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Abstract

Given a strongly local Dirichlet form on a metric measure space that satisfies
Gaussian heat kernel bounds, we show that the martingale dimension of the associ-
ated diffusion process coincides with Cheeger’s analytic dimension of the underlying
metric measure space. More precisely, we show that the pointwise version of the
martingale dimension introduced by Hino (called the pointwise index) almost ev-
erywhere equals the pointwise dimension of the measurable differentiable structure
constructed by Cheeger. Using known properties of spaces that admit a measurable
differentiable structure, we show that the martingale dimension is bounded from
above by Assouad dimension, thereby extending an earlier bound obtained by Hino
for some self-similar sets.

1 Introduction

The notions of martingale and analytic dimensions are motivated by classical results
concerning stochastic integral representation of martingale additive functionals and dif-
ferentiability of Lipschitz functions on Euclidean space, respectively. We begin with an
informal description of these dimensions, deferring the technical definitions to later sec-
tions.

The concept of martingale dimension is motivated by a theorem of Ventcel’ that estab-
lishes a stochastic integral representation for a class of martingale additive functionals as-
sociated with Brownian motion in Rn. Ventcel’ demonstrated that every square-integrable
martingale additive functional for Brownian motion in Rn can be expressed as a sum of
n stochastic integrals with respect to a chosen set of n martingales, each corresponding
to a component of the Brownian motion in Rn [Ven].

More generally, the martingale dimension of a Markov process is the minimal number
k such that every martingale additive functional satisfying suitable integrability condi-
tions can be expressed as a sum of k stochastic integrals with respect to a chosen “ba-
sis” of martingale additive functionals (see §2.2 and Definition 2.5). This concept was
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originally developed by Motoo and Watanabe [MW] for martingale additive functionals
corresponding to a Markov process and later generalized to a more abstract setting of
filtered probability spaces by Davis and Varaiya [DV] under the name multiplicity of a
filtration.

The notion of analytic dimension arises from Cheeger’s far-reaching generalization of
Radamacher’s theorem [Che, Theorem 4.38]. Radmacher’s theorem asserts that every
Lipschitz function on Rn is differentiable almost everywhere with respect to the Lebesgue
measure [Rad],[EG, Theorem 3.2]. In order to describe Cheeger’s notion of differentiabil-
ity, let us recall that if f : RN Ñ R is differentiable at x P RN if and only if there exists
a unique linear functional L : RN Ñ R such that

fpyq � fpxq � Lpy � xq � op∥x� y∥q, as y Ñ x,

where ∥�∥ is Euclidean norm.

Cheeger formulated a notion of differentiability of a Lipschitz function f : X Ñ R
on a metric space pX, dq in terms of charts pU, ϕq, where ϕ : X Ñ RN is a Lipschitz
function and U is a measurable subset of X. On a metric space pX, dq, differentiability
of f : X Ñ R at a point x P U with respect to ϕ is defined as the existence of a unique
linear functional L : RN Ñ R such that fp�q coincides with fpxq � Lpϕp�q � ϕpxqq up to
first-order; that is,

fpyq � fpxq � Lpϕpyq � ϕpxqq � opdpx, yqq, as y Ñ x.

A chart pU, ϕq on a metric measure space pX, d,mq satisfies the property that every
Lipschitz function f : X Ñ R is differentiable m-almost everywhere on U . The existence
of a countable family of charts tpUα, ϕαqu such that ϕα : Uα Ñ RNpαq with mpUαq ¡ 0
and YαUα � X can be viewed as the analogue of almost everywhere differentiability
of Lipschitz functions in the setting of metric measure spaces and hence is a version of
Radamacher’s theorem. Such a collection of charts covering the space is referred to as
a measurable differentiable structure. The smallest N0 such that every chart pUα, ϕαq as
above has dimensionNpαq ¤ N0 is called the analytic dimension of a metric measure space
pX, d,mq (see §2.4 and Definition 2.12). We refer to [KM16] for a primer on Cheeger’s
Radamacher theorem.

Spaces that admit a measurable differentiable structure are also known as Lipschitz
differentiability spaces [Bat, Dav]. There are alternate approaches to differentiability of
Lipschitz functions due to D. Bate and N. Weaver [Bat, Wea]. In [Bat], Bate developed a
different approach to differentiability of Lipschitz functions by decomposing the measure
into 1-rectifiable measures which are called Alberti representations. Weaver’s approach
was to define measurable vector fields (called derivations) which are operators acting
on Lipschitz functions [Wea]. We refer to the work of Schioppa [Sch] for a comparison
between these approaches.

Next, we outline some key ideas to establish the equality between martingale and
analytic dimensions. Our approach to compute martingale dimension is to analyze energy
measures associated to the Dirichlet form. This approach of analyzing energy measures to
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compute martingale dimension is originally due to Kusuoka [Kus89, Kus93] for diffusions
on fractals to answer a question of Barlow and Perkins [BP, Problem 10.6]. This approach
was further developed in the general setting of strongly local Dirichlet forms by Hino
[Hin08, Hin10, Hin13a, Hin13b, Hin14]. More precisely, Hino defines the index of a
strongly local Dirichlet form using energy measures and shows that it coincides with the
martingale dimension (see Definition 2.7 and [Hin10, Theorem 3.4]). Therefore, in order
to obtain the equality between martingale and analytic dimensions, it suffices to show the
equality between index and analytic dimension.

This requires us to relate energy measures to the analysis of Lipschitz functions. A
key ingredient of our proof are estimates relating energy measures and pointwise Lipschitz
constants established by Koskela and Zhou [KZ12, Theorem 2.2]. However, in order to
apply the results of [KZ12] we need a bi-Lipschitz equivalence between the given metric
and the intrinsic metric of the Dirichlet form (see the proof of Lemma 3.6). We establish
this bi-Lipschitz equivalence by using recent results in [KM20, Mur20] (see the proof of
Proposition 2.17(ii)). Our analysis leads to a refined equality between pointwise versions
of martingale dimension (called the pointwise index) and pointwise version of analytic
dimension which is the pointwise dimension of the charts in the measurable differentiable
structure.

Our main result establishing the equality between martingale and analytic dimensions
has several useful consequences. One new consequence of our work is that the martingale
dimension is finite under Gaussian heat kernel estimates. Moreover, it allows us to extend
an inequality between martingale and spectral dimensions established by Hino in [Hin13a]
without the use of self-similarity (see Corollary 3.2 and Remark 3.3(c)). Obtaining this
estimate was a primary impetus behind our work. In the survey [Hin14], the author
asks to clarify the relationship between the work of Cheeger on measurable differentiable
structures [Che] and index of Dirichlet form defined in [Hin10]. Our main result (Theorem
3.1(iii)) clarifies the precise relationship between these works.

