}
.

For j ∈ {0, . . . , l}, we inductively define Hz(j) : Vk → 2Vk+m in the following manner: define

Hz(0)(z) =
{
z(0) · z, z(0) · τS1(z)

}
for x ∈ Vk;

and
Hz(j+1)(z) = τz(j),z(j+1)

(
Hz(j)(z)

)
,

where τz(j),z(j+1) : Sk
(
{z(j), z(j+1)}

)
→ Sk

(
{z(j), z(j+1)}

)
is the bijection in Proposition

10.10. (Recall that S1 ∈ D4 is the reflection in the line {y = x}.) We now define
H : Vk → 2Vk+m by

H(z) :=
l⋃

j=0

Hz(j)(z).

Then we claim the following:

For any θ ∈ Path
(
Wk[`L],Wk[`R];Gk

)
, there exists a path θ′ ∈ Θk(v, w; γ)

such that θ′ ⊆
⋃
z∈θ

H(z). (10.8)

Since τS1

(
Wk[`L]

)
= Wk[`B] and τS1

(
Wk[`R]

)
= Wk[`T], we observe that τS1(θ) is a path

in Gk joining Wk[`B] and Wk[`T] for any θ ∈ Path
(
Wk[`L],Wk[`R];Gk

)
. Hence, for any

j ∈ {0, . . . , l} and `1, `2 ∈ {`L, `R, `B, `T} with `1 6= `2, Hz(j)(θ) contains a path joining{
z ∈ Sk

(
z(j)

) ∣∣ Kz ∩ `1 6= ∅
}

and
{
z ∈ Sk

(
z(j)

) ∣∣ Kz ∩ `2 6= ∅
}
.

Combining with the fact that{
z, τz(j),z(j+1)(z)

}
∈ Ek+m for all z ∈

(
Sk(z(j)) ∪ Sk(z(j + 1))

)
∩Wk+m[`z(j),z(j+1)],

we obtain (10.8) (See also Figure 10.2) .

Lemma 10.11 together with (10.8) yields

ModGk
p

(
Wk[`L],Wk[`R]

)
≤ 2p+1C ′ ·ModGk+m

p

(
Θk(v, w; γ)

)
,

where C ′ > 0 is the same constant as in Lemma 10.11. Combining with Lemma 10.9, we
obtain ModGk+m

p

(
Θk(v, w; γ)

)
& ρ(p)−k.
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θSk(v)

Sk(w)

Figure 10.2: The subset
⋃
z∈θH(z) drawn in red. Each big box corresponds to a copy of

Gk in Gk+m.

Since diam
(
Sk(z), dk+|z|

)
≤ 2ak∗ for all z ∈ W∗ and k ∈ N, we have

Θk(v, w; γ) ⊆
{
θ ∈ Path(Sk(v), Sk(w);Gk+m)

∣∣ diam(θ, dk+m) ≤ 2lak∗
}
.

We obtain the required estimate by choosing a path γ with l ∈ [dm(v, w), L] and applying
Lemma 2.3(ii). �

Combining with a geometric observation, we immediately obtain U-BCLp(df −dw(p)).

Proof of Proposition 10.7(iii). Let κ > 0, n ∈ N and 1 ≤ R ≤ diam(Gn). Let Bi (i = 1, 2)
be balls in Gn with radii R such that distdn(B1, B2) ≤ κR. Choose n(R) ∈ Z so that

2an(R)
∗ < R ≤ 2an(R)+1

∗ .

By R ≤ diam(Gn) and diam(Gn) ≤ 2an∗ , we then have n ≥ n(R).

First, we suppose R ≥ 3. Then n(R) ≥ 0. It is a simple observation that there exist
w(1), w(2) ∈ Vn−n(R) such that

‘Sn(R)
(
w(i)

)
⊆ Bi’ and ‘Sn(R)

(
w(i)

)
contains the center of Bi’ for each i = 1, 2.

Then, we have

distdn

(
Sn(R)

(
w(1)

)
, Sn(R)

(
w(2)

))
≤ R + κR +R ≤ 2(2 + κ)a∗ · an(R)

∗ .
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This together with a similar argument to Proposition 10.3(v) implies dn−n(R)(w(1), w(2)) ≤
2 · 2d(2 + κ)a∗e =: L(κ). By Lemmas 2.3(ii) and 10.12,

ModGn
p ({θ ∈ Path(B1, B2;Gn) | diam(θ, dn) ≤ L(κ)R})

≥ ModGn
p

({
θ ∈ Path

(
Sn(R)

(
w(1)

)
, Sn(R)

(
w(2)

)
;Gn

) ∣∣ diam(θ, dn) ≤ L(κ)R
})

≥ ModGn
p

({
θ ∈ Path

(
Sn(R)

(
w(1)

)
, Sn(R)

(
w(2)

)
;Gn

) ∣∣ diam(θ, dn) ≤ 2L(κ)an(R)
∗
})

≥ C−1ρ(p)−n(R) = C−1an(R)(df−dw(p))
∗ ≥ C−1(2a∗)

−df+dw(p) ·Rdf−dw(p), (10.9)

where C > 0 is the same constant as in (10.7) (with L = L(κ)).

Let us consider the case 1 ≤ R < 3 to complete the proof. By (2.2) in Lemma 2.4,

ModGn
p ({θ ∈ Path(B1, B2;Gn) | diam(θ, dn) ≤ L(κ)R}) ≥

(
L(κ)R

)1−p

≥ 3−pL(κ)1−pRdf−dw(p),

where we used df − dw(p) < 1 (Proposition 10.7(i)) and R < 3 in the last inequality. �

Once we know U-BCLp(df−dw(p)) for PSC (and observe some fundamental geometric
conditions), we can apply Theorem 6.22 so that we get EΓ

p on PSC. Our desired self-similar
p-energy Ep will be obtained by applying Theorem 8.12 to EΓ

p . The important hypothesis
(8.6) in Theorem 8.12 will be verified with the help of an unfolding argument, which
is heavily inspired by [Hin13, subsection 5.1]. In order to get a self-similar p-energy by
applying Corollary 8.14, the remaining condition we have to check is the pre-self-similarity
condition (PSS) in Theorem 8.12, i.e., there exists C ≥ 1 such that

C−1|f|pFp ≤ ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp ≤ C|f|pFp for any f ∈ Fp and n ∈ N. (10.10)

In the rest of this subsection, we will prove the following stronger condition (PSS’) in-
cluding the self-similarity of the domain:

(PSS’) (10.10) holds and Fp ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ Fp ∩ C(K) for any i ∈ S}.

Proposition 10.13. PSC satisfies (PSS’) for any p ∈ (1,∞).

The proof of the above proposition is long, so we will divide into several steps. First,
we prove the following easy bound:

ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp . |f|
p
Fp for any f ∈ Lp(K,m). (10.11)

Here we regard |·|Fp as a [0,∞]-valued functional defined on Lp(K,m), which satisfies

|f|Fp <∞ if and only if f ∈ Fp.
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Proof of (10.11). Since m is the self-similar measure with equal weight, we have Mn(f ◦
Fw)(v) = Mn+mf(wv) for n,m ∈ N and w ∈ Vm, v ∈ Vn. Therefore,

ρ(p)n
∑
w∈Wn

ẼGmp (f ◦ Fw) =
∑
w∈Wn

ẼGn+m

p,Sm(w)(f) ≤ ẼGn+m
p (f),

which together with the weak monotonicity (Theorem 6.13) implies (10.11). �

The reverse inequality is much harder and requires the notion of unfolding of functions.
We will use a modified version of the argument using unfolding operators in [Hin13,
subsection 5.1] to show the self-similarity of the domain and the converse estimate:

|f|pFp . ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp for any f ∈ FSp , (10.12)

where we set FSp := {f ∈ C(K) | f ◦ Fi ∈ Fp ∩ C(K) for any i ∈ S}.
Definition 10.14 (Folding maps and unfolding operators). (1) For n ∈ N, let ϕ̂n : R→

[0,∞) be the periodic function with period 4a−n∗ such that

ϕ̂n(t) =

{
t+ 1 for t ∈ [−1,−1 + 2a−n∗ ],

−t− 1 + 4a−n∗ for t ∈ [−1 + 2a−n∗ ,−1 + 4a−n∗ ].

Define ϕ(n) : [−1, 1]2 → [0, 2a−n∗ ]2 by

ϕ[n](x, y) :=
(
ϕ̂n(x), ϕ̂n(y)

)
for (x, y) ∈ [−1, 1]2.

For w ∈ Vn, define ϕw : K → Kw by

ϕw(x) :=
(
ϕ[n]
∣∣
Kw

)−1 (
ϕ[n](x)

)
for x ∈ K.

(2) For {v, w} ∈ E#
n , let Hv,w be the line containing `v,w. Then Hv,w splits R2 into the

two closed half spaces, which are denoted by Gv,w and Gw,v and satisfy Kv ⊆ Gv,w

and Kw ⊆ Gw,v. We remark that the order of v and w is important in the notations
Gv,w, Gw,v.

(3) For f ∈ Lp(K,m) and w ∈ Wn, define Ξw(f) := f ◦ ϕw. The map Ξw is called an
unfolding operator. For {v, w} ∈ E#

n , define Ξv,w(f) := Ξv(f)1Gv,w .

Remark 10.15. For w ∈ W∗, define

N(w) :=
{
v ∈ W∗

∣∣ |v| = |w| and {v, w} ∈ E#
|w|
}
∪ {w}.

Then ϕw
∣∣
KN(w)

satisfies

ϕw
∣∣
KN(w)

(x) =

{
x if x ∈ Kw,

Rv,w(x) if x ∈ Kv for some v ∈ N(w) \ {w}.

For other basic properties of ϕw, we refer to [BBKT, Lemma 2.13].
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To provide a quantitative (localized) energy estimate for Ξz(f) by following [Hin13], we
make the help of Korevaar–Schoen type bounds given in Section 7. (Note that we cannot
use results in Section 9.4 because we have no energy measures at this stage.) Recall that,
by Theorem 7.1, there exists a constant C ≥ 1 such that, for any f ∈ Lp(K,m),

C−1|f|pFp ≤ lim
r↓0

r−(df+dw(p))

¨
{(x,y)∈K×K|d(x,y)<r}

|f(x)− f(y)|pm(dx)m(dy) ≤ C|f|pFp .
(10.13)

Let us introduce some notations for simplicity. For f ∈ Lp(K,m) and δ > 0, define

Ep,δ(f) := δ−(df+dw(p))

¨
{(x,y)∈K×K|d(x,y)<δ}

|f(x)− f(y)|pm(dx)m(dy)

= δ−(df+dw(p))

ˆ
{(x,y)∈K×K|d(x,y)<δ}

|f(x)− f(y)|pm⊗m(dxdy).

For A1, A2 ∈ B(K), we also define

Ep,δ(f ;A1, A2) := δ−(df+dw(p))

¨
{(x,y)∈A1×A2|d(x,y)<δ}

|f(x)− f(y)|pm(dx)m(dy).

For simplicity, we write Ep,δ(f ;A) for Ep,δ(f ;A,A). Since m is the self-similar measure
with weight (a−df

∗ , . . . , a−df
∗ ), we have

Ep,δ(f ;Kw) = ρ(p)nEp,an∗ δ(f ◦ Fw) for any w ∈ Vn.

(Note that ρ(p)na
−n(df+dw(p))
∗ = a−2ndf

∗ .) Additionally, we have 1Kv∪Kw(Rv,w)∗m(dx) =
1Kv∪Kwm(dx) for any {v, w} ∈ E#

n .

The following estimate on localized energies of Ξz(f) is a key ingredient.

Lemma 10.16. Let n ∈ N, z ∈ Wn, δ > 0 and f ∈ Lp(K,m). Then, for any {v, w} ∈ En,

Ep,δ
(
Ξz(f);Kv, Kw

)
≤ Ep,δ

(
Ξz(f);Kv

)
≤ ρ(p)nEp,an∗ δ(F

∗
z f).

In particular, there exists a constant C > 0 such that

|Ξz(f)|pFp ≤ C(#Wn)ρ(p)n|F ∗z f|pFp for any f ∈ Lp(K,m), n ∈ N and z ∈ Wn.

Proof. This lemma corresponds to [Hin13, Corollary 5.4]. For v, z ∈ Wn, we see that

Ep,δ
(
Ξz(f);Kv

)
= δ−(df+dw(p))

¨
{(x,y)∈Kv×Kv |d(x,y)<δ}

∣∣(F ∗z f ◦ F−1
z ◦ ϕz

)
(x)−

(
F ∗z f ◦ F−1

z ◦ ϕz
)
(y)
∣∣pm(dx)m(dy)

= δ−(df+dw(p))

¨
{(x,y)∈Kz×Kz |d(x,y)<δ}

∣∣F ∗z f(F−1
z (x)

)
− F ∗z f

(
F−1
z (y)

)∣∣pm(dx)m(dy)

= Ep,δ(f ;Kz) = ρ(p)nEp,an∗ δ(F
∗
z f),
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where we used [BBKT, (2.22)] (with ν = µ
∣∣
Kv

) in the second equality. Furthermore,

Ep,δ
(
Ξz(f);Kv, Kw

)
= δ−(df+dw(p))

¨
{(x,y)∈Kv×Kw|d(x,y)<δ}

∣∣(f ◦ ϕz)(x)−
(
f ◦ ϕz ◦ ϕv

)
(y)
∣∣pm(dx)m(dy)

= δ−(df+dw(p))

¨
{(x,y)∈Kv×Kw|d(x,y)<δ}

∣∣Ξz(f)(x)− Ξz(f)
(
ϕv(y)

)∣∣pm(dx)m(dy)

≤ δ−(df+dw(p))

¨
{(x,y)∈Kv×Kv |d(x,y)<δ}

|Ξz(f)(x)− Ξz(f)(y)|pm(dx)m(dy) = Ep,δ
(
Ξz(f);Kv

)
,

where we used (ϕz ◦ ϕv)(y) = ϕz(y) for y ∈ Kw in the first identity, d(x, ϕv(y)) ≤ d(x, y)
for (x, y) ∈ Kv ×Kw in the fourth line.

Next we give an estimate for |Ξz(f)|Fp . Let n ∈ N and z ∈ Wn. For small enough
δ > 0, we observe that

Ep,δ(Ξz(f)) =
∑
v∈Wn

Ep,δ(Ξz(f);Kv) +
∑

{v,w}∈En

Ep,δ(Ξz(f);Kv, Kw).

Therefore, we have Ep,δ(Ξz(f)) ≤ (1 + L∗)ρ(p)n
∑

v∈Wn
Ep,an∗ δ(F

∗
z f), which implies

lim
δ↓0

Ep,δ(Ξz(f)) . ρ(p)n lim
δ↓0

Ep,δ(F
∗
z f)(#Wn).

Combining with (10.13), we get our assertion. �

We also need the following approximation.

Lemma 10.17. Let F be a non-empty subset of K. Suppose that f ∈ Fp ∩C(K) satisfies
f(x) = 0 for any x ∈ F . Then there exist fn ∈ Fp ∩ C(K) (n ∈ N) such that supp[fn] ⊆
K \ F for all n ∈ N and fn converges in Fp to f as n→∞.

Proof. We first consider the case that f is non-negative, i.e., let us suppose that f ∈
Fp ∩ C(K) satisfies f

∣∣
F

= 0 and f ≥ 0. Since f is uniformly continuous, for any n ∈ N
there exists rn > 0 such that

f(x) <
1

n
for all x ∈ Fn :=

⋃
x∈F

Bd(x, rn).

Define fn ∈ Fp ∩ C(K) by
fn =

(
f − n−1

)
∨ 0.

Then we immediately have fn(x) = 0 for x ∈ Fn and supp[fn] ⊆ K \ F . Furthermore, by
Theorem 6.22(ii) (or (10.13)), we have

|fn|Fp ≤ C|f|Fp for all n ≥ 1,
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where C is independent of f and n. It is also clear that supx∈K |f(x)− fn(x)| → 0 as
n → ∞ and hence ‖f − fn‖Lp → 0. Since {fn}n≥1 is a bounded sequence in Fp, there
exists a subsequence {fnk}k≥1 such that fnk converges weakly in Fp to f as k → ∞.
Applying Mazur’s lemma, we get gn ∈ Fp ∩C(K) (n ≥ 1) such that supp[gn] ⊆ K \F and
‖f − gn‖Fp → 0, which proves our assertion.

For general f ∈ Fp∩C(K) satisfying f
∣∣
F

= 0, we obtain the assertion by applying the
above result for f±. �

Next we prove a Fatou type lemma for localized Korevaar–Schoen energies.

Lemma 10.18. Let f, fk ∈ Fp (k ∈ N) such that fk converges in Lp(K,m) to f as k →∞.
Suppose supk∈N |fk|Fp <∞. Then, for any n ∈ N and {v, w} ∈ En,

lim sup
δ↓0

Ep,δ(f ;Kv, Kw) ≤ lim inf
n→∞

lim sup
δ↓0

Ep,δ(fn;Kv, Kw).

Proof. First, we prove the following claim: for any g, gk ∈ Fp (k ∈ N) such that
limk→∞ |g − gk|Fp = 0, we have

lim
k→∞

lim
δ↓0

Ep,δ(gk;Kv, Kw) = lim
δ↓0

Ep,δ(g;Kv, Kw). (10.14)

This is immediate since∣∣∣∣limδ↓0 Ep,δ(g;Kv, Kw)1/p − lim
δ↓0

Ep,δ(gk;Kv, Kw)1/p

∣∣∣∣ ≤ lim
δ↓0

Ep,δ(g − gn;Kv, Kw)1/p

≤ lim
δ↓0

Ep,δ(g − gk)1/p . |g − gk|Fp .

The rest of the proof is a standard argument using Mazur’s lemma (Lemma A.2).
Let fk ∈ Fp (k ∈ N) be a sequence converging in Lp to some f ∈ Fp. By extracting a
subsequence {fk′}k′ if necessary, we can assume that

lim
k′→∞

lim
δ↓0

Ep,δ(fk′ ;Kv, Kw) = lim
k→∞

lim
δ↓0

Ep,δ(fk;Kv, Kw).

Since Fp is reflexive, there exists a subsequence, which is also denoted by {fk′}k′ , such
that fnk converges weakly in Fp to f . By Mazur’s lemma, there exist finite subset Ij ⊆
[j,∞) ∩ N (j ∈ N) and{

λ
(j)
k′

∣∣∣∣ λ(j)
k′ ≥ 0 for k′ ∈ Ij and

∑
k′∈Ij

λ
(j)
k′ = 1

}
j∈N

such that gj :=
∑

k′∈Ij λ
(j)
k′ fk′ ∈ Fp (j ∈ N) satisfies ‖f − gj‖Fp → 0 as j → ∞. By the

triangle inequality of Lp-norm, we see that

lim
δ↓0

Ep,δ(gj;Kv, Kw)1/p ≤
∑
k′∈Ij

λ
(j)
k′ lim

δ↓0
Ep,δ(fk′ ;Kv, Kw)1/p.
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Letting j →∞ and using (10.14), we obtain

lim
δ↓0

Ep,δ(f ;Kv, Kw)1/p ≤ lim
k′→∞

lim
δ↓0

Ep,δ(fk′ ;Kv, Kw)1/p,

proving our assertion. �

Now we can estimate the unfolding map Ξv,w(f) for {v, w} ∈ E#
n .

Lemma 10.19. Let n ∈ N, {v, w} ∈ E#
n and f ∈ FSp . If f

∣∣
`v,w

= 0, then for any z ∈ Wn

with Kz ⊆ Gw,v we have
lim
δ↓0

Ep,δ
(
Ξv,w(f);Kv, Kz

)
= 0.

Proof. This lemma corresponds to a weaker version of [Hin13, Lemma 5.6]. Let n ∈ N
and {v, w} ∈ E#

n . Let f ∈ FSp satisfy f
∣∣
`v,w

= 0. Note that Ξv(f) ∈ Fp∩C(K) by Lemma

10.16. Applying Lemma 10.17 for Ξv(f), we get a sequence fk ∈ Fp ∩ C(K) (k ∈ N)
such that supp[fk] ⊆ K \ `v,w and fk converges in Fp to Ξv(f). Set gk := Ξv(fk) and
hk := Ξv,w(fk) for k ≥ 1. For δ < distd(Hv,w, supp[gk]), we see that

Ep,δ(hk) = Ep,δ(gk;K ∩Gv,w) ≤ Ep,δ(gk).

