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Stability of the elliptic Harnack inequality

By Martin T. Barlow and Mathav Murugan

Abstract

We prove that the elliptic Harnack inequality (on a manifold, graph, or

suitably regular metric measure space) is stable under bounded perturba-

tions, as well as rough isometries.

1. Introduction

A well-known theorem of Moser [Mos61] is that an elliptic Harnack in-

equality (EHI) holds for solutions associated with uniformly elliptic divergence

form PDE. Let A be given by

(1.1) Af(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂f

∂xj

)
,

where (aij(x), x ∈ Rd) is bounded, measurable and uniformly elliptic. Let h

be a non-negative A-harmonic function in a domain B(x, 2R), and let B =

B(x,R) ⊂ B(x, 2R). Moser’s theorem states that there exists a constant CH ,

depending only on d and the ellipticity constant of a..(·), such that

(1.2) ess sup
B(x,R)

h ≤ CH ess inf
B(x,R)

h.

A few years later Moser [Mos64], [Mos71] extended this to obtain a parabolic

Harnack inequality (PHI) for solutions u = u(t, x) to the heat equation asso-

ciated with A:

(1.3)
∂u

∂t
= Au.

This states that if u is a non-negative solution to (1.3) in a space-time cylinder

Q = (0, T )×B(x, 2R), where R = T 2, then writing Q− = (T/4, T/2)×B(x,R),
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Q+ = (3T/4, T )×B(x,R),

(1.4) ess sup
Q−

u ≤ CP ess inf
Q+

u.

If h is harmonic, then u(t, x) = h(x) is a solution to (1.3), so the PHI implies

the EHI. The methods of Moser are very robust and have been extended to

manifolds, metric measure spaces, and graphs; see [BG72], [SC92a], [Stu96],

[Del99], [MSC15].

The EHI and PHI have numerous applications and, in particular, give

a priori regularity for solutions to (1.3). It is well known that Harnack in-

equality is useful beyond the linear elliptic and parabolic equations mentioned

above. For instance variants of Harnack inequality apply to non-local oper-

ators, non-linear equations and geometric evolution equations including the

Ricci flow and mean curvature flow; see the survey [Kas07].

S.T. Yau and his collaborators [Yau75], [CY75], [LY86] developed a com-

pletely different approach to Harnack inequalities based on gradient estimates.

[Yau75] proves the Liouville property for Riemannian manifolds with non-

negative Ricci curvature using gradient estimates for positive harmonic func-

tions. A local version of these gradient estimates was given by Cheng and

Yau in [CY75]. Let (M, g) be a Riemannian manifold whose Ricci curvature

is bounded below by −K for some K ≥ 0. Fix δ ∈ (0, 1). Then there exists

C > 0, depending only on δ and dim(M), such that any positive solution u of

the Laplace equation ∆u = 0 in B(x, 2r) ⊂M satisfies

|∇ ln(u)| ≤ C(r−1 +
√
K) in B(x, 2δr).

Integrating this estimate along geodesics immediately yields a local version of

the EHI. In particular, any u above satisfies

u(z)/u(y) ≤ exp(C(1 +
√
Kr), z, y ∈ B(x, 2δr).

For the case of manifolds with non-negative Ricci curvature, we have K = 0,

and so we obtain the EHI. This gradient estimate was extended to the parabolic

setting by Li and Yau [LY86]. See [SC95, p. 435] for a comparison between the

gradient estimates of [Yau75], [CY75], [LY86] and the Harnack inequalities of

Moser [Mos61], [Mos64].

A major advance in understanding the PHI was made in 1992 by Grigor′yan

and Saloff-Coste [Gri91], [SC92a], who proved that the PHI is equivalent to

two conditions: volume doubling (VD) and a family of Poincaré inequalities

(PI). The context of [Gri91], [SC92a] is the Laplace-Beltrami operator on Rie-

mannian manifolds, but the basic equivalence VD+PI ⇔ PHI also holds for

graphs and metric measure spaces with a Dirichlet form; see [Del99], [Stu96].

This characterization of the PHI implies that it is stable with respect to rough
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isometries; see [CSC95, Th. 8.3]. For more details and a survey of the litera-

ture, see the introduction of [SC95].

One consequence of the EHI is the Liouville property — that all bounded

harmonic functions are constant. However, the Liouville property is not stable

under rough isometries; see [Lyo87]. See [SC04, §5] for a survey of related

results and open questions.

Using the gradient estimate in [CY75, Prop. 6], Grigor′yan [Gri91, p. 340]

remarks that there exists a two dimensional Riemannian manifold that satisfies

the EHI but does not satisfy the PHI. In the late 1990s further examples

inspired by analysis on fractals were given; see [BB99]. The essential idea

behind the example in [BB99] is that if a space is roughly isometric to an infinite

Sierpinski carpet, then a PHI holds, but with anomalous space-time scaling

given byR = T β∨T 2, where β > 2. This PHI implies the EHI, but the standard

PHI (with R = T 2) cannot then hold. (One cannot have the PHI with two

asymptotically distinct space-time scaling relations.) [BB04], [BBK06] prove

that the anomalous PHI(Ψ) with scaling R = Ψ(T ) = T β11(T≤1) + T β21(T>1)

is stable under rough isometries. These papers also prove that PHI(Ψ) is

equivalent to volume doubling, a family of Poincaré inequalities with scaling Ψ,

and a new inequality that controlled the energy of cutoff functions in annuli,

called a cutoff Sobolev inequality, and denoted CS(Ψ). The papers [BB04],

[BBK06] proved the PHI by Moser’s argument, but the more recent papers

[AB15], [GHL15] use de Giorgi’s argument and a mean value inequality to

obtain similar results, but with a simpler form of the cutoff Sobolev inequality.

In addition, an important point for this paper, [GHL15] does not require the

underlying metric space to be a length space.

A further example of weighted Laplace operators on Riemannian manifolds

that satisfy EHI but not PHI is given in [GSC05, Example 6.14]. Consider the

second order differential operators Lα on Rn, n ≥ 2 given by

Lα =
Ä
1 + |x|2

ä−α/2 n∑
i=1

∂

∂xi

ÅÄ
1 + |x|2

äα/2 ∂

∂xi

ã
= ∆ + α

x.∇
1 + |x|2

.

Then Lα satisfies the PHI if and only if α > −n but satisfies the EHI for all

α ∈ R. Weighted Laplace operators of this kind arise naturally in the context of

Schrödinger operators and conformal transformations of Riemannian metrics;

see [Gri06, §§6.4, 10].

These papers left open the problem of the stability of the EHI, and also

the question of finding a satisfactory characterization of the EHI. This problem

is mentioned in [Gri95], [SC04, Question 12] and [Kum04]. In [GHL14], the

authors write “An interesting (and obviously hard) question is the character-

ization of the elliptic Harnack inequality in more geometric terms — so far

nothing is known, not even a conjecture.”
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In [Del02], Delmotte gave an example of a graph which satisfies the EHI

but for which (VD) fails; his example was to take the join of the infinite

Sierpinski gasket graph with another (suitably chosen) graph. This example

shows that any attempt to characterize the EHI must tackle the difficulty that

different parts of the space may have different space-time scaling functions.