The remainder of the work is organized as follows. In §2.1, we recall basic notions in the
theory of Dirichlet forms such as energy measures, intrinsic metric and Gaussian estimates
on the heat kernel. In §2.2 and §2.3, we recall the definitions of martingale dimension
and index. In §2.4, we recall some fundamental notions in Cheeger’s work on measurable
differentiable structures such as charts, differentiability with respect to charts, analytic
dimension and its pointwise version. In §2.5, we recall notions of doubling property
in a metric measure space and the definition of Assouad dimension. In §2.6, we recall
the definition of Poincaré inequalities used in the setting of Dirichlet forms and metric
measure spaces. We establish some useful consequences of Gaussian heat kernel bounds
in Proposition 2.17. We state and prove the main result in §3 and recall some examples
in §3.1. Many interesting open questions concerning martingale dimension remain. We
record some of these questions in §3.2.
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2 Setting and Preliminaries

2.1 Metric measure Dirichlet space and energy measure

Throughout this paper, we consider a metric space pX, dq in which Bpx, rq :� Bdpx, rq :�
ty P X | dpx, yq   ru is relatively compact (i.e., has compact closure) for any px, rq P
X�p0,8q, and a Radon measure m on X with full support, i.e., a Borel measure m on X
which is finite on any compact subset of X and strictly positive on any non-empty open
subset of X. We always assume that X contains at least two elements, and such a triple
pX, d,mq is referred to as a metric measure space.

Let pE ,Fq be a symmetric Dirichlet form on L2pX,mq; that is, F is a dense linear
subspace of L2pX,mq, and E : F � F Ñ R is a non-negative definite symmetric bilinear
form which is closed (F is a Hilbert space under the inner product E1 :� E �x�, �yL2pX,mq)
and Markovian (f� ^ 1 P F and Epf� ^ 1, f� ^ 1q ¤ Epf, fq for any f P F). Recall
that pE ,Fq is called regular if F XCcpXq is dense both in pF , E1q and in pCcpXq, } � }supq,
and that pE ,Fq is called strongly local if Epf, gq � 0 for any f, g P F with suppmrf s,
suppmrgs compact and suppmrf � a1Xs X suppmrgs � H for some a P R. Here CcpXq
denotes the space of R-valued continuous functions on X with compact support, and
for a Borel measurable function f : X Ñ r�8,8s or an m-equivalence class f of such
functions, suppmrf s denotes the support of the measure |f | dm, i.e., the smallest closed
subset F of X with

³
XzF

|f | dm � 0, which exists since X has a countable open base

for its topology; note that suppmrf s coincides with the closure of Xzf�1p0q in X if f is
continuous. The pair pX, d,m, E ,Fq of a metric measure space pX, d,mq and a strongly
local, regular symmetric Dirichlet form pE ,Fq on L2pX,mq is termed a metric measure
Dirichlet space, or anMMD space in abbreviation. By Fukushima’s theorem about regular
Dirichlet forms, the MMD space corresponds to a symmetric Markov processes on X with
continuous sample paths [FOT, Theorem 7.2.1 and 7.2.2]. We refer to [FOT, CF] for
details of the theory of symmetric Dirichlet forms.

We recall the definition of energy measure. Note that fg P F for any f, g P
F X L8pX,mq by [FOT, Theorem 1.4.2-(ii)] and that tp�nq _ pf ^ nqu8n�1 � F and
limnÑ8p�nq _ pf ^ nq � f in norm in pF , E1q by [FOT, Theorem 1.4.2-(iii)].

Definition 2.1. Let pX, d,m, E ,Fq be an MMD space. The energy measure Γpf, fq of
f P F associated with pX, d,m, E ,Fq is defined, first for f P F XL8pX,mq as the unique
(r0,8s-valued) Borel measure on X such that»

X

g dΓpf, fq � Epf, fgq � 1

2
Epf 2, gq for all g P F X CcpXq, (2.1)

and then by Γpf, fqpAq :� limnÑ8 Γ
�p�nq _ pf ^ nq, p�nq _ pf ^ nq�pAq for each Borel

subset A of X for general f P F . The signed measure Γpf, gq for f, g P F is defined by
polarization.

Definition 2.2 (HKEp2q). Let pX, d,m, E ,Fq be an MMD space, and let tPtut¡0 denote
its associated Markov semigroup. A family tptut¡0 of r0,8s-valued Borel measurable
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functions on X �X is called the heat kernel of pX, d,m, E ,Fq, if pt is the integral kernel
of the operator Pt for any t ¡ 0, that is, for any t ¡ 0 and for any f P L2pX,mq,

Ptfpxq �
»
X

ptpx, yqfpyq dmpyq for m-a.e. x P X.

We say that pX, d,m, E ,Fq satisfies the Gaussian heat kernel estimates HKEp2q, if
its heat kernel tptut¡0 exists and there exist C1, c1, C2, c2, c3 P p0,8q such that for each
t ¡ 0,

c2

m
�
Bpx,?tq� exp

�
�C2

dpx, yq2
t



¤ ptpx, yq ¤ C1

m
�
Bpx,?tq� exp

�
�c1dpx, yq

2

t



HKEp2q

for m-a.e. x, y P X.

Definition 2.3. Let pX, d,m, E ,Fq be an MMD space. We define its intrinsic metric
dint : X �X Ñ r0,8s by

dintpx, yq :� sup
 
fpxq � fpyq �� f P Floc X CpXq, Γpf, fq ¤ m

(
, (2.2)

where

Floc :�
#
f

�����
f is anm-equivalence class of R-valued Borel measurable
functions on X such that f1V � f#1V m-a.e. for some
f# P F for each relatively compact open subset V of X

+
(2.3)

and the energy measure Γpf, fq of f P Floc associated with pX, d,m, E ,Fq is defined as the
unique Borel measure on X such that Γpf, fqpAq � Γpf#, f#qpAq for any relatively com-
pact Borel subset A of X and any V, f# as in (2.3) with A � V ; note that Γpf#, f#qpAq
is independent of a particular choice of such V, f# by [FOT, Corollary 3.2.1] and [Hin10,
(2.1)].

2.2 Martingale dimension

Throughout this subsection, we fix an MMD space pX, d,m, E ,Fq. We define the 1-
capacity Cap1pAq of A � X with respect to Dirichlet form pE ,Fq on L2pX,mq by

Cap1pAq :� inf
 
E1pf, fq

�� f P F , f ¥ 1 m-a.e. on a neighborhood of A
(
, (2.4)

where E1 :� E � x�, �yL2pX,mq as defined before. A set N � X with Cap1pNq � 0 is called
an exceptional set. Let A � X. A statement depending on x P A is said to hold quasi-
everywhere (abbreviated as ‘q.e.’) on A if there exists a set N � X with Cap1pNq such
that the statement is true for every x P AzN .