Combining with Lemma 10.16 and (10.13), we obtain

|hk|pFp . lim
δ↓0

Ep,δ(hk) ≤ lim
δ↓0

Ep,δ(gk) ≤ C(#Vn)ρ(p)n|F ∗v fk|pFp .

By (10.11), there exists a constant C ′ > 0 without depending on n, k such that

|hk|pFp ≤ C ′(#Wn)|fk|pFp .

In particular, for each fixed n ∈ N, {hk}k≥1 is bounded in Fp. Note that hk converges
in Lp(K,m) to Ξv,w(f) as k → ∞. Hence, by Lemma 10.18, for any z ∈ Vn such that
Kz ⊆ Gw,v,

lim
δ↓0

Ep,δ(Ξv,w(f);Kv, Kz) ≤ lim
k→∞

lim
δ↓0

Ep,δ(hk;Kv, Kz).

If δ < distd(Hv,w, supp[gk]), then we have Ep,δ(hk;Kv, Kz) = 0. Therefore, we obtain
limδ↓0Ep,δ(Ξv,w(f);Kv, Kz) = 0. This completes the proof. �

Finally, we can prove the bound (10.12) and complete the proof of Proposition 10.13.

Proof of Proposition 10.13. The estimate (10.11) is already proved. In particular, Fp =
{f ∈ Fp | f ◦ Fi ∈ Fp ∀i ∈ S}. To prove (10.12), let f ∈ FSp . Let us fix n ∈ N. Then, for
small enough δ > 0, we observe that

Ep,δ(f) =
∑
w∈Wn

Ep,δ(f ;Kw) +
∑

{v,w}∈En

Ep,δ(f ;Kv, Kw). (10.15)
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We obtain upper bounds for Ep,δ(f ;Kv, Kw) by dividing into the following two cases.

Case 1: {v, w} ∈ E#
n ; Define hi ∈ C(K) (i = 0, 1) by

h0 := Ξv(f) and h1 := Ξw,v(f − h0).

It is easy to see that f
∣∣
Kv∪Kw

= (h0 + h1)
∣∣
Kv∪Kw

and that (f − h0)
∣∣
`v,w

= 0. Since

h0 ∈ Fp ∩ C(K) by Lemma 10.16 and f ∈ FSp , it is also immediate that f − h0 ∈ FSp .
Hence, by Lemmas 10.16 and 10.19,

lim
δ↓0

Ep,δ(f ;Kv, Kw) ≤ 2p−1 lim
δ↓0

(
Ep,δ(h0;Kv, Kw) + Ep,δ(h1;Kv, Kw)

)
≤ 2p−1ρ(p)n lim

δ↓0
Ep,δ(F

∗
v f).

Case 2: {v, w} ∈ En \ E#
n ; Clearly, there exists z(i) ∈ Vn (i = 1, 2, 3) such that {z(1), z(3)} =

{v, w}, {z(i), z(i+ 1)} ∈ E#
n for i = 1, 2 and Kz(i) 6⊆ Gz(j),z(2) for {i, j} = {1, 3}. Now we

define hi ∈ C(K) (i = 0, 1, 2) by

h0 := Ξz(2)(f), h1 := Ξz(1),z(2)(f − h0) and h2 := Ξz(3),z(2)(f − h0).

Then we have f
∣∣
∪3
i=1Kz(i)

= (h0 + h1 + h2)
∣∣
∪3
i=1Kz(i)

and (f − h0)
∣∣
`z(1),z(2)∪`z(2),z(3)

= 0.

Hence, by Lemmas 10.16 and 10.19,

lim
δ↓0

Ep,δ(f ;Kv, Kw) ≤ 3p−1 lim
δ↓0

2∑
j=0

Ep,δ(hj;Kv, Kw)

≤ 3p−1ρ(p)n lim
δ↓0

Ep,δ
(
F ∗z(2)f

)
.

From (10.15) and above observations, we obtain

lim
δ↓0

Ep,δ(f) ≤ (1 + L2
∗)ρ(p)n

∑
v∈Wn

lim
δ↓0

Ep,δ(F
∗
v f),

which together with (10.13) proves (10.12). Note that (10.12) implies FSp = Fp ∩ C(K).
We complete the proof. �

Proof of Theorem 10.2. (a) and (c) are proved in Proposition 10.3 and 10.13 respectively.
(b) follows from Propositions 10.7, 6.8 and 6.12. �

We are now ready to prove the first four main results stated in the introduction
(Theorems 1.1, 1.2, 1.4 and 1.5).

Proof of Theorem 1.1. Theorem 10.2 implies Assumptions 6.15 and 8.13. Therefore by
Theorem 6.17 we obtain the conclusions (i) and (ii). The existence of self-similar energy
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with the desired properties follows from Corollary 8.14 except for properties (iv), (v), (vi),
(vii) and (ix).

The properties (iv), (v) and (ix) are shown by choosing suitable closed invariant sub-
cones. Indeed, we can show that

UCla
p :=

E
∣∣∣∣∣∣∣

E : Fp → [0,∞), E1/p is a semi-norm and for any f, g ∈ Fp,
E(f + g)1/(p−1) + E(f − g)1/(p−1) ≤ 2

(
E(f) + E(g)

)1/(p−1)
if p ∈ (1, 2],

E(f + g) + E(f − g) ≤ 2
(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1
if p ∈ (2,∞)

 ,

ULip
p :=

{
E
∣∣∣∣ E : Fp → [0,∞), E1/p is a semi-norm and
E(ϕ ◦ f) ≤ E(f) for any f ∈ Fp and 1-Lipschitz function ϕ ∈ C(K)

}
,

and

U sym
p :=

{
E
∣∣∣∣ E : Fp → [0,∞), E1/p is a semi-norm and
E(f ◦ Φ) = E(f) for any f ∈ Fp and Φ ∈ D4

}
are closed invariant sub-cones. Here we only prove Sρ

(
U sym
p

)
⊆ U sym

p . Let Φ ∈ D4 and
f ∈ Fp. Note that f ◦Φ ∈ Fp since EGnp (f ◦Φ) = EGnp (f). For any E ∈ U sym

p , by virtue of
Proposition 10.3(vi),

SρE(f ◦ Φ) = ρ(p)
∑
i∈S

E(f ◦ Φ ◦ Fi) = ρ(p)
∑
i∈S

E
(
f ◦ FτΦ(w) ◦ UΦ,w

)
= ρ(p)

∑
i∈S

E
(
f ◦ FτΦ(w)

)
= ρ(p)

∑
j∈S

E(f ◦ Fj) = SρE(f),

which shows SρE ∈ U sym
p .

Since EΓ
p ∈ UCla

p ∩ ULip
p ∩ U sym

p by Theorem 6.22, we have Ep ∈ UCla
p ∩ ULip

p ∩ U sym
p

(Theorem 8.12(iii)).

(vi) (spectral gap) This follows from applying Lemma 6.24 with r = 2 diam(K, d).

(vii) (strong locality) This is a consequence of the self-similarity (viii). Set A1 :=
suppm[f ] and A2 := suppm[g − a1K ]. Since distd(A1, A2) > 0, we can choose N ∈ N so
that supn≥N,w∈Wn

diam(Kw, d) < distd(A1, A2). Then, for any n ≥ N ,

Ep(f + g) = Ep(f + g − a1K) = ρ(p)n
∑
w∈Wn

E
(
f ◦ Fw + (g − a1K) ◦ Fw

)
= ρ(p)n

∑
i∈{1,2}

∑
w∈Wn;Kw∩Ai 6=∅

E
(
f ◦ Fw + (g − a1K) ◦ Fw

)
= ρ(p)n

∑
w∈Wn;Kw∩A1 6=∅

Ep(f ◦ Fw) + ρ(p)n
∑

w∈Wn;Kw∩A2 6=∅

Ep
(
(g − a1K) ◦ Fw

)
= ρ(p)n

∑
w∈Wn

Ep(f ◦ Fw) + ρ(p)n
∑
w∈Wn

Ep
(
(g − a1K) ◦ Fw

)
= Ep(f) + Ep(g),

which is our assertion. �
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Proof of Theorem 1.2. The existence of energy measures follows from the construction
described after Assumption 9.1, which in turn follows from Theorem 1.1. Properties (ii),
(iii), (iv) follow from Propositions 9.3, 9.5 and 9.4 respectively. The assertions in (vi)
follow from Theorem 9.7 and Corollary 9.9. It remains to prove (i) and (v).

(i) The property Γp〈f〉(K) = Ep(f) is immediate from the definition of Γp〈f〉. In order
to prove the second assertion, note that for any w ∈ Sn, n ∈ N, f ∈ Fp, by (v)

Γp〈f〉(Fw(K)) = ρ(p)n
∑

u∈Wn:Fu(K)∩Fw(K)6=∅

Γp〈f ◦ Fu〉(Fu(K) ∩ Fw(K)). (10.16)

If u 6= w and u, v ∈ Wn, then Fu(K) ∩ Fw(K) ⊂ V0 which has energy measure zero by
Remark 9.20. Therefore Γp〈f〉(Fw(K)) = ρ(p)nΓp〈f ◦ Fw〉(Fw(K)) = ρ(p)nEp(f ◦ Fw) for
any w ∈ Wn, n ∈ N, f ∈ Fp.

(v) Let A ∈ B(K) be a closed set, and let f ∈ Fp, Φ ∈ D4. For each n ∈ N, define

Cn :=
{
w ∈ Wn

∣∣∣ Σw ∩ χ−1(A) 6= ∅
}

and Cn,Φ :=
{
w ∈ Wn

∣∣∣ Σw ∩ χ−1(Φ(A)) 6= ∅
}
.

Also, define

ΣCn :=
{
ω ∈ Σ

∣∣ [ω]n ∈ Cn
}

and ΣCn,Φ :=
{
ω ∈ Σ

∣∣ [ω]n ∈ Cn,Φ
}
.

Then τΦ|Cn gives a bijection between Cn and Cn,Φ.

By Proposition 10.3(vi) and Ep(f ◦ Φ) = Ep(f), we have

mp〈f ◦ Φ〉
(
ΣCn

)
= ρ(p)n

∑
w∈Cn

Ep
(
f ◦ Φ ◦ Fw

)
= ρ(p)n

∑
w∈Cn

Ep
(
f ◦ FτΦ(w) ◦ UΦ,w

)
= ρ(p)n

∑
w∈Cn

Ep
(
f ◦ FτΦ(w)

)
= ρ(p)n

∑
v∈Cn,Φ

Ep(f ◦ Fv) = mp〈f〉
(
ΣCn,Φ

)
.

Letting n → ∞, we obtain Γp〈f ◦ Φ〉(A) = Φ∗Γp〈f〉(A) since
⋂
n∈N ΣCn = χ−1(A) and⋂

n∈N ΣCn,Φ = χ−1(Φ−1(A)) as seen in the proof of Proposition 9.3. Hence we obtain
Φ∗Γp〈f〉(A) = Γp〈f ◦ Φ〉(A) for any closed set A of K.

Recall that both measures Γp〈f ◦Φ〉 and Φ∗Γp〈f〉 are Borel-regular. In particular, for
any A ∈ B(K), there exists a sequence {An}n∈N of closed subsets of K such that An ⊆ A
and Γp〈f ◦ Φ〉(An)→ Γp〈f ◦ Φ〉(A) as n→∞. For any n ∈ N,

Γp〈f ◦ Φ〉(An) = Φ∗Γp〈f〉(An) ≤ Φ∗Γp〈f〉(A).

Hence we have Γp〈f ◦ Φ〉(A) ≤ Φ∗Γp〈f〉(A). The converse inequality can be shown in a
similar way. �

Proof of Theorem 1.4. As mentioned earlier, Assumption 6.15 follows from Theorem 10.2.
The desired conclusion then follows from any application of Theorem 7.1. �
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Proof of Theorem 1.5. The Poincaré inequality and capacity upper bounds follow from
Theorem 9.17 and Proposition 6.21 respectively after verifying the assumptions using
Theorem 10.2. �

Remark 10.20. (1) It seems that there is no obstacle to extend Theorems 1.1, 1.2, 1.4
and 1.5 to the class called planar generalized Sierpiński carpet (PGSCs for short),
which is the planar case of Barlow–Bass’s generalized Sierpiński carpets [BB99]3.
Indeed, the original unfolding argument in [Hin13] wad done for all generalized
Sierpiński carpets. In addition, the proof of super-multiplicative inequality in [BK13,
Lemma 4.4] seems to work for PGSCs. The planarity is crucial to ensure the estimate
df−dw(p) < 1 for any p ∈ (1,∞) and to follow the argument in [BK13, Lemma 4.4].
If one can prove super-multiplicative inequalities for higher-dimensional examples,
then Theorems 1.1, 1.2, 1.4 and 1.5 seem to be extended to these examples as long
as df − dw(p) < 1 holds.

(2) In [KS+], under suitable assumptions, the existence of p-energies satisfying general-
ized contraction properties, which generalize Lipschitz contractivity and Clarkson’s
inequality, is shown. One of the main results in [KS+] says that a p-energy Ep
satisfying generalized contraction properties is differentiable in the following sense:
for any f, g ∈ Fp, the function R 3 t 7→ Ep(f + tg) ∈ [0,∞) is differentiable. The
derivative d

dt
Ep(f + tg)

∣∣
t=0

can play the role of p
´
Rn |∇f(x)|p−2〈∇f(x),∇g(x)〉 dx in

the Euclidean setting, so such the differentiability allows us to introduce the no-
tion of p-harmonic functions (in a weak sense). We will not deal with generalized
contraction properties in this paper because these properties are not needed for our
purpose.

10.2 Quasi-uniqueness of energies

In this subsection, we present an axiomatic approach to our Sobolev space. We con-
sider self-similar p-energies and the corresponding Sobolev space satisfying some natural
conditions. Under these conditions, we prove that the domain of self-similar p-energies
is uniquely determined and the corresponding semi-norm is uniquely determined up to a
bi-Lipschitz modification. We first introduce a list of desired properties for the self-similar
p-energies (and the associated energy measures) on PSC.

Assumption 10.21 (Canonical self-similar p-energy). Let (K, d,m) be the Sierpiński
carpet as given in Definition 10.1. Let Fp be a subspace of Lp(K,m) and let Ep : Fp →
[0,∞) be a functional (called self-similar p-energy) that satisfy the following conditions.

(a) {f ∈ Fp : Ep(f) = 0} = {f ∈ Lp(K,m) : f is constant m-almost everywhere}. For
any a ∈ R and f ∈ Fp, we have

Ep(f + a1K) = Ep(f), Ep(af) = |a|pEp(f).
3Precisely, the nondiagonality condition [BB99, Hypotheses 2.1(H3)] has been strengthened later in

[BBKT]. For a detail explanation on this change, we refer the reader to [Kaj10].
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(b) The functional f 7→ Ep(f)1/p satisfies the triangle inequality on Fp. In addition,

the function ‖ · ‖Fp
: Fp → [0,∞) defined by ‖ · ‖Fp

(f) :=
(
‖f‖pLp(m) + Ep(f)

)1/p

is

a norm on Fp and (Fp, ‖ · ‖Fp
) is a uniformly convex Banach space.

(c) (Regularity) The subspace Fp ∩C(K) is dense in C(K) with respect to the uniform
norm and is dense in the Banach space (Fp, ‖ · ‖Fp

).

(d) (Symmetry) For every Φ ∈ D4 and for all f ∈ Fp, we have f ◦ Φ ∈ Fp and
Ep(f ◦ Φ) = Ep(f).

(e) (Self-similarity) There exists ρ̃ ∈ (0,∞) such that the following hold: For every
f ∈ Fp, i ∈ S, we have f ◦ Fi ∈ Fp, and

ρ̃
∑
i∈S

Ep(f ◦ Fi) = Ep(f).

Furthermore, Fp ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ Fp for all i ∈ S}.
(f) (Unit contractivity) f+ ∧ 1 ∈ Fp for all f ∈ Fp and Ep(f+ ∧ 1) ≤ Ep(f).

(g) (Spectral gap) There exists a constant Cgap ∈ (0,∞) such that

‖f − fK‖pLp(m) ≤ CgapEp(f) for all f ∈ Fp.

Remark 10.22. (1) We do not claim that this assumption is the “optimal” axiom
for self-similar p-energies. It would be desirable weaken Assumption 10.21 for the
purposes of the axiomatic characterization in Proposition 10.25. For instance, we
conjecture that Assumption 10.21(g) in Proposition 1.6 is not necessary.

(2) If (Ep,Fp) satisfies the above assumptions, especially the self-similarity condition
Assumption 10.21(e), then the arguments in the first part of Section 9 yields the
associated self-similar measures. We use ΓEp〈 · 〉 to denote these measures.

For convenience, we set

Ep(K, d,m) := Ep :=
{

(Ep,Fp)
∣∣ (Ep,Fp) satisfies Assumption 10.21

}
By Theorem 1.1, we know that Ep 6= ∅ for any p ∈ (1,∞). Recall that ρ(p) > 0 denotes
the p-scaling factor of PSC (see (10.3)) and dw(p) is as defined in (10.5).

We shall say that a constant C > 0 depends only on p and the geometric data of PSC
if C is a constant determined by a∗, N∗, L∗, p, ρ(p).

Let us introduce the notion of p-capacity associated with (Ep,Fp) ∈ Ep. For two
disjoint subsets A,B ⊂ K such that distd(A,B) > 0, we define

CapEp(A,B) = inf {Ep(f) | f ∈ Fp ∩ C(K) such that f ≥ 1 on A, f ≤ 0 on B} .
Note that by Assumption 10.21(c), the set {f ∈ Fp ∩ C(K) | f ≥ 1 on A, f ≤ 0 on B} is
non-empty. It is immediate from Assumption 10.21(a) that CapEp(A,B) = CapEp(B,A).

Now we can show non-triviality of p-capacities. Recall that `L (resp. `R) denotes the
left-line (resp. right-line) segment of K.
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Lemma 10.23. Let p ∈ (1,∞) and (Ep,Fp) ∈ Ep. We have

0 < CapEp(`L, `R) <∞, (10.17)

0 < inf

{
Ep(f)

∣∣∣∣∣ f ∈ Fp ∩ C(K), f
∣∣
`L
≡ 0,

ˆ
K

f dm = 1

}
<∞. (10.18)

Proof. By Assumption 10.21(h), for every f ∈ Fp, we have f+∧1 ∈ Fp and Ep(f+∧1) ≤
Ep(f). As a consequence,

CapEp(`L, `R) = inf
{

Ep(f)
∣∣∣ f ∈ Fp ∩ C(K), f

∣∣
`L
≡ 0, f

∣∣
`R
≡ 1, 0 ≤ f ≤ 1

}
.

Note that the set
{
f ∈ Fp ∩ C(K)

∣∣ f ∣∣
`L
≡ 0, f

∣∣
`R
≡ 1, 0 ≤ f ≤ 1

}
=: Fp,c(L,R) is non-

empty, which can be verified by Assumption 10.21(c,f). In particular, CapEp(`L, `R) <∞.

We let F p(L,R) be the closure of Fp,c(L,R) with respect to the norm ‖ · ‖Fp
.

To show CapEp(`L, `R) > 0, let un ∈ Fp,c(L,R) for each n ∈ N such that Ep(un) ≤
CapEp(`L, `R) + n−1 and define gn ∈ C(K) by

gn :=
∑

i∈{3,4,5}

(Fi)∗1K +
∑
i∈{2,6}

(Fi)∗un.

Then gn ∈ Fp ∩ C(K) by Assumption 10.21(e) and thus gn ∈ Fp,c(L,R). By Assumption
10.21(a,e),

Ep(gn) = 2ρ̃Ep(un) ≤ 2ρ̃
(
CapEp(`L, `R) + n−1

)
,

which together with 0 ≤ gn ≤ 1 implies that {gn}n∈N is bounded in Fp. Hence Assumption
10.21(g) yields a subsequence {nk}k∈N and g∞ ∈ F p(L,R) such that gnk converges weakly
to g∞ in Fp By Mazur’s lemma, there exists a sequence g̃j ∈ conv{gnk}k≥j (j ∈ N) such
that g̃j converges to g∞ in Fp. Therefore, we have

Ep(g∞) = lim
j→∞

Ep(g̃j) ≤ lim sup
j→∞

2ρ̃
(
CapEp(`L, `R) + j−1

)
= 2ρ̃CapEp(`L, `R).

If CapEp(`L, `R) = 0, then g∞ should be a constant function by virtue of Assumption
10.21(a). This is a contradiction since g∞(x) = 1 m-a,e, on

⋃
i∈{3,4,5}Ki and g∞(x) = 0

m-a,e, on
⋃
i∈{1,7,8}Ki. Consequently, we get CapEp(`L, `R) > 0.