Considerable progress on this was made by R. Bass [Bas13], but his result

requires volume doubling, as well as some additional hypotheses on capacity.

As Bass remarks, all the robust proofs of the EHI, using the methods of

De Giorgi, Nash or Moser, use the volume doubling property in an essential

way, as well as Sobolev and Poincaré type inequalities. The starting point

for this paper is the observation that a change of the symmetric measure (or

equivalently a time change of the process) does not affect the sheaf of har-

monic functions on bounded open sets. On the other hand properties such as

volume doubling or Poincaré inequality are not in general preserved by this

transformation.

Conversely, given a space satisfying the EHI, one could seek to construct

a “good” measure µ such that volume doubling as well as additional Poincaré

and Sobolev inequalities do hold with respect to µ; this is indeed the approach

of this paper. Our main result, Theorem 1.3, is that the EHI is stable. Our

methods also give a characterization of the EHI by properties that are easily

seen to be stable under perturbations; see Theorem 5.15.

Our main interest is the EHI for manifolds and graphs. To handle both

cases at once we work in the general context of metric measure spaces. So we

consider a complete, locally compact, separable, geodesic (or length) metric

space (X , d) with a Radon measure m that has full support, so that m(U) > 0

for all non-empty, open U . We call this a metric measure space. Let (E ,Fm) be

a strongly local Dirichlet form on L2(X ,m); see [FOT94]. We call the quintuple

(X , d,m, E ,Fm) a measure metric space with Dirichlet form, or MMD space.

We write B(x, r) = {y : d(x, y) < r} for open balls in X , and given a ball

B = B(x, r), we sometimes use the notation θB to denote the ball B(x, θr).

We assume (X , d) has infinite radius, so that X − B(x,R) 6= ∅ for all R > 0.

See Section 2 for more details of these spaces and the definitions of harmonic

functions and capacities in this context.

Our two fundamental examples are Riemannian manifolds and the cable

systems of graphs. If (M, g) is a Riemannian manifold, we take d and m to be

the Riemannian distance and measure respectively, and we define the Dirichlet

form to be the closure of the symmetric bilinear form

E(f, f) =

∫
X
|∇gf |2dm, f ∈ C∞0 (M).

Given a graph G = (V, E), the cable system of G is the metric space

obtained by replacing each edge by a copy of the unit interval, glued together
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in the obvious way. For a graph with uniformly bounded vertex degree, the

EHI for the graph is equivalent to the EHI for its cable system, and so our

theorem also implies stability of the EHI for graphs. See Section 6 for more

details of both these examples.

Since our main spaces of interest are regular at small length scales, we will

avoid a number of technical issues that could arise for general MMD spaces by

making two assumptions of local regularity: Assumptions 2.3 and 2.5. Both

our main examples satisfy these assumptions; see Section 6.

The hypothesis of volume doubling plays an important role in the study of

heat kernel bounds for the process X, and as mentioned above it is a necessary

condition for the PHI.

Definition 1.1 (Volume doubling property). We say that a Borel measure

µ on a metric space (X , d) satisfies the volume doubling property if µ is non-zero

and there exists a constant CV <∞ such that

(1.5) µ(B(x, 2r)) ≤ CV µ(B(x, r))

for all x ∈ X and for all r > 0.

Definition 1.2. We say that (X , d,m, E ,Fm) satisfies the elliptic Harnack

inequality (EHI) if there exist constants 1 < A,CH < ∞ such that for any

x ∈ X andR > 0, for any non-negative harmonic function h on a ballB(x,AR),

one has

(1.6) ess sup
B(x,R)

h ≤ CH ess inf
B(x,R)

h.

If (X , d) is a geodesic metric space and the above inequality holds for some

value of A > 1, then it holds for any other A′ > 1 with a constant CH(A′).

If the EHI holds, then iterating condition (1.6) gives a.e. Hölder continuity of

harmonic functions, and it follows that any harmonic function has a continuous

modification.

Our first main theorem is

Theorem 1.3. Let (X , d,m) be a length metric measure space, and let

(E ,F) be a strongly local Dirichlet form on L2(X ,m). Suppose that Assump-

tions 2.3 and 2.5 hold. Let (E ′,F) be a strongly local Dirichlet form on

L2(X ,m′) that is equivalent to E , so that there exists C <∞ such that

C−1E(f, f) ≤ E ′(f, f) ≤ CE(f, f) for all f ∈ F ,

C−1m(A) ≤ m′(A) ≤ Cm(A) for all measurable sets A.

Suppose that (X , d,m, E ,F) satisfies the elliptic Harnack inequality. Then the

EHI holds for (X , d,m′, E ′,F).
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We now state some consequences of Theorem 1.3 for Riemannian mani-

folds and graphs. We say that two Riemannian manifolds (M, g) and (M ′, g′)

are quasi-isometric if there exist a diffeomorphism φ : (M, g)→ (M ′, g′) and a

constant K ≥ 1 such that

K−1g(ξ, ξ) ≤ g′(dφ(ξ), dφ(ξ)) ≤ Kg(ξ, ξ) for all ξ ∈ TM.

Let (M, g) be a Riemannian manifold, and let Sym(TM) denote the bun-

dle of symmetric endomorphisms of the tangent bundle TM . We say that A
is a uniformly elliptic operator in divergence form if there exists A : M →
Sym(TM) a measurable section of Sym(TM) and a constant K ≥ 1 such that

K−1g(ξ, ξ) ≤ g(Aξ, ξ) ≤ Kg(ξ, ξ) for all ξ ∈ TM,

such that A(·) = div (A∇(·)). Here div and ∇ denote the Riemannian diver-

gence and gradient respectively.

Theorem 1.4.

(a) Let (M, g) be a Riemannian manifold that is quasi-isometric to a manifold

whose Ricci curvature is bounded below, and let ∆ denote the corresponding

Laplace-Beltrami operator. If (M, g) satisfies the EHI for non-negative

solutions of ∆u = 0, then it satisfies the EHI for non-negative solutions of

Au = 0, where A is any uniformly elliptic operator in divergence form.

(b) Let (M, g) and (M ′, g′) be two Riemannian manifolds that are quasi-

isometric to a manifold whose Ricci curvature is bounded below. Let ∆

and ∆′ denote the corresponding Laplace-Beltrami operators. Then non-

negative ∆-harmonic functions satisfy the EHI if and only if non-negative

∆′-harmonic functions satisfy the EHI.

Theorem 1.5. Let G = (V, E) and G′ = (V′, E′) be bounded degree graphs

that are roughly isometric. Then the EHI holds for G′ if and only if it holds

for G.