By a the fundamental theorem of M. Fukushima [FOT, Theorem 7.2.1], the assumption
of the regularity of the Dirichlet form pE ,Fq on L2pX,mq allows us to associate to the
MMD space pX, d,m, E ,Fq an m-symmetric Hunt process on X. We recall that a a
Hunt process X � pΩ,M, tXtutPr0,8s, tPxuxPXB

q on X is a right-continuous strong Markov
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process on pXB,BpXBqq which has the left limit Xt�pωq :� limsÒtXspωq in XB for any
pt, ωq P p0,8q � Ω and is quasi-left-continuous on p0,8q (see [CF, Definition A.1.23-(ii)
and Theorem A.1.24]), where XB � X YtBu denotes the one-point compactification of X.
We always consider each function f : X Ñ r�8,8s as being defined also at B by setting
fpBq :� 0. Let F� � tFtutPr0,8s denote the minimum augmented admissible filtration of
X in Ω as defined in [CF, p. 397], so that F� is right-continuous, i.e., Ft �

�
sPpt,8q Fs for

any t P r0,8q by [CF, Theorem A.1.18]. For any measure µ on X, by Pµ, we denote the
measure Pµp�q :�

³
X
Px dµpxq and the integrals with respect to Pµ as Eµ.

Definition 2.4 (Additive functional). A collection A � tAtutPr0,8q of p�8,8s-valued
random variables on Ω is called a additive functional (AF for short) of X , if the following
three conditions hold:

(i) At is Ft-measurable for any t P r0,8q.
(ii) There exist Λ P F8 and a properly exceptional set N � X for X such that PxpΛq � 1

for any x P XzN and θtpΛq � Λ for any t P r0,8q.
(iii) For any ω P Λ, r0,8q Q t ÞÑ Atpωq is a r�8,8s-valued function with A0pωq � 0

such that for any s, t P r0,8q, Atpωq   8 if t   ζpωq, Atpωq � Aζpωqpωq if t ¥ ζpωq,
and At�spωq � Atpωq � Aspθtpωqq.

The sets Λ and N are referred to as a defining set and an exceptional set, respectively, of
the additive functional A.

We say that an additive functional is a positive continuous additive functional (PCAF)
if it is non-negative and continuous on its defining set.

We say that an additive functional is a martingale additive functional if tMtutPr0,8q is
an additive functional such that for any t ¡ 0 and q.e. x P X, we have ExrM2

t s   8 and
ExrMts � 0. The energy of a martingale additive functional tMtutPr0,8q is defined as

epMq :� lim
tÓ0

1

2t
Em

�
M2

t

�
(2.5)

whenever the limit exists. Since t ÞÑ EmrM2
t s is subadditive in t, the energy epMq is well-

defined and equals supt¡0
1
2t
Em pM2

t q. By
�

M we denote themartingale additive functionals
of finite energy.

By the strong locality of the Dirichlet form and [FOT, Lemma 5.5.1(ii)], each M P
�

M
is a continuous additive functional. Therefore by [FOT, p. 412, Theorem A.3.3], each

M P
�

M admits a positive continuous additive functional xMy referred to as the quadratic
variation associated with M that satisfies

ExrxMyts � ExrM2
t s, for all t ¡ 0, and q.e. x P X.

By the Revuz correspondence [FOT, Theorems 5.1.3 and 5.1.4], there exists a unique
measure µxMy such that for any non-negative Borel functions f, h : X Ñ r0,8q, we have

Eh�m

�» t

0

fpXsq dAs

�
�
» t

0

»
X

Ex rhpXsqs fpxqµxMypdxq ds.
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The measure µxMy defined above is called the energy measure of the martingale additive
function tMtutPr0,8q. The energy and energy measure of a martingale additive functional
are related by [FOT, (5.2.8)]

epMq � 1

2
µxMypXq, for all M P

�

M.

By polarization, for M,L P
�

M, we define

epM,Lq � 1

2
pepM � Lq � epMq � epLqq , µxM,Ly � 1

2

�
µxM�Ly � µxMy � µxLy

�
.

The space of martingale additive functionals of finite energy
�

M equipped with the in-
ner product ep�, �q is a Hilbert space [FOT, Theorem 5.2.1]. We recall the definition of
stochastic integral with respect to a martingale additive functional [FOT, Theorem 5.6.1].

For M P
�

M and f P L2pX,µxMyq, we define the stochastic integral f 
M as the unique

element in
�

M such that

epf 
M,Lq � 1

2

»
X

fpxqµxM,Ly, for all L P
�

M.

The above definition of stochastic integral is essentially due to Kunita and Watanabe
[KW, Theorem 2.1].

Definition 2.5. (Martingale dimension, [Hin10, Definition 3.3]) The martingale dimen-
sion of tXtu (or equivalently of the Dirichlet form pE ,Fq on L2pX,mq) is defined as the
smallest non-negative integer p that satisfies the following property: there exists a collec-

tion tM pkqu1¤k¤p in
�

M such that every M P
�

M has a stochastic integral representation
as

Mt �
p̧

k�1

�
hk 
M pkq

�
t
, for all t ¡ 0 and Px-almost surely for q.e. x P X,

where hk P L2pX,µxMpkqyq for all k � 1, . . . , p. If such a p does not exist, then the
martingale dimension is defined as �8.

2.3 Index of a Dirichlet form

In [Kus89, Kus93], Kusuoka demonstrated that certain linear independence properties of
energy measures of functions in the domain of the Dirichlet form can be used to compute
the martingale dimension on a class of fractals which led to the notion of index for Dirichlet
forms corresponding to self-similar sets. This idea of Kusuoka was further developed by
Hino [Hin10] for a general MMD space and led to the notion of index of a Dirichlet form.
To recall Hino’s definition of index, we first define the notion of a minimal energy-dominant
measure.
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Definition 2.6 ([Hin10, Definition 2.1]). Let pX, d,m, E ,Fq be an MMD space and let
Γp�, �q denote the corresponding energy measure. A σ-finite Borel measure ν on X is
called a minimal energy-dominant measure of pE ,Fq if the following two conditions
are satisfied:

(i) (Domination) For every f P F , we have Γpf, fq ! ν.

(ii) (Minimality) If another σ-finite Borel measure ν 1 on X satisfies condition (i) with
ν replaced by ν 1, then ν ! ν 1.