Lastly, we prove the lower bound in (10.18). Assumption 10.21(c,f) ensures that

Fp,ave(L) :=

{
f ∈ Fp ∩ C(K)

∣∣∣∣ f ∣∣`L ≡ 0,

ˆ
K

f dm = 1

}
6= ∅,

and hence inff∈Fp,ave(L) Ep(f) < ∞. Let F p,ave(L) denote the closure of Fp,ave(L) with

respect to the norm ‖ · ‖Fp
. Then

´
K
v dm = 1 for all v ∈ F p,ave(L). Let vn ∈ Fp,ave(L)

for each n ∈ N such that Ep(vn) ≤ inff∈Fp,ave(L) Ep(f) + n−1 and define hn ∈ C(K) by

hn :=
∑

i∈{3,4,5}

(Fi)∗vn.

114



By Assumption 10.21(a,e), we have hn ∈ Fp ∩ C(K) and

Ep(hn) = 3ρ̃Ep(vn) ≤ 3ρ̃

(
inf

f∈Fp,ave(L)
Ep(f) + n−1

)
.

Besides,
´
K
hn dm = 3/8. By Assumption 10.21(g), we also have

‖hn‖pLp(m) . ‖hn − (hn)K‖pLp(m) +m(K) ≤ Cgap(Ep,Fp)Ep(hn) +m(K).

From these estimates, {hn}n∈N is a bounded sequence in Fp and hence, by Assumption
10.21(b), we get a subsequence {hnk}k∈N and h∞ ∈ Fp so that hnk converges weakly to

h∞ in Fp. Mazur’s lemma yields a sequence h̃j ∈ conv{hnk}k≥j (j ∈ N) such that h̃j
converges to h∞ in Fp, and we then have

Ep(h∞) = lim
j→∞

Ep(h̃j) ≤ lim sup
j→∞

3ρ̃

(
inf

f∈Fp,ave(L)
Ep(f) + j−1

)
= 3ρ̃ inf

f∈Fp,ave(L)
Ep(f),

and
´
K
h∞ dm = limj→∞

´
K
h̃j dm = 3/8. If inff∈Fp,ave(L) Ep(f) = 0, then h∞ should be

a constant function by Assumption 10.21(a). Since h̃j = 0 on
⋃
i∈S\{3,4,5}Ki, we have

h∞ ≡ 0, which contradicts
´
K
h∞ dm = 3/8. This proves inff∈Fp,ave(L) Ep(f) > 0. �

For a p-energy (Ep,Fp), we define the quantities considered in Lemma 10.23.

Definition 10.24. Let p ∈ (1,∞) and (Ep,Fp) ∈ Ep. We define χ(Ep), σ(Ep) ∈ (0,∞)
by setting

χ(Ep) = inf
{
Ep(f)

∣∣ f ∈ Fp ∩ C(K), f
∣∣
`L
≡ 0, f

∣∣
`R
≡ 1
}
,

and

σ(Ep) = inf

{
Ep(f)

∣∣∣∣ f ∈ Fp ∩ C(K), f
∣∣
`L
≡ 0,

ˆ
K

f dm = 1

}
.

In the case p = 2, χ(E2) in the above definition is the same as ‖E2‖ in [BBKT, (4.41)].

The following proposition characterizes the p-energy using the axioms in Assumption
10.21.

Proposition 10.25 (Quasi-uniqueness of p-energy). Let p ∈ (1,∞). There exist Cu, cl >
0 (that depend only on p and the geometric data of PSC) such that for all (Ep,Fp) ∈ Ep
and f ∈ Fp,

Ep(f) ≥ clσ(Ep) sup
r>0

ˆ
K

 
Bd(x,r)

|f(y)− f(x)|p
rdw(p)

m(dy)m(dx)

Ep(f) ≤ Cuχ(Ep) lim sup
r↓0

ˆ
K

 
Bd(x,r)

|f(y)− f(x)|p
rdw(p)

m(dy)m(dx),

In particular, any two p-energies (Ep,Fp), (Êp, F̂p) ∈ Ep are comparable; that is F̂p =

Fp = B
dw(p)/p
p,∞ (K, d,m) and there exists C > 0 such that C−1Êp(f) ≤ Ep(f) ≤ CÊp(f) for

all f ∈ Fp.
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We start with a comparison between σ(Ep) and χ(Ep).

Lemma 10.26. For any p ∈ (1,∞) and (Ep,Fp) ∈ Ep, we have σ(Ep) ≤ 2pχ(Ep).

Proof. Let f ∈ Fp ∩ C(K) be such that f
∣∣
`L
≡ 0, f

∣∣
`R
≡ 1 and Ep(f) ≤ χ(Ep) + ε. Then

by Assumption 10.21(d,g), the function g := 2−1
(
f +(1−f)◦S2

)
satisfies g ∈ Fp∩C(K),

g
∣∣
`L
≡ 0,

´
K
g dm = 2−1, and Ep(g) ≤ Ep(f). This implies σ(Ep) ≤ Ep(2g) ≤ 2pEp(f) ≤

2p(χ(Ep) + ε). Letting ε ↓ 0, we obtain the desired estimate. �

We next obtain Poincaré inequalities for (Ep,Fp) satisfying Assumption 10.21. The
following lemma is a key estimate. Recall that the self-similarity of (Ep,Fp) allows us to
get the associated energy measures ΓEp〈 · 〉.
Lemma 10.27. Let n ∈ N, v, w ∈ Wn be such that {v, w} ∈ E#

n and let f ∈ Fp. Then

|fKv − fKw|p ≤ 2p/(p−1)σ(Ep)
−1ρ̃−n

[
ΓEp〈f〉(Kv) + ΓEp〈f〉(Kw)

]
.

Proof. By Assumption 10.21(c), it suffices to assume that f ∈ Fp∩C(K). By replacing f
with f ◦Φ for some Φ ∈ D4, we may assume that F−1

v (Kv∩Kw) = `L, F
−1
w (Kv∩Kw) = `R.

Without loss of generality, we assume that fKv − fKw 6= 0. The function h := f ◦ Fv −
(f ◦ Fw) ◦ S2 ∈ Fp ∩ C(K) satisfies

´
K
h dm = fKv − fKw , h

∣∣
`L
≡ 0 and

Ep(h) ≤
(
Ep(f ◦ Fv)1/p + Ep(f ◦ Fw)1/p

)p ≤ 2p/(p−1)
(
Ep(f ◦ Fv) + Ep(f ◦ Fw)

)
. (10.19)

By the arguments in Lemma 9.15, we know that ρ̃nEp(f ◦Fz) ≤ ΓEp〈f〉(Kz) for all z ∈ Wn.
Hence (10.19) yields the desired inequality. �

The following proposition shows the uniqueness of the scaling factor ρ̃ in Assumption
10.21(e) and gives a global Poincaré inequality.

Proposition 10.28 (Poincaré inequality: global version). Let p ∈ (1,∞) and (Ep,Fp) ∈
Ep. Then

ρ̃ = ρ(p),

where ρ̃ is the constants in Assumption 10.21(e). Furthermore, there exists C1 > 0
(depending only on p and the geometric data of PSC) such that

ˆ
K

|f(x)− fK|pm(dx) ≤ C1σ(Ep)
−1Ep(f) for all f ∈ Fp. (10.20)

Proof. First we show ρ̃ ≤ ρ(p). Let f ∈ Fp ∩ C(K). Recall that Mnf(w) =
ffl
Kw

f dm =´
K
f ◦Fw dm for w ∈ Wn. By U-PIp(dw(p)) for {Gn = (Wn, En)}n∈N and diam(Gn) � an∗ ,

there exists CUPI > 0 (depending only on ρ(p) and other geometric data of PSC) such
that ∑

w∈Wn

|fn(w)− fK|pmn(w) ≤ CUPIρ(p)n
∑

{v,w}∈En

|Mnf(v)−Mnf(w)|p, (10.21)
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where mn(w) = m(Kw) = a−ndf
∗ . We note that the dominated convergence theorem and

the uniform continuity of f imply

ˆ
K

|f − fK|p dm = lim
n→∞

∑
w∈Wn

|fn(w)− fK|pmn(w). (10.22)

By Lemma 10.27, we have∑
{v,w}∈En

|Mnf(v)−Mnf(w)|p ≤
∑

{v,w}∈En

2p/(p−1)σ(Ep)
−1ρ̃−n

[
ΓEp〈f〉(Kv) + ΓEp〈f〉(Kw)

]
≤ σ(Ep)

−12p/(p−1)L∗ · ρ̃−n
∑
w∈Wn

ΓEp〈f〉(Kw)

≤ σ(Ep)
−12p/(p−1)+2L∗ · ρ̃−nEp(f), (10.23)

where we used supx∈K,n∈N #{w ∈ Wn | x ∈ Kw} ≤ 4 in the last inequality. By (10.21),
(10.22) and (10.23), we obtain

ˆ
K

|f − fK|p dm ≤ C1σ(Ep)
−1
(

lim
n→∞

(
ρ(p)ρ̃−1

)n)
Ep(f), for all f ∈ Fp ∩ C(K). (10.24)

where C1 := 2p/(p−1)+2L∗CUPI. This implies ρ ≤ ρ(p) (otherwise, by (10.24), we have
f ≡ fK m-a.e. for all f ∈ Fp ∩ C(K) which contradicts Assumption 10.21(a,c)).

Next we show ρ̃ ≥ ρ(p). Let ε > 0 and choose h ∈ Fp ∩ C(K) such that h
∣∣
`L
≡

0, h
∣∣
`R
≡ 1 and Ep(h) ≤ χ(Ep) + ε. Let Wn,e =

{
w = w1 · · ·wn ∈ Wn : wn ∈ {2, 4, 6, 8}

}
and Wn,o = Wn \Wn,e. For w ∈ Wn,e, we define N(w) = {u ∈ Wn,e : Ku ∩ Kw 6= ∅}.
Similarly for w ∈ Wn,o, we define N(w) = {u ∈ Wn,o : Ku ∩Kw 6= ∅}. Given any function

f : Wn → R, we define f̃ : Wn,o → R and f̂ ∈ C(K) as

f̃(w) =
1

#N(w)

∑
u∈N(w)

f(w),

and

F ∗wf̂ ≡



f̃(w) if w ∈ Wn,o,

f̃(w1 · · ·wn−11) +
(
f̃(w1 · · ·wn−13)− f̃(w1 · · ·wn−11)

)
h if wn = 2,

f̃(w1 · · ·wn−17) +
(
f̃(w1 · · ·wn−15)− f̃(w1 · · ·wn−17)

)
h if wn = 6,

f̃(w1 · · ·wn−13) +
(
f̃(w1 · · ·wn−15)− f̃(w1 · · ·wn−13)

)
h ◦R1 if wn = 4,

f̃(w1 · · ·wn−11) +
(
f̃(w1 · · ·wn−17)− f̃(w1 · · ·wn−11)

)
h ◦R1 if wn = 8.

(10.25)

We will show that Ep(f̂) . ρ̃nEp(h)EG#
n

p (f). Note that by Assumption 10.21(d,e), we have
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f̂ ∈ Fp ∩ C(K) and

ρ̃−nEp(f̂) =
∑

w=w1···wn∈Wn,wn=2

Ep(h)
∣∣∣f̃(w1 · · ·wn−13)− f̃(w1 · · ·wn−11)

∣∣∣p+
∑

w=w1···wn∈Wn,wn=6

Ep(h)
∣∣∣f̃(w1 · · ·wn−15)− f̃(w1 · · ·wn−17)

∣∣∣p+
∑

w=w1···wn∈Wn,wn=4

Ep(h)
∣∣∣f̃(w1 · · ·wn−15)− f̃(w1 · · ·wn−13)

∣∣∣p+
∑

w=w1···wn∈Wn,wn=8

Ep(h)
∣∣∣f̃(w1 · · ·wn−17)− f̃(w1 · · ·wn−11)

∣∣∣p.
For any u, v ∈ Wn,o and w ∈ Wn,e satisfying {u,w}, {v, w} ∈ E#

n , and for any u′ ∈ N(u)
we easily see that d#

n (w, v′) ≤ 3. For any such u, v, w, Jensen’s and Hölder’s inequalities
imply that∣∣∣f̃(u)− f̃(v)

∣∣∣p ≤ 1

#N(u)#N(v)

∑
u′∈N(u),v′∈N(v)

|f(u′)− f(v′)|p

≤
∑

u′,v′∈B
d
#
n

(w,4)

|f(u′)− f(v′)|p

≤ 6p−1
∑

{u1,u2}∈E#
n ,u1,u2∈B

d
#
n

(w,4)

|f(u1)− f(u2)|p (since d#
n (u1, u2) ≤ 6).

In particular, we get

Ep(f̂) ≤ ρ̃nEp(h)
(

6p−1 sup
k∈N,v∈Wk

#Bd#
k

(v, 4)
)
EG#

n
p (f). (10.26)

Recall that there exists Cface ≥ 1 depending only on the geometric data of PSC such that

C−1
faceρ(p)−k ≤ capGk

p

(
Wk[`L],Wk[`R]

)
≤ Cfaceρ(p)−k, for all k ∈ N.

(See Lemmas 10.9 and 2.12.) Now let us choose f ∈ RWn such that f
∣∣
Wn[`L]

≡ 0, f
∣∣
Wn[`R]

≡
1 and EG#

n
p (f) ≤ EGnp (f) ≤ Cfaceρ(p)−n. Then the function f̂ ∈ Fp∩C(K) defined in (10.25)

satisfies f̂
∣∣∣
`L
≡ 0, f̂

∣∣∣
`R
≡ 1. Hence we have from (10.26) that

0 < χ(Ep) ≤ Ep(f̂) ≤ ρ̃nρ(p)−n
(
χ(Ep) + ε

)(
6p−1Cface sup

k∈N,v∈Wk

#Bd#
k

(v, 4)
)
. (10.27)

By letting n → ∞ in (10.27) and using the fact that supk∈N,v∈Wk
#Bd#

Gk

(v, 4) < ∞, we

obtain ρ̃ ≥ ρ(p). This concludes the proof of ρ̃ = ρ(p).

The desired global Poincaré inequality for f ∈ Fp ∩ C(K) is evident from ρ̃ = ρ(p)
and (10.24). By virtue of the regularity (Assumption 10.21(c)), we can extend it to any
function in Fp. �
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The following lemma is a Poincaré inequality on finite graphs.

Lemma 10.29. Let G = (V,E) be a connected graph with #V = n and diameter D.
Then ∑

v∈V

∣∣f(u)− f
∣∣p ≤ nDp−1

∑
{v,w}∈E

|f(v)− f(w)|p,

where f = 1
n

∑
v∈V f(v).

Proof. By Jensen’s inequality,∑
v∈V

∣∣f(v)− f
∣∣p ≤ n−1

∑
v,w∈V

|f(v)− f(w)|p.

For v, w ∈ V , by using a path of length at most D, we obtain

|f(v)− f(w)|p ≤ Dp−1
∑

{u1,u2}∈E

|f(u1)− f(u2)|p.

Combining the above two estimates implies the desired inequality. �

The self-similarity of the p-energy along with the global Poincaré inequality implies
the following local version.

Proposition 10.30. Let p ∈ (1,∞). There exists C̃P ∈ (0,∞) (depending only on p and
the geometric data of PSC) such that, for all (Ep,Fp) ∈ Ep, f ∈ Fp, x ∈ K, r > 0, we
have ˆ

Bd(x,r)

∣∣f(y)− fBd(x,r)

∣∣pm(dy) ≤ C̃Pσ(Ep)
−1rdw(p)ΓEp〈f〉

(
Bd(x, 2r)

)
. (10.28)

Proof. For r > 0, let n(r) ∈ Z+ be the smallest non-negative integer n such that r ≥ a−n∗
and let W (x, r) := Wn(r)

(
Bd(x, r)

)
= {w ∈ Wn(r) : Kw∩B(x, r) 6= ∅} for simplicity. Then,

there exists N1 ∈ N (depending only on a∗, L∗) such that⋃
w∈W (x,r)

Kw ⊂ Bd(x, 2r), #W (x, r) ≤ N1, for all x ∈ K, r > 0. (10.29)

For any w ∈ Wn, by Proposition 10.28 and Lemma 9.15, we have

ˆ
Kw

|f(y)− fKw|m(dy) = a−ndf
∗

ˆ
K

|(f ◦ Fw)(y)− (f ◦ Fw)K|pm(dy)

≤ C1a
−ndf
∗ σ(Ep)

−1Ep(f ◦ Fw) ≤ C1

(
adf
∗ ρ̃
)−n

ΓEp〈f〉(Kw), (10.30)
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where C1 > 0 is the constant in (10.20). Furthermore, for each x ∈ K, r > 0, the induced
subgraph of G#

n(r) with vertex set W (x, r) is connected (and hence has diameter at most

N1). For any c ∈ R,ˆ
Bd(x,r)

|f(y)− c|pm(dy)

≤
∑

w∈W (x,r)

ˆ
Kw

|f(y)− c|pm(dy)

≤ 2p−1
∑

w∈W (x,r)

(ˆ
Kw

|f(y)− fKw|pm(dy) +m(Kw)|fKw − c|p
)

(10.30)

≤ 2p−1a−n(r)df
∗ (C1 ∨ 1)

∑
w∈W (x,r)

(
ρ̃−n(r)ΓEp〈f〉(Kw) +

∣∣Mn(r)f(w)− c
∣∣p). (10.31)

If c = 1
#W (x,r)

∑
w∈W (x,r) Mn(r)f(w), then by Lemma 10.29, (10.29), and Lemma 10.27,∑

w∈W (x,r)

∣∣Mn(r)f(w)− c
∣∣p

≤ Np
1

∑
u,v∈W (x,r):{u,v}∈E#

n(r)

∣∣Mn(r)f(u)−Mn(r)f(v)
∣∣p

≤ 2p/(p−1)Np
1σ(Ep)

−1ρ̃−n(r)
∑

u,v∈W (x,r):{u,v}∈E#
n(r)

[
ΓEp〈f〉(Ku) + ΓEp〈f〉(Kv)

]
≤ 2p/(p−1)Np

1L∗σ(Ep)
−1ρ̃−n(r)ΓEp〈f〉

(
Bd(x, 2r)

)
. (10.32)

The desired conclusion follows from Lemma A.3, (10.29), (10.31) and (10.32). �

The following lemma is a lower bound on p-energy which is a consequence of the
Poincaré inequality (10.28).

Lemma 10.31. Let p ∈ (1,∞). There exists cl > 0 (depending only on p and the
geometric data of PSC) such that

clσ(Ep) sup
r>0

ˆ
K

 
B(x,r)

|f(y)− f(x)|p
rdw(p)

m(dy)m(dx) ≤ Ep(f) (10.33)

for all (Ep,Fp) ∈ Ep and f ∈ Fp.

Proof. Let r > 0 and let N ⊂ K denote a maximal r-net of (K, d). Then

r−dw(p)

ˆ
K

 
Bd(x,r)

|f(y)− f(x)|pm(dy)m(dx)

≤ CARr
−dw(p)−df

∑
n∈N

ˆ
Bd(n,2r)

ˆ
Bd(n,2r)

|f(x)− f(y)|pm(dx)m(dy). (10.34)
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For any n ∈ N, r > 0, we have from Proposition 10.30 that
ˆ
B(n,2r)

ˆ
B(n,2r)

|f(x)− f(y)|pm(dx)m(dy)

≤ 2p−1m(Bd(n, 2r))

ˆ
Bd(n,2r)

∣∣f(x)− fBd(n,2r)

∣∣pm(dx)

≤ 2p−1+df+dw(p)C̃Pσ(Ep)
−1rdf+dw(p)ΓEp〈f〉

(
Bd(n, 4r)

)
. (10.35)

There exists C that depends only on a∗, L∗ such that
∑

n∈N 1Bd(n,4r) ≤ C (by the metric
doubling property of (K, d)). This along with (10.34) and (10.35) implies the desired
estimate. �

Lastly, we prove an upper bound on p-energy by using the self-similarity instead of a
suitable partition of unity (cf. Lemma 7.4).

Lemma 10.32. Let p ∈ (1,∞). There exists Cu > 0 (depending only on p and the
geometric data of PSC) such that for any (Fp,Ep) ∈ Ep and f ∈ Fp, we have

Ep(f) ≤ Cuχ(Ep) lim sup
r↓0

ˆ
K

 
Bd(x,r)

|f(y)− f(x)|p
rdw(p)

m(dy)m(dx).