Remark 1.6. (1) Theorem 1.4(a) is a generalization of Moser’s elliptic

Harnack inequality [Mos61]. The parabolic versions of (a) and (b) are due to

[SC92b]. For (b), note that the manifold (M, g) might not have Ricci curvature

bounded below and hence the methods of [Yau75], [CY75] will not apply. A

parabolic version of Theorem 1.5 is essentially due to [Del99].

(2) As proved in [Lyo87], the Liouville property is not stable under rough

isometries.

The outline of our argument is as follows. In Section 3 using the tools of

potential theory we prove that the EHI implies certain regularity properties

for Green’s functions and capacities. The main result of this section (Theo-

rem 3.11) is that the EHI implies that (X , d) has the metric doubling property.
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Definition 1.7. The space (X , d) satisfies the metric doubling property

(MD) if there exists M < ∞ such that any ball B(x,R) can be covered by

M balls of radius R/2.

An equivalent definition is that there exists M ′ < ∞ such that any ball

B(x,R) contains at most M ′ points that are all a distance of at least R/2

from each other. We will frequently use the fact that (MD) holds for (X , d)

if and only if (X , d) has finite Assouad dimension. Recall that the Assouad

dimension is the infimum of all numbers β > 0 with the property that every

ball of radius r > 0 has at most Cε−β disjoint points of mutual distance at

least εr for some C ≥ 1 independent of the ball; see [Hei01, Exercise 10.17].

Equivalently, this is the infimum of all numbers β > 0 with the property that

every ball of radius r > 0 can be covered by at most Cε−β balls of radius εr

for some C ≥ 1 independent of the ball.

It is well known that volume doubling implies metric doubling. A partial

converse also holds: if (X , d) satisfies (MD), then there exists a Radon measure

µ on X such that (X , d, µ) satisfies (VD). This is a classical result due to

Vol′berg and Konyagin [VK87] in the case of compact spaces, and Luukkainen

and Saksman [LS98] in the case of general complete spaces. For other proofs,

see [Wu98] and [Hei01, Ch. 13], and also [Hei01, Ch. 10] for a survey of some

conditions equivalent to (MD).

The measures constructed in these papers are very far from being unique.

In Section 4, using the approach of [VK87], we show that if X satisfies the EHI

and Assumptions 2.3 and 2.5, then we can construct a “good” doubling measure

µ that is absolutely continuous with respect to m and connects capacities with

the measures of balls in a suitable fashion; see Definition 4.1 and Theorem 4.2.

At this point we could use some extensions of the methods of [Bas13],

[GHL15] to prove the stability of the EHI. However, a quicker approach, which

we follow in Section 5, is to use ideas from the theory of quasisymmetric

transformations of metric spaces. (See [Hei01] for an introduction to this theory

and [Kig12] for applications to heat kernels.) These transformations do not

distort annuli too much, and therefore they preserve the EHI; see Lemma 5.3.

In Section 5 we prove that there exist a new metric dΨ on X and a constant

β > 0 such that the new space (X , dψ, µ) satisfies Poincaré and cutoff energy

inequalities with respect to a global space-time scaling relation of the form R =

T β; see Theorem 5.14. These inequalities are stable with respect to bounded

perturbations of the Dirichlet form. While the metric dΨ is not geodesic, the

main theorem of [GHL15] does apply in this context, and it gives that the PI

and CS inequalities in Theorem 5.14 imply the EHI. This gives the stability of

the EHI, as well as a stable characterization; see Theorem 5.15.

In Section 6 we return to our two main classes of examples, weighted Rie-

mannian manifolds and weighted graphs. We show that they both satisfy our
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local regularity hypotheses Assumptions 2.3 and 2.5, and we give the (short)

proof of Theorem 1.4.

The final Section 7 formulates the class of rough isometries that we con-

sider and states our result on the stability of the EHI under rough isometries.

Since rough isometries only relate spaces at large scales, and the EHI is a state-

ment that holds at all length scales, any statement of stability under rough

isometries requires that the family of spaces under consideration satisfies suit-

able local regularity hypotheses.

A characterization of the EHI in terms of effective resistance (equivalently

capacity) was suggested in [Bar05]. G. Kozma [Koz05] gave an illuminating

counterexample — a spherically symmetric tree. This example does not satisfy

(MD), and at the end of Section 7 we suggest a modified characterization, which

is the “dumbbell condition” of [Bar05] together with (MD).

We use c, c′, C, C ′ for strictly positive constants, which may change value

from line to line. Constants with numerical subscripts will keep the same

value in each argument, while those with letter subscripts will be regarded as

constant throughout the paper. The notation C0 = C0(a, b) means that the

constant C0 depends only on the constants a and b.

2. Metric measure spaces with Dirichlet form

In this section we give some background on MMD spaces, and we give our

two assumptions of local regularity. We take (X , d) to be a locally compact

metric space with infinite radius and m to be a Radon measure on (X , d)

with full support. Let (E ,Fm) be a strongly local Dirichlet form on L2(X ,m).

We call (X , d,m, E ,Fm) a measure metric space with Dirichlet form, or MMD

space. Except in Section 5 we will assume also that (X , d) is a length space.

In the context of MMD spaces, Poincaré and Sobolev inequalities involve

integrals with respect to the energy measures dΓ(f, f); formally these can be

regarded as |∇f |2dm. For bounded f ∈ Fm, the measure dΓ(f, f) is defined

to be the unique measure such that for all bounded g ∈ Fm, we have∫
gdΓ(f, f) = 2E(f, fg)− E(f2, g).

We have

E(f, f) =

∫
X
dΓ(f, f)

for a Riemannian manifold dΓ(f, f) = |∇gf |2dm.
Associated with (E ,Fm) is a semigroup (Pt) and its infinitesimal generator

(L,D(L)). The operator L satisfies

(2.1) −
∫

(fLg)dm = E(f, g), f ∈ Fm, g ∈ D(L);
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in the case of a Riemannian manifold, L is the Laplace-Beltrami operator. (Pt)

is the semigroup of a continuous Hunt process X = (Xt, t ∈ [0,∞),Px, x ∈ X ).

We define capacities for (X , d,m, E ,Fm) as follows. For a non-empty

open subset D ⊂ X , let C0(D) denote the space of all continuous functions

with compact support in D. Let FD denote the closure of Fm ∩ C0(D) with

respect to the
»
E(·, ·) + ‖·‖22-norm. By A b D, we mean that the closure of A

is a compact subset of D. For A b D, we set

(2.2) CapD(A) = inf{E(f, f) : f ∈ FD and f ≥ 1 in a neighborhood of A}.

It is clear from the definition that if A1 ⊂ A2 b D1 ⊂ D2, then

(2.3) CapD2
(A1) ≤ CapD1

(A2).