Note that by [Hin10, Lemmas 2.2, 2.3 and 2.4], a minimal energy-dominant measure of
pE ,Fq always exists and is precisely a σ-finite Borel measure ν on X such that for each
Borel subset A of X, νpAq � 0 if and only if Γpf, fqpAq � 0 for all f P F .

We recall the definition of index associated to a Dirichlet form.

Definition 2.7. [Hin10, Definition 2.9] Let pX, d,m, E ,Fq be an MMD space. Let Γp�, �q
denote the corresponding energy measure and let ν be a minimal energy dominant mea-
sure.

(i) The pointwise index is a measurable function pH : X Ñ N Y t0,8u such that the
following hold:

(a) For any N P N, f1, . . . , fN P F , we have

rank

�
dΓpfi, fjq

dν
pxq



1¤i,j¤N

¤ pHpxq for ν-almost every x P X.

(b) For any other function p1H : X Ñ N Y t0,8u that satisfies (a) with p1H instead
of pH , then pHpxq ¤ p1Hpxq for ν-almost every x P X.

(ii) The index of the MMD space pX, d,m, E ,Fq is defined as ν � ess supxPX pHpxq,
where pH is a pointwise index.

It is easy to see that the pointwise index is well-defined in the ν-almost everywhere sense
and does not depend on the choice of ν. Therefore the index is well-defined and takes
values in NY t0,8u.

Hino shows that the index of an MMD space pX, d,m, E ,Fq coincides with the mar-
tingale dimension of the associated diffusion process [Hin10, Theorem 3.4]. In [Hin13b,
Theorem 3.4], Hino interprets the pointwise index as the pointwise dimension of a mea-
surable tangent space.
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2.4 Cheeger’s measurable differentiable structure

Definition 2.8. Let pX, dq be a metric space. We say that a function f : X Ñ R is
Lipschitz if there exists K P p0,8q such that |fpxq � fpyq| ¤ Kdpx, yq for all x, y P X.
The vector space of all Lipschitz functions is denoted by LippXq. The pointwise Lipschitz
constant of a function f : X Ñ R is given by

Lip fpxq :� lim sup
rÑ0

sup
dpx,yq r

|fpxq � fpyq|
r

� lim sup
yÑx,
y�x

|fpxq � fpyq|
dpx, yq .

The following definition provides a notion of differentiability on a metric space.

Cheeger discovered a far-reaching generalization of Rachamacher’s theorem. In order
to describe this version of Radamacher’s theorem in a metric measure space, we need a
suitable notion of differentiability on a metric space that we recall in the definition below.

Definition 2.9. Suppose f : X Ñ R and ϕ � pϕ1, . . . , ϕNq : X Ñ RN are Lipschitz
functions on a metric measure space pX, d,mq. Then f is differentiable with respect to
ϕ at x0 P X if there is a unique a � pa1, . . . , aNq P RN such that f and the linear
combination a � ϕ � °N

i�1 aiϕi agree to first order near x0:

lim sup
xÑx0

fpxq � fpx0q � a � pϕpxq � ϕpx0qq
dpx, x0q � 0.

Equivalently, Lip gpx0q � 0, where gp�q � fp�q � °N
i�1 aiϕip�q. The tuple a P RN is the

derivative of f with respect to ϕ and will be denoted by Bϕfpx0q.

Now that we have a notion of differentiability on a metric space, the analogue of
almost everywhere differentiability for a metric measure space is given by the notion of a
measurable differentiable structure defined below. As shown in [Che], this concept below
leads to a new proof of the classical Radamacher’s theorem.

Definition 2.10. A chart of dimension N on a metric measure space pX, d,mq is a pair
pU, ϕq where:

(i) U � X is measurable and ϕ : X Ñ RN is Lipschitz.

(ii) Every Lipschitz function f : X Ñ R is differentiable with respect to ϕ at m-almost
every x0 P U and the derivative defines a measurable function Bϕf : U Ñ RN .

Ameasurable differentiable structure on pX, d,mq is a countable collection tpUα, ϕαqu
of charts with uniformly bounded dimension such that X � YαUα.

We note that the notion of charts and measurable differentiable structure are invariant
under a bi-Lipschitz change of metric.
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Remark 2.11. Let tpUα, ϕαqu be a collection of charts that defines a measurable differ-

entiable structure on a metric measure space pX, d,mq. Let rd : X � X Ñ r0,8q be a
metric on X that is bi-Lipschitz equivalent to d; that is, there exists L P r1,8q such that

L�1dpx, yq ¤ rdpx, yq ¤ Ldpx, yq for all x, y P X. Then tpUα, ϕαqu is a collection of charts

that defines a measurable differentiable structure on pX, rd,mq. Similarly, it is evident that

pU, ϕq is a chart on pX, d,mq if and only if pU, ϕq is a chart on pX, rd,mq. Moreover, for
any f P LippXq, the differentiability of f at a point x P X and the value of the derivative
of f with respect to ϕ are both invariant under bi-Lipschitz change of metric for any chart
pU, ϕq.

Given a metric measure space, a measurable differentiable structure need not exist
[KM16, Proposition B.1]. However, Cheeger showed that a large class of metric measure
spaces admits a measurable differentiable structure [Che, Theorem 4.38] (see also the
exposition of [KM16, Theorem 1.4]). We refer to [KM16, §1.3] for a discussion of different
class of examples arising from Euclidean spaces, Carnot groups, glued spaces, Laakso
spaces, Bourdon-Pajot buildings, Ricci limit spaces and spaces satisfying synthetic lower
bounds on Ricci curvature.

Even if a measurable differentiable structure exists, the associated collection of charts
is far from being unique. Nevertheless, Cheeger showed that the dimension of the chart of
a measurable differentiable structure is well-defined at almost every point. Let tpUα, ϕαq :
α P Iu be a measurable differentiable structure on pX, d,mq, where I is a countable index
set. Then there is a measurable function dC : X Ñ N such that dCpxq � Npαq for
all α P I, m-almost every x P Uα, where Npαq is the dimension of the chart pUα, ϕαq.
Furthermore, up to sets of m-measure zero this function dC does not depend on the
choice of the measurable differentiable structure [Che, p. 458]. This function dC can be
interpreted as the (almost everywhere defined) pointwise dimension of the fibers of the
L8 cotangent bundle constructed by Cheeger [Che, p. 458, Definition 4.42].

Definition 2.12. Let pX, d,mq be a metric measure space that admits a measurable
differentiable structure. We call the m-almost everywhere well-defined function dC : X Ñ
N above as the pointwise dimension of the measurable differentiable structure
on pX, d,mq. The analytic dimension of a metric measure space pX, d,mq that admits
a measurable differentiable structure is defined as m� ess supxPX dCpxq.