Proof. Let h ∈ Fp ∩ C(K) be such that h
∣∣
`L
≡ 0, h

∣∣
`R
≡ 1 such that Ep(h) ≤ 2χ(Ep).

Let Wn,e,Wn,o, N(w) be the same notations as in the proof of Proposition 10.28. To any
function f ∈ Fp, we define a function fn : Wn,o → R as

fn(w) =

 
⋃
v∈N(w) Kv

f dm.

We note that #N(w) ≤ 4 for all w ∈ Wn,o. We define f̂n : K → R by specifying F ∗wf̂n for
all w = w1 · · ·wn ∈ Wn as

F ∗wf̂n ≡



fn(w) if w ∈ Wn,o,

fn(w1 · · ·wn−11) + (fn(w1 · · ·wn−13)− fn(w1 · · ·wn−11))h if wn = 2,

fn(w1 · · ·wn−17) + (fn(w1 · · ·wn−15)− fn(w1 · · ·wn−17))h if wn = 6,

fn(w1 · · ·wn−13) + (fn(w1 · · ·wn−15)− fn(w1 · · ·wn−13))h ◦R1 if wn = 4,

fn(w1 · · ·wn−11) + (fn(w1 · · ·wn−17)− fn(w1 · · ·wn−11))h ◦R1 if wn = 8.

(10.36)

For w ∈ Wn, let qw = Fw(q1). For u, v ∈ Wn,o, w ∈ Wn,e such that {u,w}, {v, w} ∈ E#
n ,

we have supx∈Ku∪Kw∪Kv d(qw, x) ≤
√

5 · a−n∗ . This along with Jensen’s inequality implies
that there exists C > 0 (depending only on p and the geometric data of PSC) such that
for all u, v, w as above, we have

|fn(u)− fn(v)|p ≤ Ca−2ndf
∗

ˆ
Bd(qw,Ca

−n
∗ )

ˆ
Bd(qw,Ca

−n
∗ )

|f(x)− f(y)|pm(dx)m(dy).
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Therefore by Assumption 10.21(d,e) and the bounded overlap of Bd(qw, Ca
−n
∗ ), w ∈ Wn,e,

we have

Ep(f̂n) =
∑

w∈Wn,e

ρ̃nEp(F
∗
wf̂n)

≤
∑

w∈Wn,e

ρ̃nEp(h)a−2ndf
∗

ˆ
Bd(qw,Ca

−n
∗ )

ˆ
Bd(qw,Ca

−n
∗ )

|f(x)− f(y)|pm(dx)m(dy)

≤ C0χ(Ep)ρ̃
na−ndf
∗

ˆ
K

 
Bd(x,2Ca−n∗ )

|f(x)− f(y)|pm(dy)m(dx), (10.37)

where C0 > 0 is a constant depending only on p and the geometric data of PSC. By
setting rn = 2C3−n and using ρ̃ = ρ(p), we have

Ep(f̂n) ≤ C̃0χ(Ep)

ˆ
K

 
B(x,rn)

|f(x)− f(y)|p

r
dw(p)
n

m(dy)m(dx).

If f ∈ Fp ∩ C(K), then fn converges to f uniformly in K (by uniform continuity of K)

and thus f̂n also converges to f uniformly. Since (Fp, ‖ · ‖Fp
) is a reflexive Banach space,

f̂n has a subsequence that converges weakly in Fp to f . By Mazur’s lemma, we obtain

Ep(f) ≤ lim sup
n→∞

Ep(f̂n) ≤ C̃0χ(Ep) lim sup
r↓0

ˆ
K

 
Bd(x,r)

|f(y)− f(x)|p
rdw(p)

m(dy)m(dx).

The case f ∈ Fp can be shown by Assumption 10.21(c), Proposition 10.30 and the above
estimate. �

Proof of Proposition 10.25. This follows from Lemmas 10.31 and 10.32. �

Proof of Proposition 1.6. This follows from Proposition 10.25 and Theorem 1.4. �

11 The attainment problem for Ahlfors regular con-

formal dimension on the Sierpiński carpet

In this section, we obtain partial results towards the attainment problem, namely the last
main result Theorem 1.8.

11.1 Newton-Sobolev space N 1,p

We start by recalling the theory first-order Sobolev spaces on metric measure spaces based
on the notion of upper gradients. A comprehensive account of this theory can be found
in [HKST] (see also [BB, Hei]).
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Hereafter, we let (X, θ, µ) be a metric measure space in the sense of [HKST], i.e.,
(X, θ) is a separable metric space and µ is a locally finite Borel-regular (outer) measure
on X. In addition, we always assume that µ(O) > 0 whenever O is a non-empty open
subset of X.

Definition 11.1 (Curves in a metric space). (1) A continuous map γ : I → X, where
I is an interval of R, is called a curve in X. If I is a closed interval, then γ is called a
compact curve. For any subinterval [a′, b′] ⊆ I, the subcurve γ

∣∣
[a′,b′]

is the restriction

of γ to [a′, b′].

(2) For a compact curve γ : [a, b]→ X, its length `(γ) (with respect to the metric ρ) is
defined by

`(γ) = sup

{
k∑
i=1

θ(γ(ti−1), γ(ti))

∣∣∣∣∣ k ∈ N, {ti}ki=0 ⊆ R s.t. a = t0 < t1 < · · · < tk = b

}
.

For a curve γ : I → X (I is not assumed to be a closed interval), define its length
by

`(γ) = sup
{
`(γ′)

∣∣ γ′ is a compact subcurve of γ
}
.

A curve γ is said to be rectifiable (with respect to the metric ρ) if `(γ) < ∞. The
set of all compact rectifiable curves is denoted by Γrect = Γrect(X, θ).

It is known that every compact rectifiable curve γ : [a, b] → X admits a (orientation
preserving) arc-length parametrization γ̃ : [0, `(γ)] → X that satisfies γ̃

(
`(γ
∣∣
[a,t]

)
)

= γ(t)

for each t ∈ [a, b] (see [HKST, (5.1.6)] for example).

Definition 11.2 (Line integral on a metric space). Let γ ∈ Γrect be a compact curve and
let ρ ∈ B+(X). The line integral of ρ over γ is defined by

ˆ
γ

ρ ds :=

ˆ `(γ)

0

ρ
(
γ̃(t)

)
dt, (11.1)

where γ̃ is the arc-length parametrization of γ. If γ ∈ Γrect, then we defineˆ
γ

ρ ds := sup

{ˆ
γ′
ρ ds

∣∣∣∣ ρ′ is a compact subcurve of γ

}
.

Definition 11.3 (Modulus of curve families). Let p ∈ (0,∞) and let Γ be a subset of
Γrect. A non-negative Borel function ρ ∈ B+(X) is said to be admissible for Γ if

inf
γ∈Γ

ˆ
γ

ρ ds ≥ 1.

The p-modulus of Γ is defined as

Modp(Γ) = inf
{
‖ρ‖pLp(µ)

∣∣ ρ is admissible for Γ
}
.

We shall say that a property of curves holds for Modp-a.e. curve if the p-modulus of the
set of curves for which the property fails to holds is zero.
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The corresponding properties to the discrete case in Lemma 2.3 are also true for p-
modulus on (X, θ, µ) [HKST, Section 5.2]. The next notion of minimal p-weak upper
gradient of a function u plays the role of ‘|∇u|’. The notion of weak upper gradients was
introduced in [HK98], where it was called ‘very weak gradients’.

Definition 11.4 (Upper gradients). Let p ∈ (0,∞), u : X → R and g ∈ B+(X). (Here,
both u and g is defined on every points of X.) The Borel function g is called a p-weak
upper gradient of u if

|u(x)− u(y)| ≤
ˆ
γ

g ds for Modp-a.e. γ ∈ Γrect, (11.2)

where x, y are endpoints of γ. If (11.2) holds for every compact rectifiable curve, then g
is called an upper gradient of u.

A p-weak upper gradient g of u is said to be a minimal p-weak upper gradient if it
is p-integrable with respect to the measure µ and if g ≤ g′ µ-a.e. in X whenever g′ is a
p-integrable p-weak upper gradient of u. Such the minimal p-weak upper gradient of u is
denoted by gu.

If {g | g is a p-integrable upper gradient of u} 6= ∅, then the existence and uniqueness
(up to a µ-null set) of minimal p-weak upper gradient are established by a standard
argument (so-called the direct method) in calculus of variations (see [HKST, Theorem
6.3.20 and Lemma 6.2.8]). We also recall that ‖gu‖pLp(µ) is the smallest Lp(X,µ)-norm
among all p-integrable p-weak upper gradient of u. For other basic properties on upper
gradients, we refer to [BB, Hei, HKST].

For a locally Lipschitz function u : X → R, we define its lower pointwise Lipschitz
constant function lipu : X → [0,∞) as

lipu(x) := lim inf
r↓0

sup
y∈B(x,r)

|u(y)− u(x)|
r

, (11.3)

which gives a typical example of upper gradients (see [HKST, Lemmas 6.2.5 and 6.2.6]).

Proposition 11.5. If u : X → R is a locally Lipschitz function, then lipu ∈ B+(X) is
an upper gradient of u.

Now we can define the function spaces Ñ1,p and N1,p, which are called Newton-Sobolev
spaces and introduced in [Sha00]. Let p ∈ [1,∞) and let

Ñ1,p(X, θ, µ)

:=

{
u : X → [−∞,∞]

∣∣∣∣∣ u is p-integrable (with respect to µ) and there
exists a p-integrable p-weak upper gradient g of u

}
, (11.4)

which is clearly a vector space (over R). We equip Ñ1,p(X, θ, µ) with the seminorm
‖ · ‖N1,p(X,θ,µ) given by

‖u‖N1,p(X,θ,µ) = ‖u‖Lp(µ) + ‖gu‖Lp(µ) . (11.5)

To get a normed space, we next consider a quotient space of Ñ1,p(X, θ, µ).
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Definition 11.6 (Newton-Sobolev space N1,p). Let p ∈ [1,∞). For f, g ∈ Ñ1,p(X, θ, µ),
we define an equivalence relation f ∼N1,p g by ‖f − g‖N1,p(X,θ,µ). Let us denote the
equivalence class of f with respect to ∼N1,p by [f ]N1,p . Define

N1,p(X, θ, µ) := Ñ1,p(X, θ, µ)/ ∼N1,p .

We consider N1,p(X, θ, µ) as a normed space equipped with the quotient norm associated
with the seminorm defined in (11.5), which is also denoted by ‖ · ‖N1,p(X,θ,µ). We also use
‖ · ‖N1,p or ‖ · ‖N1,p(µ) to denote ‖ · ‖N1,p(X,θ,µ).

For any p ∈ [1,∞), N1,p(X, θ, µ) is a Banach space [HKST, Theorem 7.3.6].

Remark 11.7. If (K, d,m) is PSC given in Definition 10.1, then [HKST, Proposition
7.1.33] implies that N1,p(K, d,m) is trivial, i.e., N1,p(K, d,m) = Lp(K,m). This triviality
is due to the fact that Modp(Γrect(K, d)) = 0. Such triviality of 1-modulus is proved by
[LP04] and one can find a proof in [MT, Proposition 4.3.3] for all p ≥ 1.

We recall Poincaré inequalities based on the notion of upper gradient.

Definition 11.8. Let p ∈ [1,∞). The metric measure space (X, θ, µ) is said to satisfy
the (p, p)-Poincaré inequality if there exist CP ∈ (0,∞), AP ∈ [1,∞) such that for any

x ∈ X, r > 0, u ∈ Ñ1,p(X, θ, µ) and for any p-weak upper gradient g of u, we haveˆ
Bθ(x,r)

∣∣u(y)− uBθ(x,r),µ

∣∣p µ(dy) ≤ Crp
ˆ
Bθ(x,APr)

gp dµ, ((p, p)-PIug)

where uBθ(x,r),µ =
ffl
Bθ(x,r)

u dµ. In addition, (X, θ, µ) is said to satisfy the (1, p)-Poincaré

inequality (or p-Poincaré inequality for short) if for any x ∈ X, r > 0, u ∈ Ñ1,p(X, θ, µ)
and for any p-weak upper gradient g of u, we have

 
Bθ(x,r)

∣∣u(y)− uBθ(x,r),µ

∣∣µ(dy) ≤ Cr

( 
Bθ(x,APr)

gp dµ

)1/p

. (p-PIug)

The constants CP, AP in (p, p)-PIug (resp. p-PIug) are called the data of (p, p)-PIug (resp.
p-PIug). (Here ‘ug’ stands for upper gradient to distinguish it from Poincaré inequality
corresponding to energy measures as shown in Theorem 9.17 or Poincaré inequality on
graphs as shown in Theorem 4.2).

11.2 Lipschitz partition of unity and localized energies

In this subsection, we provide analogue results in Section 9.4. We focus on an upper
bound on the “energy measure” gpf dµ because we do not use lower bounds in this paper.

We work in the same settings as in the previous section, i.e., (X, θ) is a separable
metric space and µ is a locally finite Borel-regular (outer) measure on X which is positive
on any non-empty open subset of X. In addition, we let p ∈ (1,∞) throughout this
subsection.

The following Lipschitz partition of unity is a well-known tool to approximate arbitrary
functions in Ñ1,p(X, d,m) with Lipschitz functions (see [HKST, pp. 104–105]).
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Lemma 11.9. Let (X, θ) be a doubling metric space. Let {xi : i ∈ I} be a maximal r-
separated subset for some r > 0. Then there exists C1 > 0 depending only on the doubling
constant of (X, θ) and a collection of C1/r-Lipschitz functions ϕi : X → [0, 1] such that∑

i∈I ϕi ≡ 1 and supp[ϕi] ⊂ Bθ(xi, 2ri) for all i ∈ I.

The next lemma provides an estimate for upper gradients of discrete convolutions.

Lemma 11.10. Suppose that (X, θ, µ) is volume doubling. Let {xi : i ∈ I} be a maximal
r-separated subset of (X, θ) and let {ϕi}i∈I denote a Lipschitz partition of unity satisfying
the properties described in Lemma 11.9. For a µ-integrable function u : X → R, define
ur : X → R as

ur(x) :=
∑
i∈I

uBθ(xi,r),µϕi(x), where uBθ(xi,r),µ =
ffl
u dµ for all i ∈ I. (11.6)

There exists C > 0 depending only on the doubling constant of µ such that

lipur(x) ≤ Cr−1

 
Bθ(x,4r),µ

∣∣u(z)− uBθ(x,4r),µ

∣∣µ(dz) for all x ∈ X. (11.7)

Proof. In this proof, we write uBθ(x,r) = uBθ(x,r),µ for simplicity. For any x, y ∈ X with
θ(x, y) < r, we have ϕi(x) ∨ ϕi(y) 6= 0 only if θ(xi, x) < 3r and therefore Bθ(xi, r) ⊂
Bθ(x, 4r) whenever ϕi(x) ∨ ϕi(y) 6= 0. Hence for all x, y ∈ X such that θ(x, y) < r, we
have

|ur(x)− ur(y)| =
∣∣∣∣∣∑
i∈I

uBθ(xi,r)(ϕi(x)− ϕi(y))

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

(
uBθ(xi,r) − uBθ(x,4r)

)
(ϕi(x)− ϕi(y))

∣∣∣∣∣
≤

∑
i∈I,θ(x,xi)<4r

∣∣(uBθ(xi,r) − uBθ(x,4r)

)
(ϕi(x)− ϕi(y))

∣∣
≤ C1r

−1θ(x, y)
∑

i∈I,θ(x,xi)<4r

 
Bθ(xi,r)

∣∣(u(z)− uBθ(x,4r))
∣∣µ(dz)

≤ C2r
−1θ(x, y)

 
Bθ(x,4r)

∣∣(u(z)− uBθ(x,4r))
∣∣µ(dz).

In the second and third line, we used Lemma 11.9. In the last line, we used the fact that
µ is a doubling measure and that the set of #{i ∈ I | θ(xi, x) < 4r} is bounded by a
constant that depends only on the doubling constant of (X, θ). �

It is well-known that the p-energy of a function in Ñ1,p(X, θ, µ) is bounded from above
by a Koreervaar-Schoen type energy. We say that a function u : X → R is the Korevaar-
Schoen-Sobolev space KS1,p(X, θ, µ) if u ∈ Lp(X,µ) and

lim sup
ε↓0

ˆ
X

ε−p
 
Bθ(x,ε)

|u(y)− u(x)|p µ(dy)µ(dx) <∞.
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In the following proposition, we control the Lp-norm of the minimal p-weak upper
gradient on arbitrary sets using a Korevaar-Schoen type energy. The statement and its
proof is a slight extension of that of [HKST, Theorem 10.4.3] which deals with the case
B = X.

Proposition 11.11. Let (X, θ, µ) be volume doubling. There exists C > 0 such that for

all u ∈ KS1,p(X, θ, µ), there exists ũ ∈ Ñ1,p(X, θ, µ) such that ũ = u µ-almost everywhere
and such that its minimal p-weak upper gradient gũ satisfies, for any Borel set B ⊆ X,

ˆ
B

gpũ dµ ≤ C lim sup
ε↓0

ˆ
B

ε−p
 
Bθ(y,ε)

|u(y)− u(x)|p µ(dy)µ(dx). (11.8)

Proof. For each n ∈ N, consider a maximal n−1-separated subset of (X, θ) and the cor-
responding Lipschitz partition of unity as given in Lemma 11.9. Let vn := un−1 denote
the function defined in (11.6). Then by [HKST, Proof of Theorem 10.4.3], we have
limn→∞

´
X
|vn − u|p dµ = 0 and, by Lemma 11.10 and Jensen’s inequality, there exists

C1 > 0 depending only on p and the doubling constant of µ such that

lim
n→∞

ˆ
X

lip vn(x)p µ(dx) ≤ C1 lim
ε↓0

ˆ
X

ε−p
 
Bθ(x,ε)

|u(y)− u(x)|p µ(dy)µ(dx) <∞. (11.9)

Hence {vn}n∈N is bounded in Ñ1,p. Therefore by Mazur’s lemma and [HKST, Proposition

7.3.7, Theorem 7.3.8], there exists ũ ∈ Ñ1,p(X, θ, µ) such that ũ = u µ-almost everywhere
and g ∈ B+(X) satisfies the following properties. The function g is a p-weak upper
gradient of ũ and is a limit in Lp(X,µ) of a sequence {gj}j∈N such that gj is a convex
combination of elements in the sequence {lip vj}j∈N for all j and for any n ∈ N all but
finitely many elements of gj are finite convex combinations of lip vj with j ≥ n. Hence by
Lemma 11.10, we conclude

ˆ
B

gpũ dµ ≤
ˆ
B

gp dµ ≤ lim sup
n→∞

ˆ
B

(lip vn)p dµ

≤ C lim sup
ε↓0

ˆ
B

ε−p
 
Bθ(y,ε)

|u(y)− u(x)|p µ(dy)µ(dx).

�

11.3 Loewner metric and measure

Definition 11.12 (Loewner space). Let p ∈ (1,∞) and let (X, θ, µ) be a metric measure
space such that is metric doubling. The metric measure space (X, θ, µ) is said to be p-
Loewner if µ is p-Ahlfors regular with respect to θ and p-Poincaré inequality p-PIug holds.
If (X, θ, µ) is p-Loewner for some p ∈ (1,∞), then θ is called a Loewner metric and µ is
called a Loewner measure.
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The original definition of Loewner spaces due to Heinonen and Koskela [HK98, Defi-
nition 3.1] is based on lower bounds on modulus. However, this gives an equivalent one
by virtue of [HK98, Theorems 5.7 and 5.12]. This celebrated work identified Loewner
spaces as the abstract setting where much of the nice properties of quasiconformal maps
on Euclidean spaces are available.

The next result is an observation due to Cheeger and Eriksson-Bique [CE]. It states
that any metric and measure attaining the Ahlfors regular conformal dimension is a
Loewner space. We recall this short argument as it plays a key role in rest of this section.

Proposition 11.13 ([CE, §1.6]). Let (K, d,m) be the planar Sierpiński carpet in Defi-
nition 10.1. Suppose that the Ahlfors regular conformal dimension of (K, d,m) (dimARC

for short) is attained, i.e., there exists a metric θ ∈ J (K, d) equipped with a dimARC-
Ahlfors regular measure µ with respect to θ. Then (K, θ, µ) is a dimARC-Loewner space.
Conversely, every Loewner space attains the Ahlfors regular conformal dimension.