We can consider CapD(A) to be the effective conductance between the sets A

and Dc if we regard X as an electrical network and E(f, f) as the energy of the

function f . A statement depending on x ∈ B is said to hold quasi-everywhere

on B (abbreviated as q.e. on B) if there exists a set N ⊂ B of zero capacity

such that the statement is true for every x ∈ B \N . It is known that (E ,FD)

is a regular Dirichlet form on L2(D,m) and

(2.4) FD = {f ∈ Fm : f̃ = 0 q.e. on Dc},

where f̃ is any quasi-continuous representative of f ; see [FOT94, Cor. 2.3.1,

Th. 4.4.3]. Functions in the extended Dirichlet space will always be represented

by their quasi-continuous version (cf. [FOT94, Th. 2.1.7]), so that expressions

like
∫
f2dΓ(ϕ,ϕ) are well defined.

Given an open set U ⊂ X , we set

Floc(U) = {h ∈L2
loc(U) : for all relatively compact V ⊂ U,

there exists h# ∈ Fm, s.t. h1V = h#1V m-a.e.}.

Definition 2.1. If h ∈ Floc(U) and f ∈ Fm ∩ C0(U), we define E(f, h) =

E(f, h#), where h# is any function in Fm with h = h# on a precompact open

set containing supp(f). We say h ∈ Floc(U) is harmonic if E(f, h) = 0 for all

f ∈ Fm ∩ C0(U).

This definition implies that Lh = 0 in D provided that h is in the domain

of LD.

Next, we define the Green’s operator and Green’s function.

Definition 2.2. Let D be a bounded open subset of X . Let LD denote the

generator of the Dirichlet form (E ,FD, L2(D,m)) and assume that

(2.5) λmin(D) = inf
f∈FD\{0}

E(f, f)

‖f‖22
> 0.
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We define the inverse of −LD as the Green operator GD = (−LD)−1 : L2(D,m)

→ L2(D,m). We say a jointly measurable function gD(·, ·) : D×D → R is the

Green function for D if

GDf(x) =

∫
D
gD(x, y)f(y)m(dy) for all f ∈ L2(D,m) and for m a.e. x ∈ D.

Assumption 2.3 (Existence of Green function). For any bounded, non-

empty open set D ⊂ X , we assume that λmin(D) > 0 and that there exists a

Green function gD(x, y) for D defined for (x, y) ∈ D × D with the following

properties:

(i) (Symmetry). gD(x, y) = gD(y, x) ≥ 0 for all (x, y) ∈ D ×D \ diag.

(ii) (Continuity). gD(x, y) is jointly continuous in (x, y) ∈ D ×D \ diag.

(iii) (Maximum principles). If x0 ∈ U b D, then

inf
U\{x0}

gD(x0, ·) = inf
∂U
gD(x0, ·), sup

D\U
gD(x0, ·) = sup

∂U
gD(x0, ·).

(iv) (Harmonic). For any fixed x ∈ D, the function y 7→ gD(x, y) is in

Floc(D \ {x}) and is harmonic in D \ {x}.
Here diag denotes the diagonal in D ×D.

Remark 2.4. Note that changing the measure m to an equivalent Radon

measure m′ does not affect either the capacity of bounded sets or the class of

harmonic functions. Further, if f1, f2 ∈ C(X )∩FD, then writing 〈·, ·〉m for the

inner product in L2(m),

(2.6) E(GDf1, f2) = 〈f1, f2〉m,

and it follows that gD(·, ·) is also not affected by this change of measure.

Our second key local regularity assumption is as follows.

Assumption 2.5 (Bounded geometry or BG). We say that a MMD space

(X , d,m, E ,Fm) satisfies (BG) if there exist r0 ∈ (0,∞] and CL <∞ such that

the following hold:

(i) (Volume doubling property at small scales). For all x ∈ X and for all

r ∈ (0, r0], we have

(2.7)
m(B(x, 2r))

m(B(x, r))
≤ CL.

(ii) (Expected occupation time growth at small scales). There exists γ2 > 0

such that for all x0 ∈ X and for all 0 < s ≤ r ≤ r0, we have

(2.8)
m(B(x, s))

CapB(x,8s)(B(x, s))

CapB(x,8r)(B(x, r))

m(B(x, r))
≤ CL

Å
s

r

ãγ2

.
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See Section 6 for the verification of Assumptions 2.5 and 2.3 for our two

main cases of interest, weighted Riemannian manifolds with Ricci curvature

bounded below, and the cable system of graphs with uniformly bounded vertex

degree. The condition (BG) is a robust one because under mild conditions, it

is preserved under bounded perturbation of conductance in a weighted graph,

and quasi-isometries of weighted manifolds.

3. Consequences of EHI

Throughout this section we assume that (X , d,m, E ,Fm) is a MMD space

that satisfies Assumption 2.3, as well as the EHI with constant CH . In addition

we assume that (X , d) is a length space and will write γ(x, y) for a geodesic

between x and y. Recall that (Xt) is the Hunt process associated with (E ,Fm),

and for F ⊂ X , write

(3.1) TF = inf{t ≥ 0 : Xt ∈ F}, τF = TF c .

Theorem 3.1. Let (X , d) satisfy the EHI. Then there exists a constant

CG = CG(CH) such that if B(x0, 2R) ⊂ D, then

(3.2) gD(x0, y) ≤ CGgD(x0, z) if d(x0, y) = d(x0, z) = R.

Proof. The proof of [Bar05, Th. 2] carries over to this situation with es-

sentially no change. (In fact, it is slightly simpler, since there is no need to

make corrections at small length scales.) Note that since gD(·, ·) is continuous

off the diagonal, we can use the EHI with sup and inf instead of ess sup and

ess inf. �

Corollary 3.2. Let B(x0, 2R) ⊂ D. Let A ≥ 2. Then there exists a

constant C1 = C1(CH , A) such that

gD(x0, x) ≤ C1gD(x0, y) for x, y ∈ B(x0, R) \B(x0, R/A).

Proof. We can assume d(x, x0) ≥ d(x0, y). Let z be the point on γ(x0, x)

with d(x0, z) = d(x0, y). Then we can compare gD(x0, y) and gD(x0, z) by

Theorem 3.1, and gD(x0, z) and gD(x0, x) by using a chain of balls with centers

in γ(z, x). (The number of balls needed will depend on A.) �

Lemma 3.3. Let x0 ∈ X , R > 0, and let B(x0, 2R) ⊂ D. There exists

a constant C0 = C0(CH) such that if x1, x2, y1, y2 ∈ B(x0, R) with d(xj , yj) ≥
R/4, then

(3.3) gD(x1, y1) ≤ C0gD(x2, y2).

Proof. A counting argument shows there exists a ballB(z,R/9)⊂B(x0, R)

that contains none of the points x1, x2, y1, y2. Using Corollary 3.2 we have

gD(x1, y1) ≤ cgD(z, x1), gD(z, x1) ≤ cgD(z, x2), and gD(z, x2) ≤ gD(x2, y2),

and combining these comparisons gives the required bound. �
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Definition 3.4. Set

(3.4) gD(x, r) = inf
y:d(x,y)=r

gD(x, y).