From the discussion above, the analytic dimension of a metric measure space that
admits a measurable differentiable structure is well-defined.

2.5 Metric and volume doubling properties

The volume doubling property plays an important role in obtaining Gaussian heat kernel
estimates as well in Cheeger’s generalization of Radamacher’s theorem. We recall its
definition and the closely related metric doubling property and Assouad dimension.

Definition 2.13 (VD). Let pX, d,mq be a metric measure space. We say that pX, d,mq
satisfies the volume doubling property VD, if there exists a constant CD ¡ 1 such
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that for all x P X and all r ¡ 0,

0   mpBpx, 2rqq ¤ CDmpBpx, rqq   8. VD

Note that if pX, d,mq satisfies VD, then Bpx, rq is relatively compact (i.e., has compact
closure) in X for all px, rq P X � p0,8q by virtue of the completeness of pX, dq.

If pX, d,mq satisfies the volume doubling property, then pX, dq satisfies the metric
doubling property; that is, there exists N P N such that every ball of radius r can be
covered by N balls of radii r{2. Spaces satisfying the metric doubling property are same
as the spaces with finite Assouad dimension whose definition we recall below.

Definition 2.14. The Assouad dimension of a metric space pX, dq is defined as

dimApX, dq � inf

#
β ¡ 0

����� there exists C ¡ 0 such that NrpBpx,Rqq ¤ C
�
R
r

�β
for any x P X, 0   r   R

+
,

where NrpAq denotes the minimum number of balls of radii r required to cover A � X.
Equivalently, Assouad dimension is the infimum of all numbers β ¡ 0 such that there
exists C ¡ 0 so that every ball of radius r has at most Cε�β distinct points whose mutual
distance is at least εr [Hei, Exercise 10.17].

2.6 Poincaré inequalities

Similar to the volume doubling property, Poincaré inequalities play an important role
both in obtaining heat kernel estimates and also in establishing the existence of a mea-
surable differentiable structure. The formulation used for these two purposes are different
although related as we will see.

Definition 2.15. We say that pX, d,m, E ,Fq satisfies the Poincaré inequality PIp2q,
if there exist constants C,K ¥ 1 such that for all px, rq P X � p0,8q and all f P F ,»

Bpx,rq

pf � fBpx,rqq2 dm ¤ Cr2
»
Bpx,Krq

dΓpf, fq, PIp2q

where fBpx,rq :� mpBpx, rqq�1
³
Bpx,rq

f dm and Γ denotes the energy measure.

The following Poincaré inequality concerns Lipschitz functions on the metric measure
space pX, d,mq.
Definition 2.16. We say that pX, d,mq is said to support a p1, pq-Poincaré inequality
with p P r1,8q if there exists constants K ¥ 1, C ¡ 0 such that for all u P LippXq, x P X
and r ¡ 0,  

Bpx,rq

∣∣u� uBpx,rq

∣∣ dm ¤ Cr

� 
Bpx,Krq

pLippuqqp dm

�1{p
,

where
�
A
f dm denotes 1

mpAq

³
A
f dm and uBpx,rq �

�
Bpx,rq

u dm.

11



We record some useful consequences of Gaussian heat kernel estimates. The well-
known necessary condition in Proposition 2.17(i) is due to Saloff-Coste [Sal92] for Brown-
ian motion on Riemannian manifolds and was later extended to general Dirichlet form in
[Stu]. In the setting of MMD spaces, it is often assumed that the metric d is the intrinsic
metric (e.g., [Stu, KZ12]) but it turns out that such an assumption is not necessary as
we clarify the relationship between the given metric and intrinsic metric in Proposition
2.17(ii) below. All these consequences of Gaussian heat kernel estimates are known to
experts and follow easily from known results and arguments.

Proposition 2.17. Let pX, d,m, E ,Fq be an MMD space that satisfies Gaussian heat
kernel estimates HKEp2q.

(i) ([Sal92, Stu]) Then pX, d,mq satisfies the volume doubling property VD and the
MMD space pX, d,m, E ,Fq satisfies the Poincaré inequality PIp2q.

(ii) ([Mur20, KM20]) The metric d is bi-Lipschitz equivalent to the intrinsic metric dint
of the MMD space pX, d,m, E ,Fq.

(iii) ([KZ12]) The space LippXq X CcpXq satisfies LippXq X CcpXq � F and is dense in
the Hilbert space pF , E1q. Furthermore, LippXq � Floc.

(iv) ([KZ12]) The metric measure space pX, d,mq supports a p1, 2q-Poincaré inequality
(in the sense of Definition 2.16).

Proof. (i) The volume doubling property follows from the argument in [Sal92] by in-
tegrating the Gaussian lower bound over suitable ball (see also [Sal02, p. 161]).
Saloff-Coste obtains Poincaré inequality in [Sal92, p. 33] by adapting an argument
of Kusuoka and Stroock [KS17]. The same argument also applies in our setting
[Stu].

(ii) We note that pX, d,mq satisfies a reverse volume doubling property due to [Mur20,
Corollary 2.3]. Therefore by [GHL, Theorem 1.2] we obtain the necessary capacity
upper bound to apply [Mur20, Remark 1.8(a)] to conclude that the metric d satisfies
the chain condition (cf. [Mur20, Definition 1.1]). Again by [GHL, Theorem 1.2], we
obtain the necessary cut-off energy inequality in order to apply [KM20, Proposition
4.8], we conclude that d and dint are bi-Lipschitz equivalent.

(iii) The density of LippXq X CcpXq in F follows from (i), (ii), and [KZ12, Theorem 2.2
(i)]. The result LippXq � Floc follows from [KZ12, Theorem 2.1], (i) and (ii). We
note that (ii) is used because the results of [KZ12] only apply to the intrinsic metric.

(iv) This follows from (i), (ii), [KZ12, Proposition 2.1], and invariance of Poincare in-
equalities in Definitions 2.15 and 2.16 under a bi-Lipschitz change of metric.

We state Cheeger’s generalization of Radamacher’s theorem. We will use this to
show that any MMD space that has Gaussian heat kernel bounds admits a measurable
differentiable structure.

12



Theorem 2.18. ([Che, Theorem 4.38]) Let pX, d,mq be a complete metric space that
satisfies the volume doubling property VD and supports a p1, pq-Poincaré inequality for
some p P r1,8q. Then there is a measurable differentiable structure on pX, d,mq and the
analytic dimension is bounded by a constant that depends only on the constants involved
in the assumptions.