Proof. This result follows from the dimARC-combinatorial Loewner property of PSC, which
is proved in [BK13, Theorem 4.1]. As explained in [CE, §1.6], dimARC-combinatorial
Loewner property along with dimARC-Ahlfors regularity implies dimARC-Loewner property
in the sense of [HK98, (3.2)]. This is due to a result of Häıssinky [Häı09, Proposition B.2]
comparing combinatorial and continuous versions of modulus and a different equivalent
definition of the Loewner property in Heinonen and Koskela’s celebrated work [HK98,
Definition 3.1, Theorems 5.12 and 5.7]. Heinonen attributes the converse result to Bonk
and Tyson [Bon, Theorem 15.10] (see also [Tys98]). �

Recall from Definition 1.7 that the Ahlfors regular conformal dimension concerns the
existence of a metric θ ∈ J (X, d) and p-Ahlfors regular measure on (X, θ). It is well-
known that the measures and metrics satisfying these conditions determine each other;
that is µ can be recovered from θ and θ can be recovered from µ (up to a bounded
multiplicative constant). We recall this in Lemmas 11.14 and 11.16.

Lemma 11.14. Let p ∈ (1,∞) and let (X, θ, µ) be a metric measure space. If µ is p-
Ahlfors regular with respect to θ, then there exists a constant C ≥ 1 (depending only on p
and the doubling constant of θ) such that

C−1H p
θ (B) ≤ µ(B) ≤ CH p

θ (B) for all Borel set B ∈ B(X), (11.10)

where H p
θ denotes the p-dimensional Hausdorff measure with respect to the metric θ.

We also note that, by Lemma 11.14, the Ahlfors regularity can be regarded as a
property on metrics (and the corresponding Hausdorff measures).

Conversely, David–Semmes deformation theory ([DS90] for example) allows us to con-
struct a corresponding metric associated to a given Ahlfors regular measure µ that is
bi-Lipschitz equivalent to the original Loewner metric. See also [Hei, Chapter 14] or [MT,
Section 7.1]. To describe this we recall the definition of a maximal semi-metric.
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Definition 11.15. A function r : X×X → [0,∞) is said to be a semi-metric, if it satisfies
all the properties of a metric except possibly the property that r(x, y) = 0 implies x = y.

Let h : X×X → [0,∞) be an arbitrary function. Then there exists a unique maximal
semi-metric dh : X×X → [0,∞) such that dh(x, y) ≤ h(x, y) for all x, y ∈ X [BBI, Lemma
3.1.23]. We say that dh is the maximal semi-metric induced by h. More concretely, dh can

be defined as follows. Let h̃(x, y) = min(h(x, y), h(y, x)). Then

dh(x, y) = inf

{
N−1∑
i=0

h̃(xi, xi+1) : N ∈ N, x0 = x, xN = y

}
. (11.11)

To following lemma follows easily from the definitions.

Lemma 11.16. Let p ∈ (1,∞) and let (X, d) be a metric measure space. If θ ∈
J (X, d) and µ be a measure such that µ is p-Ahlfors regular on (X, θ). Let h(x, y) :=
µ(Bd(x, d(x, y)))1/p for all x, y ∈ X and let dh denote the maximal semi-metric. Then dh
is bi-Lipschitz equivalent to θ, that is, there exists C > 1 such that

C−1θ(x, y) ≤ dh(x, y) ≤ Cθ(x, y) for all x, y ∈ X.

In particular dh ∈ J (X, d) and µ is p-Ahlfors regular on (X, dh).

In the rest of this paper, we discuss the structures of metrics and measures that attain
the Ahlfors regular conformal dimension of the Sierpiński carpet if exist. In view of
Lemma 11.16, we focus on optimal measures. We introduce the standing framework in
the remaining part:

Assumption 11.17. Let (K, d,m) be the planar Sierpiński carpet in Definition 10.1. Let
df = log 8/ log 3 and p = dimARC(K, d,m). We suppose the attainment of dimARC(K, d,m).
Let θ ∈ J (K, d) and let µ be a Borel-regular measure on K such that µ is p-Ahlfors regular
with respect to θ.

Remark 11.18. By the results of [KL04, Tys00] (see also [MT, Section 4.3] for a review
of related results), we know that

1 < 1 +
log 2

log 3
≤ p = dimARC(K, d,m) < df . (11.12)

Also, by [Kig20, Theorem 4.7.6], we have dw(p) = df .

B. Kleiner [Kle+] observed than any optimal measure µ is mutually singular to the
self-similar measure m. Although we don’t need this fact, it helps us to elucidate that
the comparison of norms on Theorem 1.8(i) does not follow comparison of corresponding
semi-norms as the Lp(m) and Lp(µ) norms are not comparable.

Proposition 11.19 (due to Bruce Kleiner). Under Assumption 11.17, the measures m
and µ are mutually singular.
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Proof. This proof by contradiction uses a ‘blow-up’ argument. Assume to the contrary
that µ is not singular to m. Let µ = µa + µs denote the Lebesgue decomposition of µ
with respect to m, where µa � m, µs ⊥ m and µa 6= 0 by assumption. Let f = dµa

dm
. For

m-almost every x ∈ K, we have ([KM20, Proposition A.4])

lim
r↓0

µs(Bd(x, r))

m(Bd(x, r))
= 0 (11.13)

and for m-almost every x ∈ {y ∈ K : f(y) > 0}, we have ([KM20, Proof of Lemma 3.1])

lim
r↓0

1

m(Bd(x, r))

ˆ
Bd(x,r)

|f(y)− f(x)|m(dy) = 0. (11.14)

Since µa 6= 0, there exists x ∈ {y ∈ K : f(y) > 0} such that both (11.13) and (11.14)
hold. Pick ω ∈ Σ such that χ(ω) = x and set wn := [ω]n ∈ Wn for all n ∈ N. Define a
sequence of probability measures µn and metrics θn : K ×K → [0,∞) as

µn(A) :=
µ(Fwn(A))

µ(Kwn)
, θn(x, y) :=

θ(Fwn(x), Fwn(y))

diam(Kwn , θ)
, for all n ∈ N,

where θ ∈ J (K, d) is such that µ is p-Ahlfors regular in (K, θ) and p is as given in
Assumption 11.17. By (11.13) and (11.14), the sequence of measures µn converges to
f(x)m in the topology of weak convergence. Furthermore, it is easy to verify that there
exists a homeomorphism η : [0,∞) → [0,∞) such that the identity map Id : (K, θn) →
(K, d) is an η-quasisymmetry for all n ∈ N. By the same argument as [KM23, Proof
of Proposition 6.18] using Arzela-Ascoli theorem, there exists a subsequence {θnk}k∈N of

{θn}n∈N converging uniformly to θ̃ ∈ C(K×K). This along with diam(K, θn) = 1 implies

that θ̃ is a metric on K, Id : (K, θ̃)→ (K, d) is a η-quasisymmetry and hence θ̃ ∈ J (K, d).

This implies that the measure f(x)m is p-Ahlfors regular in (K, θ̃). Therefore by Lemma
11.16, we obtain p = df which contradicts (11.12). �

11.4 Identifying self-similar and Newtonian Sobolev spaces

In this subsection, we will compare different notions of energies (Ep(f) and
´
K
gpf dµ) and

Sobolev spaces (Fp and N1,p) on the Sierpiński carpet under assuming the attainment
of its Ahlfors regular conformal dimension. Throughout of this subsection, we always
suppose Assumption 11.17.4

We recall the following two different Poincaré inequalities.

Theorem 11.20. There exist C,A > 1 such that for all x ∈ K, r > 0, we haveˆ
Bθ(x,r)

∣∣f − fBθ(x,r),µ

∣∣p dµ ≤ Crp
ˆ
Bθ(x,Ar)

gpf dµ for all f ∈ N1,p(K, θ, µ), (11.15)

ˆ
Bd(x,r)

∣∣f − fBd(x,r),m

∣∣p dm ≤ Crdf Γp〈f〉(Bd(x,Ar)) for all f ∈ Fp(K, d,m). (11.16)

4We clarify this assumption in all statements where the attainment is used because whether this
assumptions is true or not is a big open problem in the field.
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Proof. The first one (11.15) follows from Proposition 11.13. The second one (11.16) follows
from Theorem 9.17 with β = dw(p) = df (see also Remark 11.18). �

The following is a two-weight Poincaré type inequality, which is the key ingredient to
compare two different worlds (self-similar and Loewner).

Proposition 11.21. Suppose Assumption 11.17. There exist C,A > 1 such that for all
x ∈ K, r > 0, we have

inf
α∈R

ˆ
Bd(x,r)

|f − α|p dm ≤ Crdf

ˆ
Bd(x,Ar)

gpf dµ for all f ∈ N1,p(K, θ, µ) ∩ C(K), (11.17)

inf
α∈R

ˆ
Bθ(x,r)

|f − α|p dµ ≤ CrpΓp〈f〉(Bθ(x,Ar)) for all f ∈ Fp(K, d,m) ∩ C(K).

(11.18)

Proof. In this proof, each function in N1,p(K, θ, µ) ∩ C(K) (or Fp(K, d,m) ∩ C(K)) is
considered as a pointwisely defined continuous function on K. Fix p1 ∈ (p,∞). To prove
(11.17), by [Hei, Lemma 4.22] and df-Ahlfors regularity of (K, d,m), it suffices to show
the following weak type estimate: There exist C1, A1 ∈ (1,∞) such that

inf
α∈R

sup
t>0

tp1m ({y ∈ Bd(x, r) : |f(y)− α| > t}) ≤ C1r
df

ˆ
Bd(x,A1r)

gpf dµ (11.19)

for all f ∈ N1,p(K, θ, µ) ∩ C(K), where gf is the minimal p-weak upper gradient of f .

Let AP ∈ [1,∞) denote the constant in (p, p)-PIug as given in Definition 11.8. Since
θ ∈ J (K, d), by [MT, Lemma 1.2.18], there exists A ∈ (1,∞) such that for all x ∈ K, r > 0
, there exists s > 0 satisfying

Bd(x, r) ⊂ Bθ(x, s) ⊂ Bθ(x, (1 + 2AP)s) ⊂ Bd(x,Ar). (11.20)

By (p, p)-PIug and p-Ahlfors regularity of (K, θ, µ), there exists C2 > 1 such that∣∣∣∣ 
Bθ(y,s)

f dµ−
 
Bθ(x,2s)

f dµ

∣∣∣∣ ≤ 1

µ(Bθ(y, s))

ˆ
Bθ(x,2s)

∣∣∣∣f −  
Bθ(x,2s)

f dµ

∣∣∣∣ dµ
≤ C2

(ˆ
Bθ(x,2APs)

gpf dµ

)1/p

for all f ∈ Ñ1,p(K, θ, µ),

(11.21)

where gf is the minimal p-weak upper gradient of f . By a similar argument, there exists

C3 > 1 such that for all x ∈ K, s > 0, y ∈ Bθ(x, s), i ∈ Z≥0, f ∈ Ñ1,p(K, θ, µ), we have∣∣∣∣ 
Bθ(y,2−is)

f dµ−
 
Bθ(y,2−i−1s)

f dµ

∣∣∣∣ ≤ C3

(ˆ
Bθ(y,AP2−is)

gpf dµ

)1/p

. (11.22)
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Note that (K, θ) is connected since (K, θ) is homeomorphic to (K, d). By the reverse
doubling property [Hei, Exercise 13.1] of m with respect to the metric θ, there exists
c4 ∈ (0, 1) such that for all y ∈ K, s > 0, we have

c4

∞∑
i=0

(
m(Bθ(y, 2

−is))

m(Bθ(y, s))

)1/p1

<
1

2
. (11.23)

In order to show (11.19), for any f ∈ N1,p(K, θ, µ) ∩ C(K), we choose α =
ffl
Bθ(x,2s)

f dµ.

If t ≤ 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

, the estimate (11.19) follows from the df-Ahlfors regularity

of (K, d,m). Therefore, it suffices to consider the case t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

. By

(11.20), (11.21), we have

{
y ∈ Bd(x, r) : |f(y)− α| > t

}
⊂
{
y ∈ Bd(x, r) :

∣∣∣∣f(y)−
 
Bθ(y,s)

f dµ

∣∣∣∣ > t/2

}
(11.24)

for all t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

. By (11.24), for any y ∈ Bd(x, r) such that∣∣∣f(y)−
ffl
Bθ(x,2s)

f dµ
∣∣∣ > t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

, we have

c4

∞∑
i=0

(
m(Bθ(y, 5AP2−is))

m(Bθ(y, 5APs))

)1/p1

t < t/2 (by (11.23))

<

∣∣∣∣f(y)−
 
Bθ(y,s)

f dµ

∣∣∣∣ (by (11.24))

≤ C3

∞∑
i=0

(ˆ
Bθ(y,AP2−is)

gpf dµ

)1/p

(by (11.22)).

Therefore there exists C5 > 1 such that following property holds: For each y ∈ Bd(x, r)

that satisfies
∣∣∣f(y)−

ffl
Bθ(x,2s)

f dµ
∣∣∣ > t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

, there exists iy ∈ Z≥0

such that

m(Bθ(y, 5AP2−iys)) ≤ C5t
−p1rdf

ˆ
Bθ(y,AP2−iy s)

gpf dµ. (11.25)

By the 5B covering lemma [Hei, Theorem 1.2], there exists a pairwise disjoint collection
of balls {Bθ(yj, AP2−iyj s) | j ∈ J} such that{

y ∈ Bd(x, r) :

∣∣∣∣f(y)−
 
Bθ(x,2s)

f dµ

∣∣∣∣ > t

}
⊆
⋃
j∈J

Bθ(yj, 5AP2−iyj s).
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Hence

m

({
y ∈ Bd(x, r) :

∣∣∣∣f(y)−
 
Bθ(x,2s)

f dµ

∣∣∣∣ > t

})
≤
∑
j∈J

m
(
Bθ(yj, 5AP2−iyj s)

)
(11.25)

≤ C5t
−p1rdf

∑
j∈J

ˆ
Bθ(yj ,AP2

−iyj s)

gpf dµ

≤ C5t
−p1rdf

ˆ
Bθ(x,(1+AP)s)

gpf dµ

(11.20)

≤ C5t
−p1rdf

ˆ
Bd(x,Ar)

gpf dµ,

which concludes the proof of (11.19) and therefore (11.17).

The proof of (11.18) follows from a similar argument where the application of (p, p)-
PIug in (K, θ, µ) is replaced with (9.9) (with β = dw(p) = df), which is the (p, p)-Poincaré
inequality for the self-similar energy on (K, d,m). �

The following result compares energy measures and energies in the Sobolev spaces.

Theorem 11.22. Suppose Assumption 11.17. Then we have

Fp(K, d,m) ∩ C(K) = N1,p(K, θ, µ) ∩ C(K).

We let Cp := Fp(K, d,m)∩ C(K). In addition, there exists C > 1 such that for any Borel
set B ∈ B(K) and for all f ∈ Cp, we have

C−1Γp〈f〉(B) ≤
ˆ
B

gpf dµ ≤ CΓp〈f〉(B), (11.26)

where gf denotes the minimal p-weak upper gradient of f . In particular,

C−1Ep(f) ≤
ˆ
K

gpf dµ ≤ CEp(f) for all f ∈ Cp. (11.27)

Furthermore, there exists C1 > 0 such that

C−1
1 ‖f‖N1,p ≤ ‖f‖Fp ≤ C1 ‖f‖N1,p for all f ∈ Cp. (11.28)

We start with a simpler condition to obtain comparability of measures whose proof is
in Appendix B.

Lemma 11.23. Let (X, d) be a doubling metric space. Let ν1, ν2 be two finite Borel
measures on X satisfying the following property: There exist C1 ∈ (0,∞), A1 ∈ (1,∞)
such that for all x ∈ X, r > 0, we have

ν1(Bd(x, r)) ≤ C1ν2(Bd(x,A1r)).

Then there exists C2 > 0 such that

ν1(B) ≤ C2ν2(B) (11.29)

for all Borel sets B ⊂ X.
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Next we compare energy measures on balls for the spacesN1,p(K, θ, µ) and Fp(K, d,m).

Lemma 11.24. Suppose Assumption 11.17. Then the following are true:

(i) We have Fp(K, d,m) ∩ C(K) ⊆ N1,p(K, θ, µ) ∩ C(K). Moreover, there exist C >
0, A > 1 such that for all f ∈ Fp(K, d,m) ∩ C(K), x ∈ K, r > 0, we have

ˆ
Bθ(x,r)

gpf dµ ≤ CΓp〈f〉(Bθ(x,Ar)). (11.30)

(ii) We have N1,p(K, θ, µ) ∩ C(K) ⊆ Fp(K, d,m) ∩ C(K). Moreover, there exist C >
0, A > 1 such that for all f ∈ Fp(K, d,m) ∩ C(K), x ∈ K, r > 0, we have

Γp〈f〉(Bd(x, r)) ≤ C

ˆ
Bd(x,Ar)

gpf dµ. (11.31)

Proof. (i) We will start with the proof of (11.30). To this end, let f ∈ Fp(K, d,m) ∩
C(K), x ∈ K, r > 0 be arbitrary. For 0 < s < r, consider a maximal s-separated subset
N of Bθ(x, r) in (K, θ), so that Bθ(x, r) ⊆ ∪y∈NBθ(y, s) ⊆ Bθ(x, r + s). Therefore

1Bθ(x,r)(y)1Bθ(y,s)(z) ≤
∑
n∈N

1Bθ(n,2s)(y)1Bθ(n,2s)(z). (11.32)

By the doubling property and [HKST, Lemma 4.1.12], for any λ > 1, there exists Cλ
depending only on λ and the doubling constant of (K, θ) such that∑

n∈N

1Bθ(n,λs) ≤ Cλ1Bθ(x,r+λs). (11.33)

We will use Proposition 11.11 to show estimate the norm of the upper gradient. By
(11.18) in Proposition 11.21, there exist C1, A1 ∈ (1,∞) such that for all f ∈ Fp(K, d,m)∩
C(K), we have

ˆ
Bθ(x,r)

s−p
 
Bθ(y,s)

|f(y)− f(z)|p µ(dy)µ(dz)

. s−2p

ˆ
K

ˆ
K

|f(y)− f(z)|p1Bθ(x,r)(y)1Bθ(y,s)(z)µ(dy)µ(dz)

. s−2p
∑
n∈N

ˆ
Bθ(n,2s)

ˆ
Bθ(n,2s)

|f(y)− f(z)|p µ(dy)µ(dz) (by (11.32))

. s−p
∑
n∈N

inf
α∈R

ˆ
Bθ(n,2s)

|f(y)− α|p µ(dy) (by Lemma A.3)

.
∑
n∈N

Γp〈f〉(Bθ(n,A1s)) (by (11.18))

≤ C1Γp〈f〉(Bθ(x, r + A1s)) (by (11.33)). (11.34)
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By letting r →∞ in (11.34) and using Proposition 11.11, we conclude that

Fp(K, d,m) ∩ C(K) ⊆ N1,p(K, θ, µ) ∩ C(K).

By (11.34) and (11.8) in Proposition 11.11, we obtain (11.30).

(ii) This is similar to part (i), except that we use Proposition 9.19 and (11.17) in place
of Proposition 11.11 and (11.18) respectively. �

Proof of Theorem 11.22. The estimate (11.26) follows from Lemma 11.24 along with
Lemma 11.23.

It remains to show (11.28). By normalizing the measures if necessary, we assume that
m and µ are probability measures. For f ∈ C(K) let fm =

´
K
f dm and fµ =

´
K
f dµ

denote the averages of f with respect to m and µ respectively. The proof of (11.18) with
r = 2 diam(K, θ) yieldsˆ

K

|f − fm|p dµ . ‖f‖pFp for all f ∈ Fp(K, d,m) ∩ C(K). (11.35)

Note that for any f ∈ Fp(K, d,m) ∩ C(K), we haveˆ
K

|f|p dµ ≤ 2p−1

(
|fm|p +

ˆ
K

|f − fm|p dµ
)

.
ˆ
K

|f|p dm+ ‖f‖pFp (by (11.35) and Jensen’s inequality). (11.36)

Therefore the first estimate in (11.28) follows from (11.26) and (11.27). The proof of the
second estimate in (11.28) is similar. �

We observe two important consequences of Theorem 11.22. The first one states that
Loewner measures must be minimal energy dominant measures for the self-similar energy
(Ep,Fp).
Theorem 11.25. Suppose Assumption 11.17. Then µ is a minimal energy dominant
measure for (Ep,Fp). Furthermore, there exists C ∈ (0,∞) and u ∈ Cp, we have

C−1Γp〈u〉(B) ≤ µ(B) ≤ CΓp〈u〉(B) for all Borel subset B ⊂ K. (11.37)

Proof. By Theorem 11.22, Γp〈f〉 � µ for all f ∈ Cp. Combining with the density of
C(K)∩Fp(K, d,m) (Theorem 6.17(v)) and Lemma 9.12, we obtain the domination prop-
erty: Γp〈f ′〉 � µ for all f ′ ∈ Fp(K, d,m).