The maximum principle implies that gD(x, r) is non-increasing in r. An

easy argument gives that if d(x, y) = r and B(x, 2r) ∪B(y, 2r) ⊂ D, then

(3.5) gD(x, r) ≤ CGgD(y, r).

Let D be a bounded domain in X , A be Borel set, A b D ⊂ X , and

recall from (2.2) the definition of CapD(A). By [FOT94, Th. 4.3.3], [GH14,

Prop. A.2] there exists a function hA,D ∈ FD called the equilibrium potential

such that hA,D = 1 quasi-everywhere in A and E(hA,D, hA,D) = CapD(A). The

function hA,D(·) is the hitting probability of the set A:

(3.6) hA,D(x) = Px(TA < τD) for x ∈ D quasi-everywhere.

Further

(3.7) hA,D(x) = 1 quasi-everywhere on A.

There exists a Radon measure νA,D called the capacitary measure or equilibrium

measure that does not charge any set of zero capacity, supported on ∂A such

that νA,D(∂A) = CapD(A), and satisfies (cf. [FOT94, Lemma 2.2.10, Th. 2.2.5]

and [GH14, Lemma 6.5]):

E(hA,D, v) =

∫
∂A
ṽ dνA,D =

∫
D
ṽ dνA,D for all v ∈ FD,(3.8)

hA,D(y) = νA,DGD(y) =

∫
∂A
νA,D(dx)gD(x, y) for all y ∈ D \ ∂A.(3.9)

Here ṽ in (3.8) denotes a quasi-continuous version of v. By [FOT94, Th. 2.1.5

and p. 71], CapD(A) can be expressed as

(3.10) CapD(A) = inf{E(f, f) : f ∈ FD, f ≥ 1 quasi-everywhere on A}.

Lemma 3.5. Let B(x0, 2r) ⊂ D. Then

(3.11) gD(x0, r) ≤ CapD(B(x0, r))
−1 ≤ CGgD(x0, r).

Proof. Let ν be the capacitary measure for B(x0, r) with respect to GD.

Then ν is supported by ∂B(x, r) and by (3.9),

1 = νG(x0) =

∫
∂B
gD(x0, z)ν(dz).

Hence

ν(B(x0, r))gD(x0, r) ≤ 1 ≤ ν(B(x0, r)) sup
z∈∂B

gD(x0, z)

≤ CGν(B(x0, r))gD(x0, r). �
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Remark 3.6. The assumption B(x0, 2r)⊂D in Theorem 3.1, Corollary 3.2,

and Lemmas 3.3 and 3.5 can be replaced with the assumption B(x0,Kr) ⊂ D
for any fixed K > 1.

Lemma 3.7. Let B = B(x0, R) ⊂ X , and let x1 ∈ B(x0, R/2), B1 =

B(x1, R/4). There exists p0 = p0(CH) such that

(3.12) Py(TB1 < τB) ≥ p0 > 0 for y ∈ B(x0, 7R/8).

Proof. Let ν be the capacitary measure for B1 with respect to GB, and

let h(x) = νGB(x) = Px(TB1 < τB). Then h is 1 on B1, so by the maximum

principle it is enough to prove (3.12) for y ∈ B(x0, 7R/8) with d(y,B1) ≥ R/16.

By Corollary 3.2 (applied in a chain of balls if necessary) there exists

p0 > 0 depending only on CH such that gB(y, z) ≥ p0gB(x1, z) for z ∈ ∂B1.

Thus

h(y) ≥ p0

∫
∂B1

gB(x1, z)ν(dz) = p0νGB(x1) = p0. �

Corollary 3.8. Let B(x0, 2R) ⊂ D. Then there exists θ = θ(CH) > 0

such that if 0 < s < r < R/2 and x ∈ B(x0, R), then

(3.13)
gD(x, r)

gD(x, s)
≥ c

(s
r

)θ
.

Proof. Let w ∈ ∂B(x, 2s), and let z ∈ γ(x,w) ∩ ∂B(x, s). Applying the

EHI on a chain of balls on γ(z, w) gives gD(x,w) ≥ c1gD(x, z), and it follows

that

gD(x, s) ≤ C1gD(x, 2s).

Iterating this estimate then gives (3.13) with θ = log2C1. �

Remark 3.9. The example of R2 shows that we cannot expect a corre-

sponding upper bound on gD(x, r)/gD(x, s).

The key estimate in this section is the following geometric consequence

of the EHI. A weaker result proved with some of the same ideas, and in the

graph case only, is given in [Bar05, Th. 1].

Lemma 3.10. Let B = B(x0, R) ⊂ X . Let λ ∈ [1
4 , 1], 0 < δ ≤ 1/32 ,and

let Bi = B(zi, δR), i = 1, . . . , n satisfy

(1) Bi ∩ ∂B(x0, λR) 6= ∅;
(2) B∗i = B(zi, 8δR) are disjoint.

Then there exists a constant C1 = C1(CH , δ) such that n ≤ C1.

Proof. Let yi and wi be points on γ(x0, zi) with d(zi, yi) = 3δR and

d(zi, wi) = 5δR. Let Ai = B(yi, δ). By Lemma 3.7,

(3.14) Px(TBi < τB∗i ) ≥ p1 > 0 for all x ∈ Ai.
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Now let D = B − ∪iBi, and let N be the number of distinct balls Ai hit

by X before τD. Write S1 < S2 < · · · < SN for the hitting times of these balls.

Let Gki = {N ≥ k,XSk ∈ Ai}. On the event Gki, if X then hits Bi before

leaving B∗i , we will have N = k. So using (3.14), for k ≥ 1,

Px(N = k|N ≥ k) ≥ p1,

and thus N is dominated by a geometric random variable with mean 1/p1.

Hence,

(3.15) Ex0N ≤ 1/p1.

Now set

hi(x) = Px(TAi < τD).

Then hi(yi) = 1 and by Lemma 3.7 hi(wi) ≥ p1. Using the EHI in a chain of

balls we have hi(x0) ≥ p2 = p2(δ) > 0. Thus

p−1
1 ≥ Ex0N =

n∑
i=1

hi(x0) ≥ np2,

which gives an upper bound for n. �

Theorem 3.11. Let (X , d,m, E ,Fm) satisfy EHI. Then (X , d) satisfies

the metric doubling property (MD).

Proof. Let δ = 1/32, x0 ∈ X , R > 0. It is sufficient to show that there

exists M (depending only on CH) such that if B(zi, 8δR), 1 ≤ i ≤ n are disjoint

balls with centers in B(x0, R) − B(x0, R/4), then n ≤ M . So let B(zi, 8δR),

i = 1, . . . , n satisfy these conditions.