The p1, pq-Poincaré inequality in Cheeger’s work [Che, (4.3)] is different from that in
Definition 2.16. Nevertheless, these p1, pq-Poincaré inequalities are known to be equivalent
due to a result of Keith [Kei03, Theorem 2] (see also [HKST, Theorem 8.4.2]). We refer
to [Kei04] for a different proof of Cheeger’s theorem and the survey [KM16] for a nice
exposition of the key ideas involved in the proof of Theorem 2.18.

3 Comparing martingale and analytic dimensions

Part (iii) of the following Theorem is the main result of this work and identifies martingale
dimension with the analytic dimension of the underlying space. Theorem 3.1(i) is a
special case of a more general result in [KM20] while (ii) follows easily from results in
[Che, KZ12, KM20]. We include parts (i) and (ii) to provide context to (iii).

Theorem 3.1. Let pX, d,m, E ,Fq be an MMD space that satisfies Gaussian heat kernel
estimates HKEp2q. Then the following hold:

(i) (cf. [KM20, Propositions 4.5 and 4.7]) m is a minimal energy dominant measure.
In particular, the pointwise index pHp�q of pX, d,m, E ,Fq is well-defined m-almost
everywhere.

(ii) (cf. [KZ12, Proposition 2.1] and [Che, Theorem 4.38]) pX, d,mq admits a measur-
able differentiable structure.

(iii) The pointwise index pHp�q of the MMD space pX, d,m, E ,Fq agrees with the pointwise
dimension dCp�q of a measurable differentiable structure on pX, d,mq; that is

pHpxq � dCpxq for m-almost every x P X. (3.1)

In particular, the martingale dimension of the associated diffusion process coincides
with the analytic dimension of pX, d,mq.

Proof of Theorem 3.1(i),(ii). (i) The first claim is a special case of [KM20, Propositions
4.5 and 4.7] while the second claim follows from the definition of pointwise index.

(ii) This is an immediate consequence of Proposition 2.17(i),(iv) and Cheeger’s Radamacher
theorem recalled in Theorem 2.18.
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The proof of Theorem 3.1(iii) needs further preparation. Before we prove it, we state
a Corollary of our main result. Using known results on analytic dimension, we obtain the
following result that implies that the martingale dimension is bounded from above by the
Assouad dimension under Gaussian heat kernel bounds. Even the finiteness of martingale
dimension in the corollary below appears to be new.

Corollary 3.2. Let pX, d,m, E ,Fq be a MMD space that satisfies Gaussian heat kernel
estimates HKEp2q. Then the martingale dimension of the associated diffusion process is
bounded from above by the Assouad dimension of the metric space pX, dq. In particular,
the martingale dimension is finite.

Proof. This is an immediate consequence of Theorem 3.1(iii) and known bounds on ana-
lytic dimension in terms of Assouad dimension due to Schioppa [Sch, Corollary 4.6] (see
also [Dav, Corollary 8.5] for a different proof).

Remark 3.3. (a) The bound in Corollary 3.12 is sharp. Furthermore, for any dM P
N, dA P rdM ,8q, there exists an MMD space pX, d,m, E ,Fq that satisfies Gaussian
heat kernel estimates such that the martingale dimension of the associated diffusion
is dM and the Assouad dimension of the underlying metric space pX, dq is dA (see
Example 3.10).

(b) We can improve Corollary 3.2 by replacing ‘Assouad dimension of pX, dq’ by supre-
mum of the Assaoud dimensions of all possible blowups of the metric space pX, dq
(see [Sch, Definition 5.49] for the definition of blowups). This improvement follows
from [Sch, Theorem 5.56 and Lemma 5.98]. The reason why this is an ‘improvement’
is given by [Sch, Lemma 5.97]. By considering metric graphs (or cable systems) cor-
responding to Zd for d ¥ 2, we see that the supremum of the Assaoud dimensions of
all possible blowups can be strictly less than the Assouad dimension of the original
metric space. In this case, the Assouad dimension of the metric graph is d while the
supremum of the Assaoud dimensions of all possible blowups is 1.

(c) If the symmetric measure is Q-Ahlfors regular (that is, there exists C P p1,8q such
that C�1rQ ¤ mpBpx, rqq ¤ CrQ for all x P X, r   diampX, dq), then Q is the As-
souad dimension of pX, dq and also under Gaussian heat kernel bounds Q is also the
spectral dimension (cf. [Bar, Definition 3.23] for the terminology and [Bar, (3.50)]
for the justification of this terminology). In this case, Corollary 3.2 implies that
martingale dimension is less than or equal to spectral dimension. Such an inequality
between spectral and martingale dimensions was first obtained by Hino [Hin13a, The-
orem 3.5] for diffusions on some self-similar sets. Unlike [Hin13a] we do not assume
self-similarity, however our space-time scaling for the heat kernel is Gaussian. We
conjecture that a similar estimate is true if we replace Gaussian estimates with the
more general sub-Gaussian heat kernel estimate (see Conjecture 3.12).

We recall the notion of linear dependence in an infinitesimal sense which plays an
important role in the construction of a measurable differentiable structure.
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Definition 3.4. An N -tuple of functions f � pf1, . . . , fNq, where fi : X Ñ R for 1 ¤ i ¤
N is infinitesimally dependent at x P X if there exists λ P RNzt0u such that

Lippλ � fqpxq � 0.

We denote the set where f : X Ñ RN is not infinitesimally dependent by Indpfq.

We note that Indpfq is a Borel measurable set by [Kei04, Lemma 7.2.3].

The following is a slight strengthening of property (a) of pointwise index in Definition
2.7.

Lemma 3.5. Let pX, d,m, E ,Fq be an MMD space and let ν be a minimal energy domi-
nant measure. For any N P N, f1, . . . , fN P Floc, we have

rank

�
dΓpfi, fjq

dν
pxq



1¤i,j¤N

¤ pHpxq for ν-almost every x P X.

Proof. Fix x0 P X. By the assumption that balls are precompact, for any n P N, there
exists g1, . . . , gN P F such that gi � fi m-almost everywhere on Bpx0, nq. Therefore
by property (a) of Definition 2.7 and the strong locality of pE ,Fq (in particular, [FOT,
Corollary 3.2.1] and [Hin10, (2.1)]), we have

rank

�
dΓpfi, fjq

dν
pxq



1¤i,j¤N

� rank

�
dΓpgi, gjq

dν
pxq



1¤i,j¤N

¤ pHpxq

for ν-almost every x P Bpx0, nq. This leads to the desired conclusion asX � YnPNBpx0, nq.