By [HKST, Corollary 8.3.16] and a biLipschitz change of metric if necessary, we can
assume that θ is a geodesic metric. Consider the function u(·) = ρ(x0, ·) for some x0 ∈
K. Since u is Lipschitz in (K, θ) by [HKST, Lemma 6.2.6], we have u ∈ N1,p(K, θ, µ).
Furthermore, by considering geodesics in (K, θ), we can show that lipu ≡ 1. By [HKST,
Theorem 13.5.1], we have that the minimal p-weak upper gradient gu of u satisfies gu = 1
µ-almost everywhere. By (11.26) in Theorem 11.22, we have that µ � Γp〈u〉 and hence
µ is a minimal energy dominant measure and satisfies (11.37). �
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The second one is the identification of the two different Sobolev spaces Fp(K, d,m)
and N1,p(K, θ, µ).

Theorem 11.26. Suppose Assumption 11.17. Then there exists a bounded, linear bijec-
tion ι : Fp(K, d,m)→ N1,p(K, θ, µ) satisfying

C−1
1 ‖f‖Fp ≤ ‖ι(f)‖N1,p ≤ C1 ‖f‖Fp for all f ∈ Fp(K, d,m), (11.38)

where C1 ≥ 1 is the constant in (11.28). Furthermore if f ∈ C(K) ∩ Fp(K, d,m), then ι
maps the equivalence class containing f in Fp(K, d,m) to the equivalence class containing
f in N1,p(K, θ, µ).

Proof. We first note that Cp is a dense linear subspace of both Fp(K, d,m) andN1,p(K, θ, µ)
by Theorem 6.17 and [HKST, Theorem 8.2.1]. Let ι0 : (Cp, ‖ · ‖Fp) → N1,p(K, θ, µ) be

the inclusion map, i.e., ι0(f) = [f ]N1,p for f ∈ Cp, where [f ]N1,p is the equivalence
class defined in Definition 11.6. By (11.28) in Theorem 11.22, we have C−1

1 ‖f‖Fp ≤
‖ι0(f)‖N1,p ≤ C1 ‖f‖Fp for all f ∈ Cp. Hence by [Meg, 1.4.14 Proposition] ι0 is an

isomorphism. By [Meg, 1.9.1 Theorem] and the density of Cp, there is a unique ex-
tension ι : Fp(K, d,m) → N1,p(K, θ, µ) of ι0, which is also an isomorphism satisfying
C−1

1 ‖f‖Fp ≤ ‖ι(f)‖N1,p ≤ C1 ‖f‖Fp for all f ∈ Fp(K, d,m). �

We conclude this subsection by extending the comparability result of energy measures
to all functions in Sobolev spaces through the above isomorphism.

Corollary 11.27. Suppose Assumption 11.17 and let ι : Fp(K, d,m) → N1,p(K, θ, µ) be
the identification map in Theorem 11.26. Then there exists a constant C ≥ 1 such that
the following hold: for any f ∈ Fp(K, d,m) and any Borel set B ∈ B(K),

C−1Γp〈f〉(B) ≤
ˆ
B

gpι(f) dµ ≤ CΓp〈f〉(B). (11.39)

In particular,

C−1Ep(f) ≤
ˆ
X

gpι(f) dµ ≤ CEp(f) for all f ∈ Fp(K, d,m). (11.40)

Proof. By [HKST, (6.3.18)], for any u, v ∈ N1,p(K, θ, µ) and B ∈ B(K), we have(ˆ
B

gpu+v dµ

)1/p

≤
(ˆ

B

gpu dµ

)1/p

+

(ˆ
B

gpv dµ

)1/p

.

In particular, limn→∞
´
B
gpun dµ =

´
B
gpu dµ whenever limn→∞ ‖u− un‖N1,p = 0. Let f ∈

Fp(K, d,m) and pick a sequence {fn}n ⊆ Cp such that limn→∞ ‖f − fn‖Fp = 0. By

(11.38), we then have limn→∞ ‖ι(f)− ι(fn)‖N1,p = 0. Therefore, letting n→∞ in (11.26)
for fn yields (11.39). �
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We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. The first assertion follows from Theorems 11.22, 11.26 and Corol-
lary 11.27. The second assertion follows from Theorem 11.25. �

12 Conjectures and open problems

We conclude this paper by mentioning some related open problems and conjectures.

To construct a Hölder continuous cutoff function with low energy and to obtain
Poincaré inequality, the condition df − β < 1 (or equivalently ζ < 1) was crucial. This is
because the conclusion of Theorem 3.2 fails without the condition ζ < 1. However, it is
conceivable that capacity bounds imply Poincaré inequality without this restriction but
such a result would require a very different approach.

Problem 12.1. Relax the conditions df − β < 1 in Theorem 9.17 and ζ < 1 in Theorem
4.2.

Problem 12.1 is similar in spirit to the resistance conjecture for the case p = 2 and hence
it appears very challenging [Mur23+, §6.3].

In this paper, we confine ourselves to the planar standard Sierpiński carpet for sim-
plicity. As mentioned in Remark 10.20, the planar generalized Sierpiński carpets should
be similar, but we do not know other cases.

Problem 12.2. Construct Sobolev spaces, p-energies, energy measures for other examples
such as Sierpiński cross [Kig09], subsystems of (hyper)cubic tiling [Kig23], unconstrained
Sierpiński carpets [CQ21+, CQ23+], boundaries of hyperbolic groups, Julia sets of con-
formal dynamical systems [Bon, Kle].

Our study also provides a partial result on the uniqueness of p-energies on the
Sierpiński carpet. It is natural to expect that such the uniqueness is true for all p.

Conjecture 12.3. For any p ∈ (1,∞), self-similar p-energy (see Assumption 10.21) is
unique up to multiplications of constants. We expect that the uniqueness is true for a
wide class of Sierpiński carpets (e.g. generalized Sierpiński carpets).

We expect that Conjecture 12.3 follows from a converse estimate of Lemma 10.26.

Conjecture 12.4. For any p ∈ (1,∞), there exists a constant C∗ > 0 depending only on
p and the geometric data of PSC such that

sup

{
χ(Ep)

σ(Ep)

∣∣∣∣ (Ep,Fp) ∈ Ep

}
≤ C∗ <∞. (12.1)

Furthermore, (12.1) implies the affirmative answer for Conjecture 12.3.
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Compared to our (1, p)-Sobolev space Fp, the definition of energy measures on a self-
similar set heavily depends on the self-similarity. This is a difference from the case p = 2
(Dirichlet form theory) and is an obstacle to develop general theory. This motivates the
following question.

Problem 12.5. Define p-energy measures Γp〈 · 〉 without using the self-similarity and
establish their basic properties (cf. Theorem 1.2(ii),(iii) and (vi)).

It is also natural to expect that p-energy measures on typical fractals are mutually
singular with the underlying self-similar measures (cf. [Hin05, KM20] for the case p = 2).

Problem 12.6. For a self-similar set (K, d) satisfying Assumption 6.15 with β > p, show
that Γp〈f〉 ⊥ m for any f ∈ Fp, where m is the self-similar measure.

The next two problems are motivated by a desire to understand the dependence of the
Sobolev space Fp and energy measures on the exponent p.

Problem 12.7. Let p, q ∈ (1,∞) be distinct. Let νp, νq be minimal energy-dominant
measures of (Ep,Fp), (Eq,Fq) respectively. Are νp and νq mutually singular or absolutely
continuous?

We also do not know if there are inclusion relations among {Fp}p>1.

Problem 12.8. Let p, q ∈ (1,∞) be distinct. Determine the intersection Fp ∩ Fq. In
particular, does Fp ∩ Fq contain any non-constant function?

Towards the attainment problem of the Ahlfors regular conformal dimension, we expect
that the following variant of Theorem 1.8(ii) to be useful. This conjecture is an analog of
[KM23, Theorem 6.54].

Conjecture 12.9. Let (K, d,m) be the Sierpiński carpet. Suppose that dARC(K, d) is
attained. There exists h which is dARC-harmonic (with respect to the self-similar dARC-
energy EdARC

) on K \ V0 such that ΓdARC
〈h〉 is also an optimal measure.

A A collection of useful elementary facts

The following lemma corresponds to a 5B-covering lemma for graphs.

Lemma A.1. Let G = (V,E) be a graph, and let B = {B(xi, ri) | i ∈ I} be a family of
balls such that ri > 0 for all i ∈ I and R := supi∈I ri < +∞. (Here, B(x, r) := {y ∈ V |
d(x, y) < r}, where d denotes the graph distance of G.) Then there exists J ⊆ I such that

B(xj, rj) ∩B(xk, rk) = ∅ for all j, k ∈ J with j 6= k,

and ⋃
i∈I

B(xi, ri) ⊆
⋃
j∈J

B(xj, 3rj).

Moreover, for any i ∈ I there exists j ∈ J such that B(xi, ri) ⊆ B(xj, 3rj).
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Proof. For each r > 0, let brc ∈ Z≥0 denotes the unique non-negative integer such that

brc ≤ r < brc+ 1.

For any x ∈ V and r > 0, we have B(x, r) ⊆ B(x, brc+ 10−1). Moreover,

B(x, r) := {y ∈ V | d(x, y) ≤ r} = B(x, brc+ 10−1).

We write Bi for B(xi, bric+ 10−1) for simplicity. For each r ∈ [0, R] ∩ Z, define

Ir := {i ∈ I | bric = r}.

Let I ′R be a maximal subset of IR such that {Bi | i ∈ I ′R} are disjoint. Inductively,
we define {I ′R−m}Rm=0 as follows: given I ′R, . . . , I

′
R−m+1, let I ′R−m be a maximal subset of

IR−m such that
{Bi | i ∈ I ′R−m} are disjoint, (A.1)

and

{Bi | i ∈ I ′R−m} are also disjoint from

{
Bi

∣∣∣∣∣ i ∈
R⋃

j=R−m+1

I ′j

}
. (A.2)

Now set J :=
⋃R
j=0 I

′
j. This construction yields that {Bj | j ∈ J} are disjoint.

We will show that
{
B(xj, 3rj) | j ∈ J

}
covers

⋃
i∈I Bi. Let i ∈ I. If i ∈ J , then it is

immediate that Bi ⊆
⋃
j∈J B(xj, 3rj) since

Bi = B(xi, bric+ 10−1) = B(xi, ri) ⊆ B(xi, 3ri).

If not, then there exists k ∈ J with brkc ≥ bric such that Bi ∩ Bk 6= ∅. (If such k does
not exists, then I ′bric ∪ {i} satisfies (A.1) and (A.2). This does not happen due to the

maximality of I ′bric.) Let z ∈ Bi ∩Bk. Then for any y ∈ Bi,

d(xk, y) ≤ d(xk, z) + d(z, xi) + d(xi, y) < brkc+ bric+ bric+ 3 · 10−1 ≤ 3brkc+ 3 · 10−1.

Hence we have
Bi ⊆ B(xk, 3brkc+ 3 · 10−1) ⊆ B(xk, 3rk), (A.3)

proving the lemma. �

We heavily use the following version of Mazur’s lemma in this paper.

Lemma A.2 ([HKST, page 19]). Let (vn)n∈N be a sequence in a normed space V con-
verging weakly to some element v ∈ V . Then there exist a subsequence (vnk)k≥1, a strictly
increasing sequence {mk}k≥1 of positive integers with mk ≥ k, and, for each k ≥ 1,
(λi,k)

mk
i=k ∈ [0, 1]mk−k+1 with

∑mk
i=k λi,k = 1 such that

∑mk
i=k λi,kvni converges strongly to v

as k →∞.
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The next lemma is very useful in some arguments about Poincaré type inequalities.
The proof can be found in [BB, Lemma 4.17] for example.

Lemma A.3. Let (X,A ,m) be a measure space and let E ∈ A with m(E) > 0. If
u ∈ L1

loc(X,m), 1 ≤ p <∞, then( 
E

|u− uE|p dm
)1/p

≤ 2 inf
c∈R

( 
E

|u− c|p dm
)1/p

.

The following result state a kind of stability of discrete energies. A more general
version written in terms of rough isometry is well-known, but the next simple version is
enough for our purpose.

Proposition A.4. Let p > 0. Let Gi = (V,Ei) (i = 1, 2) be connected graphs such that
E2 ⊆ E1. Let di be the graph distance of Gi. Suppose that L∗ := deg(G1) < ∞ and that
there exists D∗ ≥ 1 such that for any {x, y} ∈ E1 \ E2, we have

d2(x, y) ≤ D∗.

Then for all f ∈ RV ,
EG2
p (f) ≤ EG1

p (f) ≤ Cp,D∗,L∗EG2
p (f),

where Cp,D∗,L∗ = 1 + L2D∗
∗
(
Dp−1
∗ ∨ 1

)
.

Proof. Since E2 ⊆ E1, it is immediate that EG2
p (f) ≤ EG1

p (f). To prove the remaining
inequality, for each {x, y} ∈ E1 \E2, we fix a path [zxy(0), zxy(1), . . . , zxy(D∗)] in G2 such
that zxy(0) = x, zxy(D∗) = y and{

zxy(i− 1), zxy(i)
}
∈ E2 ∪

{
{x, x}

∣∣ x ∈ V } for each i = 1, . . . , D∗.

Noting that

sup
{x′,y′}∈E2

#
{
{x, y} ∈ E1

∣∣ {zxy(i− 1), zxy(i)
}

= {x′, y′} for some i} ≤ L2D∗
∗ ,

we have

EG1
p (f) = EG2

p (f) +
∑

{x,y}∈E1\E2

|f(x)− f(y)|p

≤ EG2
p (f) +

(
Dp−1
∗ ∨ 1

) ∑
{x,y}∈E1\E2

D∗∑
i=1

∣∣f(zxy(i− 1)
)
− f

(
zxy(i)

)∣∣p
≤ EG2

p (f) + L2D∗
∗
(
Dp−1
∗ ∨ 1

)
EG2
p (f),

which finishes the proof. �
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B Whitney cover and its applications

This section aims to prove Lemma 11.23. We will use the following version of Whitney
coverings.

Definition B.1 ([Mur23+, Definition 2.3]). Let (X, d) be a metric space and ε ∈ (0, 1/2).
Let U be a non-empty proper subset of X such that U 6= X. A collection of balls
R = {B(xi, ri) | xi ∈ U, ri > 0, i ∈ I} is said to be an ε-Whitney cover of U if it satisfies
the following conditions:

(1) The balls in R are pairwise disjoint.

(2) The radius ri satisfies

ri =
ε

1 + ε
dist(xi, X \ U), for each i ∈ I. (B.1)

(3) It holds that
⋃
i∈I B(xi, 2(1 + ε)ri) = U .

Remark B.2. From (B.1), we observe that B
(
xi, ε

−1(1 + ε)ri
)
⊆ U for all i ∈ I.

The existence of such an ε-Whitney cover of any non-empty open subset U of a given
metric space (X, d) for all ε ∈ (0, 1/2) is ensured by [Mur23+, Proposition 3.2 (a)]. The
following proposition states a basic overlapping property of Whitney covers on a doubling
metric space.

Proposition B.3 ([Mur23+, Proposition 3.2 (d)]). Let (X, d) be a metric space and let
U be a non-empty proper subset of X such that U 6= X. If (X, d) is metric doubling, then
for any ε ∈ (0, 1/2) there exists C > 0 (depending only on ε and the doubling constant
of (X, d)) such that the following hold: for any ε-Whitney cover R = {B(xi, ri) | xi ∈
U, ri > 0, i ∈ I} of U , we have ∑

i∈I

1B(xi,ε−1ri) ≤ C.

Now we can prove the desired lemma:

Proof of Lemma 11.23. By the outer regularity of measures ν1 and ν2 [HKST, Proposition
3.3.37], it suffices to verify (11.29) for all open sets.

To this end, let U be an arbitrary non-empty open subset of X. Let us fix small
enough ε so that 0 < ε < (3A1)−1 and choose a ε-Whitney cover R = {B(xi, ri) | xi ∈
U, ri > 0, i ∈ I} of U . Then we note that B(xi, 3A1ri) ⊆ U for all i ∈ I. By the
bounded overlap property Proposition B.3, there exists C2 depending only on C1, A1 and
the constant associated to the doubling property of (X, d) such that

ν1(U) ≤
∑

B(xi,ri)∈R

ν1(B(xi, 3ri)) ≤
∑

B(xi,ri)∈R

C1ν2(B(xi, 3A1ri)) ≤ C2ν2(U), (B.2)

which concludes the proof. �
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C On the conductive homogeneity

In this section, we discuss relations between our framework (Assumption 6.15) and a no-
tion of the p-conductive homogeneity introduced in [Kig23]. More precisely, we will show
that a p-conductive homogeneous compact metric space with some additinal conditions
(see Assumption C.25 for the detail) satisfies Assumption 6.15. The converse direction
is rather delicate in a general setting. We only show that the planar Sierpiński carpet is
p-conductive homogeneous for any p ∈ (1,∞).

C.1 Partition parametrized by a tree and basic framework

Let us start with the definition of partition parametrized by trees (see [Kig23, Definitions
2.1, 2.2 and 2.3]).

Definition C.1 (rooted tree). Let T be an (non-directed) locally finite, infinite graph
without self-loops whose edge set is given by {v ∼ w}, i.e. T is countable set and

v ∼ w ⇐⇒ w ∼ v, #{v ∈ T | v ∼ w} <∞, and w 6∼ w for all v, w ∈ T .

A graph T is called a tree if and only if there exists a unique simple path between v and
w for any v, w ∈ T with v 6= w. Such the unique path between v and w is denoted by vw.
We write z ∈ vw if vw = [w0, . . . , wn] and w(i) = z for some i = 0, . . . , n. Let φ ∈ T . The
tuple (T, φ) is called a rooted tree with a root φ. In order to clarify the edge structure,
we also use (T,∼) and (T,∼, φ) to denote T and (T, φ) respectively.

The following gives fundamental notations on rooted trees.

Definition C.2. Let (T, φ) be a rooted tree.

(1) For w ∈ T , define π : T → T by

π(w) =

{
wn−1 if w 6= φ and φw = [w0, . . . , wn],

φ if w = φ.
(C.1)

Set
S(w) = {v ∈ T | π(v) = w} \ {w}, (C.2)

and
N∗ := sup

w∈T
#S(w). (C.3)

Moreover, for k ≥ 1, we define Sk(w) inductively as

Sk+1(w) =
⋃

v∈S(w)

Sk(v).

For A ⊆ T , define Sk(A) :=
⋃
w∈A S

k(A).
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(2) For w ∈ T and m ≥ 0, define

|w|T = min{n ≥ 0 | πn(w) = φ} (C.4)

and Tm = {w ∈ T | |w|T = m}. We also use |w| to denote |w|T if no confusion may
occur.

(3) For w ∈ T , define

T (w) = {v ∈ T | there exists n ≥ 0 such that πn(v) = w}. (C.5)

For A ⊆ T , define T (A) :=
⋃
w∈A T (w).

(4) Define
Σ(T ) = {(ωi)i≥0 | ωi ∈ Ti and ωi = π(ωi+1) for all i ≥ 0}. (C.6)

For ω = (ωi)i≥0 ∈ Σ(T ), we write [ω]m for ωm ∈ Tm. For w ∈ T , define

Σw(T ) = {(ωi)i≥0 ∈ Σ | ω|w| = w}. (C.7)

For A ⊆ T , define ΣA(T ) :=
⋃
w∈A Σw(T ). We also use Σ, Σw, ΣA to denote Σ(T ),

Σw(T ) and ΣA(T ) respectively when no confusion may occur.

Remark C.3. Strictly speaking, we should clarify the underlying rooted tree (T, φ) in
the notations like π or S( · ). We are going to use π

(
· ; (T, φ)

)
or S

(
· ; (T, φ)

)
if we need

such explicit notations.

Hereafter in this paper, (T, φ) is a locally finite rooted tree satisfying #{v ∈ T | v ∼
w} ≥ 2 for any w ∈ T .