Let Bk = B(x0,
1
2kδR) for 1/(2δ) ≤ k ≤ 2/δ, and let nk be the number of

balls B(zi, δR) that intersect ∂Bk. Since each B(zi, δR) must intersect at least

one of the sets ∂Bk, we have n ≤ ∑k nk. The previous lemma gives nk ≤ C1,

and thus n ≤ 2C1/δ. �

We now compare gD in two domains.

Lemma 3.12. There exists a constant C0 such that if B = B(x0, R) and

2B = B(x0, 2R), then

(3.16) g2B(x, y) ≤ C0gB(x, y) for x, y ∈ B(x0, R/4).

Proof. Let B′ = B(x0, R/2) and y ∈ B(x0, R/4). Choose x1 ∈ ∂B′ to

maximize g2B(x1, y). Let γ be a geodesic path from x0 to ∂B(x0, 3R), let z0

be the point on γ ∩ ∂B, and let A = B(z0, R/4).

Using Lemma 3.7 there exists p1 > 0 such that

pA(w) = Pw(XτB ∈ A) ≥ p1, w ∈ B′,
Pz(τ2B < TB′) ≥ p1, z ∈ A.
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Then

g2B(x1, y) = gB(x1, y) + Ex1g2B(XτB , y)

= gB(x1, y) + Ex11(XτB∈A)g2B(XτB , y) + Ex11(XτB 6∈A)g2B(XτB , y)

≤ gB(x1, y) + pA(x1) sup
w∈A∩∂B

g2B(w, y) + (1− pA(x1)) sup
z∈∂B

g2B(z, y)

≤ gB(x1, y) + p1 sup
w∈A∩∂B

g2B(w, y) + (1− p1) sup
z∈∂B

g2B(z, y).

If w ∈ A, then

g2B(w, y) = Ew1(TB′<τ2B)g2B(XTB′ , y)

≤ (1− p1) sup
z∈∂B′

g2B(z, y) ≤ (1− p1)g2B(x1, y).

The maximum principle implies that g2B(z, y) ≤ g2B(x1, y) for all z ∈ ∂B.

Combining the inequalities above gives

g2B(x1, y) ≤ gB(x1, y) + p1(1− p1)g2B(x1, y) + (1− p1)g2B(x1, y),

which implies that

(3.17) g2B(x1, y) ≤ p−2
1 gB(x1, y).

Now let x ∈ B(x0, R/4). By Corollary 3.2,

g2B(x1, y) ≤ p−2
1 gB(x1, y) ≤ CgB(x, y).

Hence

g2B(x, y)) = gB′(x, y) + Exg2B(XτB′ , y)

≤ gB′(x, y) + g2B(x1, y) ≤ (1 + C)gB(x, y). �

Corollary 3.13. Let A ≥ 4. There exists C0 = C0(CH , A) such that for

x ∈ X , r > 0,

(3.18)

CapB(x,2Ar)(B(x, r)) ≤ CapB(x,Ar)(B(x, r)) ≤ C0 CapB(x,2Ar)(B(x, r)).

Proof. The first inequality is immediate from the monotonicity of capacity,

and the second one follows immediately from Lemmas 3.5 and 3.12. �

Lemma 3.14. Let A ≥ 8, and let D be a bounded domain in X . Let x ∈ X
and r > 0 be such that B(x, 4r) ⊂ D.

(a) There exists C0 = C0(CH) such that

CapD(B(x, r)) ≤ C0 CapD(B(y, r)) for y ∈ B(x, r).

(b) There exists C1 = C1(A,CH) such that

(3.19) CapB(x,Ar)(B(x, r)) ≤ C1 CapB(y,Ar)(B(y, r)) for y ∈ B(x, r).
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Proof. (a) follows easily from Lemmas 3.5 and 3.12.

(b) We have

CapB(x,Ar)(B(x, r)) ≤ C2 CapB(x,Ar)(B(y, r))

≤ C3 CapB(x,2Ar)(B(y, r)) ≤ C1 CapB(y,Ar)(B(y, r)). �

We conclude this section with a capacity estimate that will play a key role

in our construction of a well-behaved doubling measure.

Proposition 3.15. Let D ⊂ X be a bounded open domain, and let

B(x0, 8R) ⊂ D. Let F ⊂ B(x0, R). Let b ≥ 4, and suppose there exist disjoint

Borel sets (Qi, 1 ≤ i ≤ n), with n ≥ 2, such that

F = ∪ni=1Qi,

and for each i, there exists zi ∈ Qi such that B(zi, R/6b) ⊂ Qi. Then there

exists δ = δ(b, CH) > 0 such that

CapD(F ) ≤ (1− δ)∑n
i=1 CapD(Qi).

Proof. Let νi and hi be the equilibrium measure and equilibrium potential

respectively for Qi, so that and hi = 1 q.e. on Qi. Then

CapD(Qi) = νi(∂Qi) = νi(D).

By (3.6) and Lemma 3.7, there exists c1 > 0 such that

hi(y) ≥ c1 for y ∈ B(x0, R) q.e.

Let h =
∑n
i=1 hi. Let y ∈ F , so that there exists i such that y ∈ Qi. Then

since n ≥ 2,

h(y) =
n∑
i=1

hi(y) ≥ 1 +
∑
j 6=i

c1 ≥ 1 + c1 for y ∈ F q.e.

Consequently, if h′ =
[
(1 + c1)−1h

]
∧ 1, then h′ = 1 quasi-everywhere on F . It

follows that

CapD(F ) ≤ E(h′, h′) ≤ E(h′, (1 + c1)−1h) = (1 + c1)−1
n∑
i=1

∫
D
h′ dνi

≤ (1 + c1)−1
n∑
i=1

νi(D) = (1 + c1)−1
n∑
i=1

CapD(Qi).

The first inequality above follows from (3.10), the second inequality follows

from the fact that h′ is a potential (see [FOT94, Cor. 2.2.2 and Lemma 2.2.10]),

the third equality follows from (3.8) and the fourth inequality holds since

h′ ≤ 1. �
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Remark 3.16. All the results in this section can be localized in the fol-

lowing sense: if we assume the EHI holds at small scales (i.e., for radii less

than some R1), then the conclusions of the results in this section also hold at

sufficiently small scales.

4. Construction of good doubling measures

We continue to consider a length metric measure space with Dirichlet form

(X , d,m, E ,Fm) that satisfies the EHI and Assumptions 2.3 and 2.5. The space

(X , d) satisfies metric doubling by Theorem 3.11, and therefore by [VK87],

[LS98] there exists a doubling measure µ on (X , d). However, this measure

might be somewhat pathological (see [Wu98, Th. 2]), and to prove the EHI

we will require some additional regularity properties of µ. In this section we

adapt the argument of [VK87] to obtain a “good” doubling measure — that

is, one that connects measures and capacities of balls in a satisfactory fashion.

Definition 4.1. Let D be either a ball B(x0, R) ⊂ X or the whole space X .