The following lemma is at the heart of our proof and is essentially due to Koskela and
Zhou [KZ12]. It is the key estimate that serves as a bridge between the analysis of the
Dirichlet form with the analysis of Lipschitz functions on the underlying metric measure
space. Ultimately, this leads to the relation between martingale and analytic dimensions.
It is helpful to recall that LippXq � Floc from Proposition 2.17.

Lemma 3.6. Let pX, d,m, E ,Fq be an MMD space that satisfies Gaussian heat kernel
estimates HKEp2q. There exists C P r1,8q such that

C�1

c
dΓpf, fq

dm
pxq ¤ Lip fpxq ¤ C

c
dΓpf, fq

dm
pxq (3.2)

for all f P LippXq, and for m-almost every x P X.

Proof. It follows from [KZ12, Theorem 2.2(ii)] and the bi-Lipschitz equivalence of d and
dint in Proposition 2.17(ii).
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For an N -tuple f � pf1, . . . , fNq P pFlocqN , we define N � N -positive semi-definite
matrix valued function Mf : X Ñ RN�N that is well-defined m-almost everywhere as

Mf pxq �
�
dΓpfi, fjq

dm
pxq



1¤i,j¤N

, for all x P X. (3.3)

The proof of equality between pointwise index and pointwise dimension of Cheeger’s
measurable differentiable structure can be divided into a matching lower and upper bounds
on the pointwise index. We begin with the lower bound on the pointwise index in the
Proposition below.

Proposition 3.7. Let pX, d,m, E ,Fq be an MMD space that satisfies Gaussian heat kernel
estimates HKEp2q. Let pU, ϕq be a chart of dimension N P N on pX, d,mq. Then pHpxq ¥
N for m-almost every x P U .

Proof. Let pϕ1, . . . , ϕNq � ϕ denote the components of the chart. Let Mϕ : X Ñ RN�N

be as defined by (3.3). By Lemma 3.5, it suffices to show that

rankpMϕpxqq � N, for m-almost every x P U . (3.4)

Let Λ be a countable dense subset of the unit sphere SN�1 in RN . We claim that

inf
λPΛ

Lippλ � ϕqpxq ¡ 0 for m-almost every x P U . (3.5)

In order to prove (3.5), consider the function g � 0 that is identically zero. Since g is
differentiable with respect to ϕ at m-almost every point of U , there exists a measurable
set V such that mpUzV q � 0 such that g is differentiable with respect to ϕ at all x P V
with derivative Bϕgpxq � 0 for all x P V . The uniqueness of the derivative implies that

Lippλ � ϕqpxq � lim sup
yÑx

λ � ϕpyq � λ � ϕpxq
dpy, xq � 0, for all x P V, λ P RNzt0u. (3.6)

By the continuity of λ ÞÑ Lippλ �ϕqpxqon RN for each x P X (see [Kei04, Sublemma 7.2.4])
and since Λ � SN�1 is compact, we have

inf
λPΛ

Lippλ � fqpxq � min
λPSN�1

Lippλ � fqpxq (3.6)¡ 0 for all x P V .

This concludes the proof of (3.5).

By (3.5) and Lemma 3.6, we have

inf
λPΛ

dΓpλ � ϕ, λ � ϕq
dm

pxq � inf
λPΛ

λ � pMϕpxqλq ¡ 0 for m-almost every x P U . (3.7)

By (3.7) and the fact that Mϕp�q is symmetric, non-negative definite valued matrix, we
conclude (3.4).
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In the following proposition, we establish an upper bound of the pointwise index
matching the lower bound obtained in Proposition 3.7.

Proposition 3.8. Let pX, d,m, E ,Fq be an MMD space that satisfies Gaussian heat kernel
estimates HKEp2q. Let pU, ϕq be a chart of dimension N P N on pX, d,mq. Then pHpxq ¤
N for m-almost every x P U .

Proof. Assume to the contrary that pHpxq ¥ N � 1 for m-almost every x P V0 where
V0 � U and mpV0q ¡ 0. By [Hin10, Lemma 2.5(ii)] and the density of LippXq XCcpXq in
the Hilbert space pF , E1q (cf. [KM20, Remark 4.6]), there exists f1, . . . , fN�1 P LippXq X
CcpXq � F and V1 � V0 with mpV1q ¡ 0 such that f � pf1, . . . , fN�1q satisfies

rankpMf pxqq � N � 1 for m-almost every x P V1, (3.8)

where Mf is as defined in (3.3). Let Λ � SN � RN�1 be a countable dense subset of the
unit sphere SN . By (3.8) and the fact that Mf is a positive semi-definite matrix valued
function, there exists δ ¡ 0 and a measurable set V2 � V1 such that mpV2q ¡ 0 and

inf
λPΛ

λ � pMf pxqλq ¥ δ for m-almost every x P V2. (3.9)

By Lemma 3.6, there exists c ¡ 0, V3 � V2 such that mpV2zV3q � 0

dΓpλ � f, λ � fq
dm

pxq � λ � pMf pxqλq for all x P V3, λ P Λ,

and
Lippλ � fqpxq ¥ cδ for all x P V3, λ P Λ. (3.10)

Since for each x P X, the function λ ÞÑ Lippλ � fqpxq is continuous on RN�1 by [Kei04,
Sublemma 7.2.4], we can improve (3.10) to

inf
λPSN

Lippλ � fqpxq ¥ cδ for all x P V3.

Equivalently, this means that there exists V3 � U with mpV3q ¡ 0 with

V3 � Indpfq. (3.11)

By the argument in [Kei04, p. 311] using [Kei04, Sublemma 7.3.5] there exists K P N
such that is the largest number with the following property: K ¥ N � 1 and there
exists g � pg1, . . . , gKq such that gi P LippXq for all i � 1, . . . , K and gi � fi for all
i � 1, . . . , N � 1 and

m pIndpgq X V3q ¡ 0. (3.12)

We recall that Indpgq is measurable by [Kei04, Lemma 7.2.3]. Setting W � Indpgq X V3

and following the same argument as [Kei04, Proofs of Sublemmas 7.3.6, 7.3.7 and 7.3.8],
we conclude that pW, gq is a chart. Since pU, ϕq is a chart of dimension N and pW, gq
is a chart of dimension K with mpU X W q � mpW q ¡ 0, by [Che, p. 458] we have
N � K ¥ N � 1, which implies the desired contradiction.
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We can now complete the proof of our main result.

Proof of Theorem 3.1(iii). The equality (3.1) follows immediately from the matching
lower and upper bounds in Propositions 3.7 and 3.8. The equality between index of
the MMD space and analytic dimensions follow from (ii) and (3.1). By Hino’s theorem
on the equality between the index of an MMD space and the martingale dimension of
the associated diffusion process (cf. [Hin10, Theorem 3.4]), we obtain the desired conclu-
sion.