Definition C.4 (partition). Let (K,O) be a compact metrizable topological space with-
out isolated points, where O is the collection of open sets. A family of non-empty compact
subsets {Kw}w∈T is called a partition of K parametrized by (T, φ) if and only if it satisfies
the following conditions:

(P1) Kφ = K and for any w ∈ T , #Kw ≥ 2 and

Kw =
⋃

v∈S(w)

Kv.

(P2) For any w ∈ Σ,
⋂
m≥0K[ω]m is a single point.

Remark C.5. In the original definition of partition in [Kig20, Definition 2.2.1], the
following condition (P∗) is also assumed:

(P∗) For any w ∈ T , Kw has no isolated points.

Recently, [Sas23, Lemma 3.6] shows that (P∗) is automatically implied by a combination
of (P1) and (P2). So, we can drop (P∗) in the definition of partition parametrized by a
rooted tree.
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The following definition is a collection of basic notations used in [Kig20, Kig23].

Definition C.6. Let {Kw}w∈T be a partition of K parametrized by (T, φ).

(1) For w ∈ T , define

Ow := Kw \
⋃

v∈T|w|\{w}

Kv (C.8)

and
Bw := Kw ∩

⋃
v∈T|w|\{w}

Kv. (C.9)

The partition {Kw}w∈T is called minimal if Ow 6= ∅ for any w ∈ T .

(2) For n ∈ Z≥0, define

E∗n :=
{
{v, w}

∣∣ v, w ∈ Tn, v 6= w,Kv ∩Kw 6= ∅
}
. (C.10)

Let us denote the graph distance of (Tk, E
∗
k) by dk. For w ∈ Tn, n ≥ 0 and M ≥ 0,

define
ΓM(w) := {v ∈ Tn | dn(v, w) ≤M}, (C.11)

and for x ∈ K,

UM(x;n) :=
⋃

w∈Tn;x∈Kw

⋃
v∈ΓM (w)

Kv. (C.12)

For A ⊆ Tn, let dn,A be the graph distance of the subgraph
(
A,E∗n(A)

)
, where

E∗n(A) =
{
{v, w} ∈ E∗n

∣∣ v, w ∈ A}, and define

ΓAM(w) := {v ∈ A | dn,A(v, w) ≤M}. (C.13)

Also, define ΓM(A) :=
⋃
w∈A ΓM(w).

(3) Define
L∗ := sup

w∈T
#Γ1(w). (C.14)

The partition {Kw}w∈T is called uniformly finite if L∗ <∞.

(4) Let χ : Σ → K be the map defined by
⋂
n≥0K[ω]n = {χ(ω)} for each ω ∈ Σ. The

partition {Kw}w∈T is called strongly finite if supx∈K #χ−1({x}) <∞.

Remark C.7. In [Kig20, Definition 2.2.11], the symbol Eh
n is used to denote E∗n. In

addition, the edge set E∗n is considered to be directed in [Kig20] and [Kig23]. In this paper,
we consider non-directed graphs to simplify some notations (the definition of discrete
energies for example).

For details on basic topological properties of partitions, see [Kig20, Chapter 2].

The following property is a consequence of the minimality, which will be used later.
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Lemma C.8. Let {Kw}w∈T be a minimal partition of K parametrized by (T, φ). Let A,B
be subsets of Tn for some n ∈ Z≥0. Then KA ⊆ KB if and only if A ⊆ B.

Proof. It is clear that KA ⊆ KB if A ⊆ B. To prove the converse, suppose that KA ⊆ KB.
Let w ∈ A. Then we clearly have ∅ 6= Ow ⊆

⋃
v∈BKv. For any v, v′ ∈ T with Σv∩Σv′ = ∅,

we have Kv ∩Ov′ = ∅ [Kig20, Lemma 2.2.2(2)]. This implies w ∈ B and hence A ⊆ B. �

Now we recall the standing assumption [Kig23, Assumption 2.15].

Assumption C.9. Let (K,O) be a connected compact metrizable space and let {Kw}w∈T
be a partition parametrized by the rooted tree (T, φ). Let d metrize the topology (K,O)
with diam(K, d) = 1 and let m be a Borel regular probability measure on K. There exist
M∗ ∈ N and r∗ ∈ (0, 1) such that the following conditions (1)-(5) hold.

(1) Kw is connected for any w ∈ T , {Kw}w∈T is minimal and uniformly finite, and
infm≥0 minw∈Tm #S(w) ≥ 2.

(2) There exist ci > 0, i = 1, . . . , 5, such that the following conditions (2A)-(2C) are
true.

(2A) For any w ∈ T ,
c1r
|w|
∗ ≤ diam(Kw, d) ≤ c2r

|w|
∗ . (C.15)

(2B) For any n ∈ N and x ∈ K,

Bd(x, c3r
n
∗ ) ⊆ UM∗(x;n) ⊆ Bd(x, c4r

n
∗ ). (C.16)

(In [Kig20], the metric d is called M∗-adapted if the condition (C.16) holds.)

(2C) For any n ∈ N and w ∈ Tn, there exists x ∈ Kw satisfying

Kw ⊇ Bd(x, c5r
n
∗ ). (C.17)

(3) There exist m1 ∈ N, γ1 ∈ (0, 1) and γ ∈ (0, 1) such that

m(Kw) ≥ γm(Kπ(w)) for any w ∈ T , (C.18)

and
m(Kv) ≤ γ1m(Kw) for any w ∈ T and v ∈ Sm1(w). (C.19)

Furthermore, m is volume doubling with respect to d and

m(Kw) =
∑

v∈S(w)

m(Kv) for any w ∈ T . (C.20)

(4) There exists M0 ≥M∗ such that for any w ∈ T , k ≥ 1 and v ∈ Sk(w),

ΓM∗(v) ∩ Sk(w) ⊆ Γ
Sk(w)
M0

(v).
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(5) For any w ∈ T , π(ΓM∗+1(w)) ⊆ ΓM∗(π(w)).

Remark C.10. A partition satisfying the conditions above except for the connectedness
of Kw and Assumption C.9-(3) exists if the compact metric space (K, d) is uniformly
perfect and metric doubling [Sas23, Proposition 3.11]. We can construct partitions (and
a measure) satisfying all conditions in Assumption C.9 for many concrete examples.

If a given partition {Kw}w∈T satisfies Assumption C.9 with metric d and measure m,
then we also say that (K, d,m, {Kw}w∈T ) satisfies Assumption C.9 to denote metric d and
measure m explicitly.

The following is a collection of consequences of our framework: Assumption C.9.

Proposition C.11. Suppose that (K, d,m, {Kw}w∈T ) satisfies Assumption C.9.

(i) Define
Sk(w)∂ = {v ∈ Sm(w) | Kv ∩Bw 6= ∅}. (C.21)

Then there exists m0 ≥ 1 such that Sk(w) \Sk(w)∂ 6= ∅ for any w ∈ T and k ≥ m0.

(ii) The measure m satisfies the following properties. There exists κ > 0 such that if
v, w ∈ T satisfy |v| = |w| and (v, w) ∈ E∗|v|, then

m(Kv) ≤ κm(Kw). (C.22)

For any v, w ∈ T with v 6= w and |v| = |w|,

m(Kv ∩Kw) = 0. (C.23)

In particular, m(Bw) = 0. Moreover, for any w ∈ T , M ≥ 1 and k ≥ Mm0 (m0

is the same as in (1)), BM,k(w) := {v ∈ Sk(w) | ΓM−1(v) ∩ Sk(w)∂ 6= ∅} satisfies
Sk(w) \BM,k(w) 6= ∅ and

m

 ⋃
v∈Sn

(
Sk(w)\BM,k(w)

)Kv

 ≥ γm0Mm(Kw). (C.24)

(iii) It holds that N∗ < +∞.

(iv) There exists a constant c > 0 (depending only on r∗, ci in Assumption C.9) such
that the following hold: for any w ∈ T there exists xw ∈ Ow such that

Ow ⊇ Bd

(
xw, cr

|w|
∗
)
.

Remark C.12. In [Kig23], the symbol ∂Sk(w) is used instead of Sk(w)∂. We employ
this notation to avoid conflict with notations used in graph theory.
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Proof. The statement (i) is proved in [Kig23, Proposition 2.16] and (iii) is shown in [Kig23,
Lemma 2.13]. The statements in (ii) except for (C.23) are proved in [Kig23, Proposition
2.16 and Lemma 2.14]. So, the rest is proving (C.23) and (iv).

Let v, w ∈ T such that v 6= w and |v| = |w| = n for some n ≥ 0. Enumerate Tn as
{z(1), z(2), . . . , z(ln)} so that z(1) = v and z(2) = w, where ln = #Tn. Inductively, we

define K̃z(j) by K̃z(1) := Kz(1) and K̃z(j+1) := Kz(j+1) \
(⋃k

i=1 K̃z(i)

)
. Then

{
K̃z(j)

}ln
j=1

is a

disjoint family of sets and
⋃ln
j=1 K̃z(j) = K. Therefore,

1 = m(K) =
ln∑
j=1

m
(
K̃z(j)

)
.

On the other hand, Assumption C.9-(3) implies that

1 = m(Kφ) =
ln∑
j=1

m
(
Kz(j)

)
.

Therefore, we conclude that m
(
Kz(j) \ K̃z(j)

)
= 0 for all j ∈ {1, . . . , ln}. In particular,

0 = m
(
Kz(2) \ K̃z(2)

)
= m

(
Kw \

(
Kw \ (Kv ∩Kw)

))
= m(Kv ∩Kw),

which proves (C.23).

As mentioned in the remark after [Kig23, Assumption 2.15], by Assumption C.9-(2),
d is thick in the sense of [Kig20, Definition 3.1.19]. Since {Kw}w∈T is assumed to be
minimal, (iv) follows from [Kig20, Proposition 3.2.2]. �

Let L ∈ N. For x, y ∈ K, define

nL(x, y) := max

{
k ∈ Z≥0

∣∣∣∣ there exist v, w ∈ Tk with v ∈ ΓL(w)
such that x ∈ Kv and y ∈ Kw

}
. (C.25)

Note that nL(x, y) ≤ nL′(x, y) whenever L ≤ L′. The following proposition is a useful
characterization of (C.16) in terms of nL(x, y).

Proposition C.13. Suppose that (K, d,m, {Kw}w∈T ) satisfies Assumption C.9. Then
there exists C ≥ 1 (depending only on r∗,M∗, ci in Assumption C.9) such that

C−1r
nM∗ (x,y)
∗ ≤ d(x, y) ≤ Cr

nM∗ (x,y)
∗ for any x, y ∈ K. (C.26)

Proof. This follows from [Kig20, (2.4.1)]. (As mentioned in [Kig23, page 30; after Defi-

nition 6.7], we have δgM∗(x, y) = r
nM∗ (x,y)
∗ in this setting, where δgM∗ is defined in [Kig20,

Definition 2.3.8]). �
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Corollary C.14. Suppose that (K, d,m, {Kw}w∈T ) satisfies Assumption C.9. Then there
exists c > 0 (depending only on r∗,M∗, ci in Assumption C.9) such that

inf

{
r−n∗ d(x, y)

∣∣∣∣ n ∈ Z≥0, v, w ∈ Tn, x 6= y ∈ K
such that x ∈ Kv, y ∈ Kw and v 6∈ ΓM∗(w)

}
≥ c. (C.27)

Proof. Let n ∈ Z≥0 and x 6= y ∈ K. Assume that there exist v, w ∈ Tn with v 6∈ ΓM∗(w)
such that x ∈ Kv and y ∈ Kw. Then we have n > nM∗(x, y). Combining with Proposition
C.13, we see that r−n∗ d(x, y) ≥ C−1, where C ≥ 1 is the constant in (C.26). �

Since Assumption 6.15 includes the following chain condition of the underlying com-
pact metric space, we will assume this condition in addition to Assumption C.9.

Definition C.15. Let (X, d) be a metric space. For ε > 0 and x, y ∈ X, a sequence
{xi}Ni=0 of points in X is said to be a ε-chain between x and y if

N ∈ N, x0 = x, xN = y and max
i∈{0,...,N−1}

d(xi, xi+1) < ε.

We also define

dε(x, y) :=

{N−1∑
i=0

d(xi, xi+1)

∣∣∣∣ {xi}N−1
i=0 is an ε-chain between x and y

}
.

We say that the metric space (X, d) satisfies the chain condition if there exists C ≥ 1
such that

dε(x, y) ≤ Cd(x, y) for all ε > 0 and x, y ∈ X. (C.28)

The metric space (X, d) is called geodesic if for all x, y ∈ X there exists a continuous map
γ : [0, 1]→ X satisfying

γ(0) = x, γ(1) = y and d(γ(s), γ(t)) = |s− t|d(x, y) for all s, t ∈ [0, 1],

Proposition C.16 ([KM20, Proposition A.1]). Let (X, d) be a metric space such that
Bd(x, r) is relatively compact for any x ∈ X and r > 0. Then the following are equivalent:

(1) (X, d) satisfies the chain condition.

(2) There exists a geodesic metric ρ on X which is bi-Lipschitz equivalent to d, i.e. there
exists a constant C ≥ 1 such that

C−1ρ(x, y) ≤ d(x, y) ≤ Cρ(x, y) for all x, y ∈ X. (C.29)

Remark C.17. The proof of [KM20, Proposition A.1] provides us stronger results:

• If (X, d) satisfies the chain condition, then ρ(x, y) := limε↓0 dε(x, y) is a geodesic metric
and d ≤ ρ ≤ Cd, where C ≥ 1 is the same as in (C.28).
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• If the condition (2) in the above proposition holds, then d satisfies the chain condition
with dε ≤ C2d, where C ≥ 1 is the same as in (C.29).

The following lemma is a consequences of the chain condition in terms of partitions.

Lemma C.18. Suppose that (K, d,m, {Kw}w∈T ) Assumption C.9 and that (K, d) satisfies
the chain condition.

(i) There exists a constant c > 0 (depending only on r∗,M∗, ci in Assumption C.9 and
C ≥ 1 in (C.28)) such that

inf

{(
krn∗
)−1

d(x, y)

∣∣∣∣ n ∈ Z≥0, k ∈ N, v, w ∈ Tn, x 6= y ∈ K
such that x ∈ Kv, y ∈ Kw and v 6∈ Γk(M∗+1)−1(w)

}
≥ c.

(C.30)

(ii) There exists a constant C ≥ 1 such that for any w ∈ T and n ∈ Z≥0,

diam(Sn(w), dn+|w|) ≤ Cr−n∗ .

Proof. (i) By Proposition C.16 (and Remark C.17), there exist a geodesic metric ρ on X
and a constant C ≥ 1 (depending only on the constant in (C.28)) such that C−1ρ ≤ d ≤
Cρ. Let k ∈ N and v, w ∈ T with |v| = |w| =: n and v 6∈ Γk(M∗+1)−1(w). For x ∈ Kv

and y ∈ Kw, let γxy : [0, 1] → X be a geodesic from x to y with respect to ρ. Since γxy
is continuous, for each j = 1, . . . , k − 1, there exist zj ∈ Γj(M∗+1)(v) \ Γj(M∗+1)−1 and
tj ∈ [0, 1] such that γxy(tj) ∈ Kzj . Then Corollary C.14 yields

d(γ(tj), γ(tj+1)) ≥ crn∗ for any j = 0, . . . , k − 1,

where c > 0 is the same as in (C.27), t0 = 0 and tk = 1. Since γxy is a geodesic, we easily
see that

ρ(x, y) =
k−1∑
j=0

ρ(γ(tj), γ(tj+1)) ≥ C−1

k−1∑
j=0

d(γ(tj), γ(tj+1)) ≥ cC−1krn∗ ,

which implies distd(Kv, Kw) ≥ C ′krn∗ if we put C ′ := cC−2.

(ii) Let n ∈ Z≥0 and w ∈ T . Choose v, v′ ∈ Sn(w) so that dn+|w|(v, v
′) =

diam(Sn(w), dn+|w|). We can assume that diam(Sn(w), dn+|w|) ≥ M∗. Let k ∈ N be
the largest integer satisfying k(M∗ + 1)− 1 ≤ diam(Sn(w), dn+m), i.e.

k =
⌊
(diam(Sn(w), dn+|w|) + 1)/(M∗ + 1)

⌋
.

By Lemma C.18, for any x ∈ Kv and x′ ∈ Kv′ ,

d(x, x′) ≥ ckrn+|w|
∗ ≥ c

2(M∗ + 1)
(diam(Sn(w), dn+|w|) + 1)rn+|w|

∗

≥ c

2(M∗ + 1)
diam(Sn(w), dn+|w|)r

n+|w|
∗ , (C.31)
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where c > 0 is the same as in (C.30) and we used k ≥ 2−1(diam(Sn(w), dn+|w|)+1)/(M∗+1)
(since diam(Sn(w), dn+|w|) ≥M∗) in the second inequality.

On the other hand, we have d(x, x′) ≤ diam(Kw, d) ≤ c2r
|w|
∗ . Combining with (C.31),

we get
diam(Sn(w), dn+|w|) ≤ 2c−1(M∗ + 1)c2r

−n
∗ .

We complete the proof. �

C.2 Conductance and neighbor disparity constants

Next we recall the definitions of conductance constants, neighbor disparity constants,
the notion of p-conductive homogeneity and the function space Wp by following [Kig23].
Throughout this subsection, we fix p ∈ (0,∞), a compact metrizable space K, a partition
{Kw}w∈T and a Borel regular probability measure m on K.

Definition C.19 ([Kig23, Definitions 2.17 and 3.4]). Let n ∈ Z≥0, A ⊆ Tn and A1, A2 ⊆
A. Define

Ep,k(A1, A2, A) := cap
(Tn+k,E

∗
n+k)

p

(
Sk(A1), Sk(A2);Sk(A)

)
.

For w ∈ A and M ∈ N, define

EM,p,k(w,A) := Ep,k({w}, A \ ΓAM(w), A), (C.32)

which is called the p-conductance constant of w in A at level k. We also define

EM,p,k := sup
w∈T
EM,p,k(w, T|w|). (C.33)

Definition C.20 ([Kig23, Definitions 2.26 and 2.29]). Let n ∈ N and A ⊆ Tn.

(1) For k ∈ Z≥0 and f : Tn+k → R, define Pn,kf : Tn → R by

(Pn,kf)(w) :=
1∑

v∈Sk(w)m(Kv)

∑
v∈Sk(w)

f(v)m(Kv), w ∈ Tn.

(Note that Pn,kf depends on the measure m.)

(2) For k ∈ Z≥0, define

σp,k(A) := sup
f : Sk(A)→R

Enp,A(Pn,kf)

En+k
p,Sk(A)

(f)
,

which is called the p-neighbor disparity constant of A at level k.

(3) Let {Ai}ki=1 be a collection of subsets of Tn and let NT , NE ∈ N. The family {Ai}ki=1

is called a covering of (A,E∗n(A)) with covering numbers (NT , NE) if

A =
k⋃
i=1

Ai, max
x∈A

#{i | x ∈ Ai} ≤ NT ,

and for any (u, v) ∈ E∗n(A), there exist l ≤ NE and {w(1), . . . , w(l + 1)} ⊆ A such
that w(1) = u, w(l+1) = v and (w(i), w(i+1)) ∈ ⋃k

j=1 E
∗
n(Aj) for any i ∈ {1, . . . , l}.

150



(4) Let J ⊆ ⋃n≥0{A | A ⊆ Tn} and NT , NE ∈ N. The collection J is called a covering
system with covering numbers (NT , NE) if the following conditions are satisfied.

(i) supA∈J #A <∞.

(ii) For any w ∈ T and k ∈ N, there exists a finite subset N ⊆J such that N
is a covering of (Sk(w), E∗n+k(S

k(w))) with covering numbers (NT , NE).

(iii) For any A ∈ J and k ∈ Z≥0 with A ⊆ Tn, there exists a finite subset
N ⊆ J such that N is a covering of (Sk(A), E∗n+k(S

k(A))) with covering
numbers (NT , NE).

The collection J is simply said to be a covering system if there exist NT , NE ∈ N
such that J is a covering system with covering numbers (NT , NE).

(5) Let J ⊆ ⋃n≥0{A | A ⊆ Tn} be a covering system. Define

σ
J
p,k,n := max{σp,k(A) | A ∈J , A ⊆ Tn} and σ

J
p,k := sup

n∈Z≥0

σ
J
p,k,n.

For basic properties on conductance constants and neighbor disparity constants, see
[Kig23, Section 2.2-2.4].

Now we can introduce the notion of p-conductive homogeneity and recall its charac-
terization.