If D = X , fix x0 ∈ X . Let C0 < ∞ and 0 < β1 ≤ β2. We say a measure ν on

D is (C0, β1, β2)-capacity good if the following holds:

(a) the measure ν is doubling on all balls contained in D; that is,

(4.1)
ν (B(x, 2s))

ν (B(x, s))
≤ C0 whenever B(x, 2s) ⊂ D;

(b) for all x ∈ D and 0 < s1 < s2 such that B(x, s2) ⊂ D,

(4.2) C−1
0

Å
s2

s1

ãβ1

≤
ν(B(x, s2)) CapB(x,8s1)(B(x, s1))

ν(B(x, s1)) CapB(x,8s2)(B(x, s2))
≤ C0

Å
s2

s1

ãβ2

;

(c) the measure ν is absolutely continuous with respect to m, and we have

ess sup
y∈B(x,1)

dν

dm
(y) ≤ C0 ess inf

y∈B(x,1)

dν

dm
(y) whenever B(x, 1) ⊂ D,(4.3)

C
−1−d(x0,y)
0 ≤ dν

dm
(y) ≤ C1+d(x0,y)

0 for m-almost every y ∈ D.(4.4)

The following is the main result of this section.

Theorem 4.2 (Construction of a doubling measure). Let (X , d) be a com-

plete, locally compact, length metric space with a strongly local regular Dirichlet

form (E ,Fm) on L2(X ,m) that satisfies Assumptions 2.3 and 2.5 and the EHI.

Then there exist constants C0 > 1, 0 < β1 ≤ β2 and a measure µ on X that is

(C0, β1, β2)-capacity good.

We begin by adapting the argument in [VK87] to construct measure with

the desired properties in a ball B(x0, R). We then follow [LS98] and obtain µ

as a weak∗ limit of measures defined on an increasing family of balls.
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Proposition 4.3 (Measure in a ball). Let (X , d,m, E ,Fm) be as in the

previous theorem. There exist C0 > 1, 0 < β1 ≤ β2 such that for any ball

B0 = B(x0, r) ⊂ X with r ≥ r0, there exists a measure ν = νx0,r on B0 that is

(C0, β1, β2)-capacity good.

The proof uses a family of generalized dyadic cubes, which provide a family

of nested partitions of a space.

Lemma 4.4 ([KRS12, Th. 2.1]). Let (X , d) be a complete, length metric

space satisfying (MD), and let A ≥ 4 and cA = 1
2 −

1
A−1 . Let B0 = B(x0, r)

denote a closed ball in (X , d). Then there exists a collection

{Qk,i : k ∈ Z+, i ∈ Ik ⊂ Z+}

of Borel sets satisfying the following properties :

(a) B0 = ∪i∈IkQk,i for all k ∈ Z+.

(b) If m ≤ n and i ∈ In, j ∈ Im, then either Qn,i ∩ Qm,j = ∅ or else Qn,i ⊂
Qm,j .

(c) For every k ∈ Z+, i ∈ Ik, there exists xk,i such that

B(xk,i, cArA
−k) ∩B0 ⊂ Qk,i ⊂ B(xk,i, A

−kr).

(d) The sets Nk = {xk,i : i ∈ Ik}, where xk,i as defined in (c) are increasing,

N0 = {x0}, and Q0,0 = B0. Moreover for each k ∈ Z+, Nk is a maximal

rA−k-separated subset (rA−k-net) of B0.

(e) Property (b) defines a partial order ≺ on I = {(k, i) : k ∈ Z+, i ∈ Ik} by

inclusion, where (k, i) ≺ (m, j) whenever Qk,i ⊂ Qm,j .
(f) There exists CM > 0 such that, for all k ∈ Z+ and for all xk,i ∈ Nk, the

“successors”

Sk(xk,i) = {xk+1,j : (k + 1, j) ≺ (k, i)}

satisfy

(4.5) CM ≥ |Sk(xk,i)| ≥ 2.

Moreover, by property (c), we have d(xk,i, y) ≤ A−kr for all y ∈ Sk(xk,i).

We now set A = 8, and until the end of the proof of Proposition 4.3 we

fix a ball B0 = B(x0, r). We remark that the constants in the rest of the

section do not depend on the ball B0; they depend only on the constants in

EHI and (MD).

We fix a family

{Qk,i : k ∈ Z+, i ∈ Ik ⊂ Z+}
of generalized dyadic cubes as given by Lemma 4.4, and we define the nets Nk

and successors Sk(x) as in the lemma. For k ≥ 1, we define the predecessor

Pk(x) of x ∈ Nk to be the unique element of Nk−1 such that x ∈ Sk−1(Pk(x)).
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Note that for x ∈ Nk, Sk(x) ⊂ Nk+1 whereas Pk(x) ∈ Nk−1. For x ∈ B0, we

denote by Qk(x) the unique Qk,i such that x ∈ Qk,i. For x ∈ Nk, we denote

by ck the capacity

ck(x) = CapB(x,A−k+1r)(Qk(x)).

The following lemma provides useful estimates on ck.

Lemma 4.5 (Capacity estimates for generalized dyadic cubes). There ex-

ists C1 > 1 such that the following hold :

(a) for all k ∈ Z+ and for all x, y ∈ Nk such that d(x, y) ≤ 4rA−k, we have

(4.6) C−1
1 ck(y) ≤ ck(x) ≤ C1ck(y);

(b) for all k ∈ Z+, for all x ∈ Nk, for all y ∈ Sk(x), we have

(4.7) C−1
1 ck(x) ≤ ck+1(y) ≤ C1ck(x).

Proof. First, we observe that there is C > 1 such that

(4.8) C−1
Ä
gB(x,A−k+1r)(x,A

−kr)
ä−1 ≤ ck(x) ≤ C

Ä
gB(x,A−k+1r)(x,A

−kr)
ä−1

for all x ∈ B(x0, r). The upper bound in (4.8) follows from Lemma 4.4(c),

domain monotonicity of capacity and Lemma 3.5. For the lower bound, we

again use Lemma 4.4(c) to choose a point z ∈ γ(x0, x)∩B0 such that d(x, z) =

crA−k/2, where c is as given by Lemma 4.4(c). By the triangle inequality,

Qk(x) ⊃ B(z, crA−k/2). The lower bound again follows from domain mono-

tonicity, Lemma 3.5 and standard chaining arguments using EHI. The esti-

mates (4.6) and (4.7) then follow from (4.8), domain monotonicity of capacity

and Lemma 3.12. �

We record one more estimate regarding the subadditivity of ck, which will

play an essential role in ensuring (4.2).

Lemma 4.6 (Enhanced subaddivity estimate). There exists δ ∈ (0, 1) such

that for all k ∈ Z+, for all x ∈ Nk, we have

ck(x) ≤ (1− δ)
∑

y∈Sk(x)

ck+1(y).