3.1 Examples

For Brownian motion on Euclidean space the martingale dimension coincides with the
Hausdorff and topological dimension of the underlying space. In general, all these three
dimensions may be different as shown in the example below.

Example 3.9 (Horizontal Brownian motion on Heisenberg group). We consider the 3-
dimensional Heisenberg group H � tpx, y, zq : x, y, z P Ru equipped with the group
operation

px1, y1, z1q d px2, y2, z2q � px1 � x2, y1 � y2, z1 � z2 � x1y2 � x2y1q.
The Lebesgue measure m on R3 is the (left and right) Haar measure. The following
left-invariant vector fields forms a basis of the Lie algebra:

X � Bx � yBz, Y � By � xBz, Z � Bz.
The sub-elliptic Laplacian

L � 1

2
pX2 � Y2q � 1

2

�B2xx � B2yy � 2xB2xy � 2yB2xy � px2 � y2qB2zz
�

is the generator of a diffusion process that is closely related to the Lévy area Sptq of the
two-dimensional Brownian motion pB1ptq, B2ptqq, where

Sptq �
» t

0

pB1psq dB2psq �B2psq dB1psqq .

Then pB1ptq, B2ptq, Sptqq is the Markov process generated by L and can be viewed as a
Brownian motion on H (see [BDW, §2.1.2]). To be precise, the operator 1

2
pX2 � Y2q �

1
2

�B2xx � B2yy � 2xB2xy � 2yB2xy � px2 � y2qB2zz
�
on C8

c pHq is an essentially self-adjoint oper-
ator as outlined in [DGS, p. 950] and L is defined to the unique self-adjoint extension.
By [FOT, Theorem 1.3.1], the generator L defines a Dirichlet form pE ,Fq on L2pH,mq.
It is regular as C8

c pHq is a core. Let d denote the intrinsic metric which also turns out to
be the Carnot-Carathéodory metric. The MMD space pH, d,m, E ,Fq satisfies Gaussian
heat kernel bounds [Li, Théorème 1.1].

It is known that the pH, dq is homeomorphic to the R3 with respect to the Euclidean
metric and hence the topological dimension of pH, dq is 3. However the measure m is 4-
Ahlfors regular on pH, dq and hence the Hausdorff dimension of pH, dq is 4. The analytic
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dimension (and hence the martingale dimension) is 2. This follows from the fact that
a martingale additive function with respect to the associated diffusion can be viewed as
that associated with the 2-dimensional Brownian motion. Alternately, this follows from a
version of Radamacher’s theorem due to Pansu [Pan]. As pointed out in [KM16], pH, d,mq
carries a measurable differentiable structure with a single chart pH, ϕq, where ϕ : HÑ R2

is defined by ϕpx, y, zq � px, yq.

The next example illustrates that every possible joint values of martingale and Assouad
dimensions satisfying the inequality in the conclusion of Corollary 3.2 is possible.

Example 3.10 (Laakso-type spaces and product with Euclidean spaces). Let dm P
N, dA P r1,8q be such that dm ¤ dA. We outline a construction of an MMD space
with martingale dimension dm and Assouad dimension dA. If dm � 1, then this follows
from [Mur24+, Theorem 5.4, Lemma 5.6] as there exists a Laakso-type metric measure
space pL, dL,mLq admitting a Dirichlet form that satisfies Gaussian heat kernel bounds
and such that mL is dA-Ahlfors regular and hence the Assouad dimension is dA. By
[Mur24+, Proposition 5.17], the martingale dimension is 1. If dm ¡ 2, we consider the
product space L� Rdm�1, where L is a dA � pdm � 1q-Ahlfors regular Laakso-type space
that satisfies Gaussian heat kernel estimate as explained above. The Euclidean space
Rdm�1 is equipped with the Euclidean metric and Lebesgue measure. Then we consider
the diffusion on the product space such that the projections to the components are inde-
pendent diffusions on the Laakso-type space and the standard Brownian motion on the
Euclidean space. The metric and measure on the product space are taken to be prod-
uct measure. One can verify that the corresponding MMD space satisfies Gaussian heat
kernel estimates, has the desired martingale dimension dm and Assouad dimension dA.

3.2 Related questions

Many basic questions concerning martingale dimension still remain open. For instance,
whether or not the martingale dimension is finite is not known in many situations. We con-
jecture the following finiteness of martingale dimension referring the reader to [Mur24+,
Definition 2.3] for the definition of sub-Gaussian heat kernel estimates (such estimates
allow for a more general space-time scaling and is a generalization of Gaussian bounds).

Conjecture 3.11. If an MMD space pX, d,m, E ,Fq that satisfies sub-Gaussian heat
kernel estimates where m is a doubling measure, then the martingale dimension is finite.

Our main result (see Remark 3.3(c)) along with Hino’s bound in [Hin13a, Theorem
3.5] provides evidence towards the following quantitative version of Conjecture 3.11. We
refer the reader to [Bar] or [Mur24+] for the definitions of volume growth exponent and
walk dimension used in the following conjecture.

Conjecture 3.12. If an MMD space pX, d,m, E ,Fq satisfies sub-Gaussian heat kernel
estimates with volume growth exponent α and walk dimension β, then the martingale
dimension dm satisfies dm ¤ 2α

β
.

19



One outcome of our work relating martingale and analytic dimensions is that ques-
tions concerning one of these notions of dimension have a natural analogue in the other.
Therefore this provides opportunity for interactions between different areas. We hope
that this connection would help with a better understanding of both these notions and
development of techniques that uses ideas from these different viewpoints. For concrete-
ness, we list an analogue of a question due to Kleiner and Schioppa concerning analytic
dimensions [KS17, Question 1.3]. The following question is about the existence of exotic
diffusions on Rn with n ¥ 2 with martingale dimension one.

Question 3.13. Let n ¥ 2. Is there an MMD space pRn, d,m, E ,Fq that satisfies Gaus-
sian heat kernel estimates with martingale dimension one such that pRn, dq is homeomor-
phic to Rn with the Euclidean metric? (cf. [KS17, Question 1.3]).

We do not know the answer to this question even when n � 2. On the other hand,
the results of Kleiner and Schioppa suggests that there exist diffusions with martingale
dimension one satisfying Gaussian heat kernel estimates where the underlying space has
arbitrarily high topological dimension [KS17, Theorem 1.1].

Acknowledgments. I thank Aobo Chen for useful discussions related to this work.
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