Definition C.21 ([Kig23, Definition 3.4]). A compact metric space K (with a partition
{Kw}w∈T and a measure m) is said to be p-conductive homogeneous if there exists a
covering system J such that

sup
k∈Z≥0

σ
J
p,kEM∗,p,k <∞. (C.34)

Theorem C.22 ([Kig23, Theorem 3.30]). A compact metric space K is p-conductive
homogeneous if and only if there exist c1, c2 > 0 and σ(p) > 0 such that

c1σ(p)−k ≤ EM∗,p,k(v, Tn) ≤ c2σ(p)−k and c1σ(p)k ≤ σp,k,n ≤ c2σ(p)k (C.35)

for any k ∈ Z≥0, n ∈ N and v ∈ Tn.

We also recall the “Sobolev” space Wp due to Kigami.

Definition C.23 ([Kig23, Lemma 3.13]). Define

Wp :=

{
f ∈ Lp(K,m)

∣∣∣∣ sup
n∈N

σ
J
p,n−1,1E (Tn,E∗n)

p (Pnf) <∞
}
,

where Pnf(w) :=
ffl
Kw

f dm, w ∈ Tn.

Remark C.24. (1) The limits limk→∞
(
EM∗,p,k

)−1/k
and limk→∞

(
σ

J
p,k

)1/k
always exist

by [Kig23, Corollary 2,24 and Lemma 2.34]. If K is p-conductive homogeneous,
then, by (C.35), these limits must be equal to the constant σ(p) in Theorem C.22.

151



(2) Suppose that (K, d,m, {Kw}w∈T ) satisfies Assumption C.9). Then, by [Kig20, The-
orem 4.6.9]

dimARC(K, d) = inf
{
p
∣∣∣ lim
k→∞
EM∗,p,k = 0

}
. (C.36)

If K is p-conductive homogeneous, then (C.36) tells us that p > dimARC(K, d) if

and only if σ(p) > 1. However, there is a possibility that σ
J
p,k ≥ 1 for any p > 0

[Kig23, Proposition 2.31]. We need to avoid such a covering system J in the case
of p ≤ dimARC(K, d). For details, see [Kig23, page 31].

(3) If σp,k,1 . σ(p)k for any k ≥ 0, then

Wp =

{
f ∈ Lp(K,m)

∣∣∣∣ sup
n∈N

σ(p)nE (Tn,E∗n)
p (Pnf) <∞

}
.

C.3 From Kigami’s framework

We now describe how to interpret partitions parametrized by a tree into the framework
introduced in Section 6. First, we fix our framework. Suppose that (K, d,m, {Kw}w∈T )
satisfies Assumption C.9 and let p ∈ (1,∞). In addition, suppose that m is df-Ahlfors
regular with respect to d for some df ≥ 1 and that (K, d) is p-conductive homogeneous.
Let r∗ ∈ (0, 1) be the constant in Assumption C.25-(1) and let σ(p) > 0 be the constant
in Theorem C.22. Set R∗ := r−1

∗ and

dw(p) := df +
log σ(p)

logR∗
. (C.37)

We will work under the following assumption.

Assumption C.25. Let p ∈ (1,∞). Let (K, d) be a compact metric space with
diam(K, d) = 1, let m be a Borel regular probability measure on K, and let {Kw}w∈T be
a partition parametrized by a rooted tree (T, φ). We suppose the following conditions.

(1) (K, d,m, {Kw}w∈T ) satisfies Assumption C.9.

(2) (K, d) satisfies the chain condition.

(3) m is Ahlfors regular with respect to d.

(4) (K, d) is p-conductive homogeneous.

(5) df − dw(p) < 1.

Hereafter, we fix (K, d,m, {Kw}w∈T ) satisfying Assumption C.25. We consider a se-
quence of finite connected graphs Gn := (Tn, E

∗
n), n ∈ N. For n > k ≥ 1, define

πn,k : Tn → Tk by

πn,k(w1w2 . . . wn) = w1w2 . . . wk for w = w1w2 . . . wn ∈ Tn.

Equivalently, πn,k = πn−k|Tn , where π is the map in (C.1). Then it is clear that
{πn,k; 1 ≤ k < n} is a projective family (see Definition 6.1). Furthermore, we easily
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see that π−1
n+k,n(w) = Sk(w) for any n ∈ N, k ≥ 0 and w ∈ Tn. Define probability mea-

sures mn on Tn by setting mn(w) = m(Kw) for w ∈ Tn. Then (mn)n≥0 is consistent (with
respect to {πn,k}) by (C.20) and π−1

n+k,n(w) = Sk(w).

The next theorem is the main result of this section.

Theorem C.26. Suppose that (K, d,m, {Kw}w∈T ) satisfies Assumption C.25. Let R∗ ∈
(0, 1), df ≥ 1, dw(p) > 0, {Gn}n∈N, {πn,k | 1 ≤ k < n} be given as above. Then {Gn} along
with {πn,k} satisfies Assumption 6.15.

Proof. We first show that {Gn} along with {πn,k} is R∗-scaled and R∗-compatible with

(K, d). To this end, we introduce a new family {K̃w}w∈T as follows. Set K̃φ := K
and enumerate Tn so that Tn = {w(1;n), . . . , w(ln;n)}, n ∈ N. Inductively, we define{
{K̃w}w∈Tn

∣∣ n ∈ Z≥0

}
by

K̃w(1;n) := Kw(1;n) ∩ K̃π(w(1;n)) and K̃w(j;n) :=

(
Kw(j;n) \

j−1⋃
i=1

K̃w(i;n)

)
∩ K̃π(w(1;n)).

Then it is clear that {K̃w}w∈Tn are disjoint family of Borel sets and K̃w =
⋃
v∈S(w) K̃v for

any w ∈ T .

Note that diam(π−1
n+k,n(w), dn+k) ≤ CRk

∗ for any w ∈ Tn and k ∈ Z≥0, where C ≥
1 is the same as in Lemma C.18(ii). For each w ∈ Tn, choose pn(w) ∈ Ow so that

Bd(pn(w), cR−n∗ ) ⊆ Ow ⊆ K̃w, where c > 0 is the constant in Proposition C.11(iv).

Let ck(w) ∈ Tk+|w| be the element such that pn(w) ∈ K̃ck(w) for each k ≥ 0. Then we
immediately have dk+n(ck(v), ck(w)) ≤ 2CRk

∗ for any {v, w} ∈ E∗n, i.e., (6.4) holds. Let
A1 ≥ 1 and set Bk(w) := Bdk+|w|(ck(w), A−1

1 Rk
∗) for k ∈ N and w ∈ T . If A1 is large enough

so that 2c2A
−1
1 ≤ c, where c2 > 0 is the constant in (C.15), then

KBk(w) ⊆ Bd(pn(w), 2A−1
1 Rk

∗ × c2r
n+k
∗ ) ⊆ Bd(pn(w), cR−n∗ ) ⊆ Kw = Kπ−1

n+k,n(w),

which together with Lemma C.8 implies Bk(w) ⊆ π−1
n+k,n(w). Hence (6.3) holds by putting

A1 := C ∨ (2c−1c2). Therefore {Gn} along with {πn,k} is R∗-scaled.

Next we show that {Gn} along with {πn,k} is R∗-compatible with (K, d). It is imme-
diate from (C.15) that d(pn(v), pn(w)) ≤ 2dn(v, w)× c2R

−n
∗ for any v, w ∈ Tn, which gives

the upper estimate of (6.5). The converse estimate d(pn(v), pn(w)) & dn(v, w)R−n∗ follows
from Lemma C.18(i), and hence Definition 6.4(i) holds. The other properties (ii)-(iv) in
Definition 6.4 are obvious, so {Gn} along with {πn,k} is R∗-compatible.

Lastly, we show U-PIp(β) and U-CFp(ϑ, β) (for some ϑ ∈ (0, 1].) By virtue of Proposi-
tions 6.8 and 6.12, it is enough to show that {Gn} satisfies U-AR(df), U-BCLlow

p (df−dw(p))

and U-capp,≤(dw(p)). Note that mn(w) = m(Kw) = m(K̃w) by (C.20) and hence U-
AR(df) is immediate from Lemma 6.6. Combining (C.35) and (6.3), we easily obtain
U-capp,≤(dw(p)). The rest of this proof will be devoted to U-BCLlow

p (df − dw(p)). (The
argument is very similar to the proof of Proposition 10.7(iii).)
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Let κ > 0, n ∈ N and 1 ≤ R ≤ diam(Gn). Let Bi = Bdn(xi, R), xi ∈ Tn,
i = 1, 2, such that distdn(B1, B2) ≤ κR. Recall that C ≥ 1 is a constant such that
diam(π−1

n+k,n(w), dn+k) ≤ CRk
∗ . Choose n(R) ∈ Z so that

2CRn(R)
∗ < R ≤ 2CRn(R)+1

∗ .

By R ≤ diam(Gn) and diam(Gn) ≤ 2Can∗ , we then have n ≥ n(R).

First, we consider the case of R > 2C. Then n(R) ≥ 0. It is a simple observation that
there exist w(1), w(2) ∈ Tn−n(R) such that

Sn(R)
(
w(i)

)
⊆ Bi and xi ∈ Sn(R)(w(i)) for each i = 1, 2.

Then, we have

distdn

(
Sn(R)

(
w(1)

)
, Sn(R)

(
w(2)

))
≤ R + κR +R ≤ 2(2 + κ)R∗ ·Rn(R)

∗ .

This together with Lemma C.18(i) implies that there exist w ∈ Tn−n(R) and M(κ) ∈ N
(depending only on κ,R∗,M∗ and the constants ci in Assumption C.9) such that w(i) ∈
ΓM(κ)(w). Set L(κ) := (2M(κ) + 1)A1/(2C), where A1 ≥ 1 is the constant in (6.3). Using
Lemma 2.3(ii) and following a similar argument to (10.9), we can show that

ModGn
p ({θ ∈ Path(B1, B2;Gn) | diam(θ, dn) ≤ L(κ)R})

≥ ModGn
p

({
θ ∈ Path

(
Sn(R)

(
w(1)

)
, Sn(R)

(
w(2)

)
;Gn

) ∣∣ diam(θ, dn) ≤ 2CL(κ)Rn(R)
∗
})

≥ ModGn
p

(
Sn(R)

(
w(1)

)
, Sn(R)

(
w(2)

)
;Sn(R)

(
ΓM(κ)(w)

))
& Ep,n(R)(w(1), w(2),ΓM(κ)(w)) (by Lemma 2.12).

By [Kig23, (2.16)], (C.35) and a similar argument as the proof of [Kig23, Lemma 3.32],
we have σn(R)Ep,n(R)(w(1), w(2),ΓM(κ)(w)) & 1. Since σ−n(R) � Rdf−dw(p), there exists a
constant c(κ) > 0 (depending only on p, κ,R∗,M∗ and the constants ci in Assumption
C.9) such that

ModGn
p ({θ ∈ Path(B1, B2;Gn) | diam(θ, dn) ≤ L(κ)R}) ≥ c(κ)Rdf−dw(p).

Let us consider the case 1 ≤ R ≤ 2C to complete the proof. By (2.2) in Lemma 2.4,

ModGn
p ({θ ∈ Path(B1, B2;Gn) | diam(θ, dn) ≤ L(κ)R}) ≥

(
L(κ)R

)1−p

≥ (2C)−pL(κ)1−pRdf−dw(p),

where we used df − dw(p) < 1 (Proposition 10.7(i)) and R ≤ 2C in the last inequality. �

Corollary C.27. Suppose that (K, d,m, {Kw}w∈T ) satisfies Assumption C.25.

(i) It holds that Wp = Fp = B
dw(p)/p
p,∞ . Moreover, there exist a constant C ≥ 1 such that

for any f ∈ Lp(K,m),

sup
r>0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rdw(p)

m(dy)m(dx) ≤ C lim
r↓0

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|p
rdw(p)

m(dy)m(dx).
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(ii) There exist constants C ≥ 1 and A ≥ 1 such that for any f ∈ Lp(K,m), z ∈ K and
R > 0,
ˆ
Bd(z,R)

∣∣f − fBd(z,R)

∣∣p dm ≤ CRdw(p) lim
s↓0

ˆ
Bd(z,AR)

 
Bd(x,s)

|f(x)− f(y)|p
sdw(p)

m(dy)m(dz).

Proof. (i) Recall the definition of the normalized energy Ẽ (n)
p in (6.20). The identity

Wp = Fp immediately follows from Ẽ (n)
p (f) = σnEGnp (Mnf). Hence Theorem 7.1 yields

the desired statements.

(ii) This follows from a combination of Lemmas 6.24, 7.3 and 7.4. �

C.4 Conductive homogeneity of the Sierpiński carpet

In this subsection, we prove the p-conductive homogeneity of the planar Sierpiński carpet.
Hereafter, let p ∈ (1,∞), let (K,S, {Fi}i∈S) be the planar Sierpiński carpet, let {Gn}n∈N
be the sequence of finite graphs as in Section 10 and let m be the self-similar measure
on K with the weight (1/8, . . . , 1/8). Recall that a∗ = 3, df = log 8/ log 3, dw(p) =
log (8ρ(p))/ log 3 and Pnf(w) = Mnf(w) =

ffl
Kw

f dm for n ∈ Z≥0, f ∈ Lp(K,m).

The following main theorem in this subsection follows from a combination of U-
PIp(dw(p)) and the self-similarity.

Theorem C.28. The Sierpiński carpet equipped with the self-similar measure with the
equal weight is p-conductively homogeneous for any p ∈ (1,∞). In particular, σ(p) = ρ(p)
and Fp =Wp.

Proof. First, we fix a choice of covering systems. Define J` ([Kig23, (4.15)]) by

J` = {{v, w} | {v, w} ∈ E∗n for some n ∈ Z≥0, #(Kv ∩Kw) ≥ 2}.

By Theorem 10.2(a), we can choose a constant λ ≥ 1 so that the following statement
holds: For any k, l ∈ N and {v, w} ∈ J` ∩ E∗l , there exists ck(v, w) ∈ Sk({v, w}) such
that Sk({v, w}) ⊆ Bdk+l

(ck(v, w), λak∗). Fix a large enough k∗ ∈ N so that λAPIa
−k∗
∗ < 1,

where API is the constant in U-PIp(dw(p)) (Theorem 10.2(b)). We note that, by choosing

R = 2 diam(Gn) in U-PIp(dw(p)), there exists C̃PI > 0 such that∑
y∈Wn

|f(y)− fWn|p ≤ C̃PIa
ndw(p)
∗ EGnp (f) for any n ∈ N and f ∈ RVn . (C.38)

To prove the p-conductive homogeneity (C.34) with J = J`, it is enough to show that

σ
J`
p,n . ρ(p)n for any n ∈ N by (10.4). Let us fix l ∈ N and {v, w} ∈J`∩E∗l . It is easy to

find (v′, w′) ∈ Sk∗(v)×Sk∗(w) satisfying {v′, w′} ∈J` and Bdn+l+k∗
(cn(v′, w′), λAPIa

n
∗ ) ⊆

Sn({v, w}) since ‘there are ak∗+l∗ copies of a n-cell along the intersection Kv ∩ Kw’. For
simplicity, set

Bn
v′,w′ := Bdn+l+k∗

(cn(v′, w′), λan∗ ) and APIB
n
v′,w′ := Bdn+l+k∗

(cn(v′, w′), λAPIa
n
∗ ).

155



Let z1, z2 ∈ Wk∗ such that v′ = vz1 and w′ = wz2. Similar to (6.17), we have from
U-PIp(dw(p)) that for any f ∈ Lp(K,m) and n ∈ N,∣∣fKv′ − fKw′∣∣p ≤ C1a

(n+k∗)(dw(p)−df)
∗ EGn+l+k∗

p,APIB
n
v′,w′

(Mn+l+k∗f) ≤ C1ρ(p)n+k∗EGn+l+k∗
p,Sn+k∗ ({v,w})(Mn+l+k∗f),

where C1 > 0 is independent of f, n, v, w. In addition,∣∣fKv′ − fKv∣∣p =
∣∣(f ◦ Fv)K − (f ◦ Fv)Kz1

∣∣p =
∣∣∣(Mn+k∗(f ◦ Fv)

)
Wn+k∗

−
(
Mn+k∗(f ◦ Fv)

)
Sn(z1)

∣∣∣p
≤ (#Sn(z1))−1

∑
x∈Wn+k∗

∣∣∣(Mn+k∗(f ◦ Fv)
)
(x)−

(
Mn+k∗(f ◦ Fv)

)
Wn+k∗

∣∣∣p
≤ (#Sn(z1))−1C̃PIa

(n+k∗)dw(p)
∗ EGn+k∗

p

(
Mn+k∗(f ◦ Fv)

)
(by (C.38))

≤ C2a
(n+k∗)(dw(p)−df)
∗ EGn+l+k∗

p,Sn+k∗ ({v,w})(Mn+l+k∗f), (C.39)

where C2 > 0 is also independent of f, n, v, w. Similar to (C.39), we have
∣∣fKw′ − fKw∣∣p ≤

C2a
n(dw(p)−df)
∗ EGn+l+k∗

p,Sn+k∗ ({v,w})(Mn+l+k∗f). Combining these estimates, we show that∣∣(Mn+l+k∗f)Sn+k∗ (v) − (Mn+l+k∗f)Sn+k∗ (w)

∣∣p = |fKv − fKw|p

≤ 3p−1
(∣∣fKv − fKv′∣∣p +

∣∣fKv′ − fKw′∣∣p +
∣∣fKw − fKw′∣∣p)

≤ 3pCa(n+k∗)(dw(p)−df)
∗ EGn+l+k∗

p,Sn+k∗ ({v,w})(Mn+l+k∗f) = 3pCρ(p)n+k∗EGn+l+k∗
p,Sn+k∗ ({v,w})(Mn+l+k∗f),

where C := C1 ∨ C2. This estimate implies σ
J`

p,n+k∗
≤ 3pCρ(p)n+k∗ for any n ∈ N and

proves (C.34). �
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Mathav Murugan
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2,
Canada.
E-mail: mathav@math.ubc.ca

Ryosuke Shimizu (JSPS Research Fellow-PD)
Department of Mathematics, Faculty of Science and Engineering, Waseda University, 3-
4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
E-mail: r-shimizu@aoni.waseda.jp

162

http://mathscinet.ams.org/mathscinet-getitem?mr=1729479
http://mathscinet.ams.org/mathscinet-getitem?mr=1872526
http://mathscinet.ams.org/mathscinet-getitem?mr=4565993
http://mathscinet.ams.org/mathscinet-getitem?mr=1809341
http://mathscinet.ams.org/mathscinet-getitem?mr=4320091
http://arxiv.org/abs/2110.13902
http://mathscinet.ams.org/mathscinet-getitem?mr=1676353
http://arxiv.org/abs/2306.09900

	Introduction and main results
	Overview for the rest of the paper.

	Preliminaries
	Basic facts and terminologies of graphs
	Combinatorial p-modulus of path families
	Discrete p-energy, p-Laplacian and associated capacity
	Volume growth conditions

	Loewner-type lower bounds for p-modulus
	Discrete (p,p)-Poincare inequality
	Equivalence with two-point estimates
	Two-point estimates are implied by Loewner bounds

	Discrete elliptic Harnack inequality
	EHI for discrete p-harmonic functions
	Hölder continuous cut-off functions with controlled energy

	Sobolev space via a sequence of discrete energies
	Approximating a metric space by a sequence of graphs
	Hypotheses on a sequence of graphs
	Sobolev space and cutoff functions
	Scaling limit of discrete energies and regularity
	Poincaré type inequalities and partition of unity

	Comparison with Korevaar–Schoen energies
	Self-similar sets and self-similar energies
	Self-similar sets and related notations
	Self-similar p-energy

	Associated self-similar energy measures
	Basic properties of self-similar energy measures
	Chain rule of energy measures and strong locality
	Minimal energy-dominant measures
	Estimates of energy measures

	Self-similar energies on the Sierpinski carpet
	Checking all assumptions
	Quasi-uniqueness of energies

	The attainment problem for Ahlfors regular conformal dimension on the Sierpinski carpet
	Newton-Sobolev space N1p
	Lipschitz partition of unity and localized energies
	Loewner metric and measure
	Identifying self-similar and Newtonian Sobolev spaces

	Conjectures and open problems
	A collection of useful elementary facts
	Whitney cover and its applications
	On the conductive homogeneity
	Partition parametrized by a tree and basic framework
	Conductance and neighbor disparity constants
	From Kigami's framework
	Conductive homogeneity of the Sierpinski carpet