Proof. By the triangle inequality, B(y,A−kr)⊂B(x,A−k+1r) for all k∈Z+,

x ∈ Nk, y ∈ Sk(x). The lemma now follows from Proposition 3.15 and domain

monotonicity of capacity. �

We now follow the Vol′berg-Konyagin construction closely, but with some

essential changes. Recall that we want to construct a doubling measure µ on

B0 satisfying the estimates in Definition 4.1.

Lemma 4.7 (see [VK87, Lemma, p. 631]). Let B0 = B(x0, r), and let ck
denote the capacities of the corresponding generalized dyadic cubes as defined
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above. There exists C2 ≥ 1 satisfying the following. Let µk be a probability

measure on Nk such that

(4.9)
µk(e

′)

ck(e′)
≤ C2

2

µk(e
′′)

ck(e′′)
for all e′, e′′ ∈ Nk with d(e′, e′′) ≤ 4A−kr.

Then there exists a probability measure µk+1 on Nk+1 such that

(1) For all g′, g′′ ∈ Nk+1 with d(g′, g′′) ≤ 4A−k−1r, we have

(4.10)
µk+1(g′)

ck+1(g′)
≤ C2

2

µk+1(g′′)

ck+1(g′′)
.

(2) Let δ ∈ (0, 1) be the constant in Lemma 4.6. For all points e ∈ Nk and

g ∈ Sk(e),

(4.11) C−1
2

µk(e)

ck(e)
≤ µk+1(g)

ck+1(g)
≤ (1− δ)µk(e)

ck(e)
.

(3) The construction of the measure µk+1 from the measure µk can be regarded

as the transfer of masses from the points Nk to those of Nk+1, with no mass

transferred over a distance greater than (1 + 4/A)A−kr.

Remark 4.8. The key differences from the lemma in [VK87] are, first, that

we require the relations (4.9), (4.10) and (4.11) for the ratios µk/ck rather

than just for µk, and second, the presence of the term 1− δ in the right-hand

inequality in (4.11).

Proof. By Lemma 4.4(f) we have |Sk(x)| ≤ CM for all x, k. Set

C2 = C1CM ,

where C1 is the constant in (4.6). Let µk be a probability measure Nk satisfy-

ing (4.9).

Let e ∈ Nk; we will construct µk+1(g) for g ∈ Sk(e) by mass transfer.

Initially we distribute the mass µk(e) to g ∈ Sk(e) so that the mass of g ∈
Sk+1(e) is proportional to ck+1(g). We therefore set

f0(g) =
ck+1(g)∑

g′∈Sk(e) ck+1(g′)
µk(e) for all e ∈ Nk and g ∈ Sk(e).

By (4.5) and Lemmas 4.5 and 4.6, we have

(4.12) C−1
2

µk(e)

ck(e)
≤ f0(g)

ck+1(g)
≤ (1− δ)µk(e)

ck(e)

for all points e ∈ Nk and g ∈ Sk(e). If the measure f0 on Nk+1 satisfies

condition (1) of the lemma, we set µk+1 = f0. Condition (2) is satisfied by

(4.12), and (3) is obviously satisfied by Lemma 4.4(c).

If f0 does not satisfy condition (1) of the lemma, then we proceed to adjust

the masses of the points in Nk+1 in the following fashion. Let p1, . . . , pT be
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the pairs of points {g′, g′′} with g′, g′′ ∈ Nk+1 with 0 < d(g′, g′′) ≤ 4A−k−1r.

We begin with the pair p1 = {g′1, g′′1}. If

f0(g′1)

ck+1(g′1)
≤ C2

2

f0(g′′1)

ck+1(g′′1)
and

f0(g′′1)

ck+1(g′′1)
≤ C2

2

f0(g′1)

ck+1(g′1)
,

then we set f1 = f0. If one of the inequalities is violated, say the first, then

we define the measure f1 by a suitable transfer of mass from g′1 to g′′1 . We set

f1(g) = f0(g) for g 6= g′1, g
′′
1 and set f1(g′1) = f0(g′1)−α1, f1(g′′1) = f0(g′′1) +α1,

where α1 > 0 is chosen such that

f1(g′1)

ck+1(g′1)
= C2

2

f1(g′′1)

ck+1(g′′1)
.

We then consider the pair p2 and construct the measure f2 from f1 in exactly

the same way, by a suitable mass transfer between the points in the pair if this

is necessary. Continuing we obtain a sequence of measures fj , and we find that

µk+1 = fT is the desired measure in the lemma.

The proof that µk+1 satisfies properties (1)–(3) is almost the same as in

[VK87]. We note that a key property of the construction is that we cannot

have chains of mass transfers: as in [VK87], there are no pairs pj = (g1, g2),

pj+i = (g2, g3) such that at step j mass is transferred from g1 to g2, and then

at a later step j + i mass is transferred from g2 to g3; see [VK87, p. 633]. �

To construct the doubling measure in Proposition 4.3 we use Lemma 4.7

for large scales and rely on (BG) for small scales.

Proof of Proposition 4.3. Recall that A = 8. Let µ0 be the probability

measure on N0 = {x0}. We use Lemma 4.7 to inductively construct probability

measures µk on Nk. For x ∈ B0, by Ek(x) we denote the unique y ∈ Nk such

that Qk(x) = Qk(y). Note that by the construction,

(4.13) d(x,Ek(x)) < A−kx, Pk+1(Ek+1(x)) = Ek(x)

for all x ∈ B0 and for all k ∈ Z+. Let l denote the smallest non-negative

integer such that A−lr ≤ r0/A
2; since r ≥ r0, we have l ≥ 2. The desired

measure ν = νx0,r is given by

f(z) = α
∑
y∈Nl

µl(y)

m(Ql(y))
1Ql(y)(z), ν(dz) = f(z)m(dz),

where α > 0 is chosen so that f(x0) = 1. Note that we have µl(x) =

α−1ν(Ql(x)) for all x ∈ Nl.

First, we show (4.3) and (4.4). By the argument in [Kan85, Lemma 2.5]

there exists C3 > 1 (which does not depend on r) such for any pair of points

x, y ∈ B0 that can be connected by a geodesic that stays within B0, there

exists sequence of points El(x) = y0, y1, . . . , yn−1, yn = El(y) in Nl, with n ≤
C3(1+d(x, y)) and d(yi, yi+1) ≤ 4A−lr for all i = 0, 1, . . . , n−1. By comparing
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successive µl(yi) using Lemma 4.7(3) and by comparing successive m(Ql(y))

using the volume doubling property of m at small scales (2.7), we obtain (4.3)

and (4.4).

For rest of the proof we can without loss of generality assume that α = 1

in the definition of ν. If x ∈ Nk, then in the mass transfer from µk to µl each

piece of mass moves a distance at most (1 + 4A−1)
∑l
i=k A

−ir. An additional

distance of at most A−lr is then travelled in the transfer from µl to ν. Since

A ≥ 8, the mass µk(x) from x ∈ Nk travels a distance of at most

(4.14) (1 + 4A−1)
l∑

i=k

A−ir +A−lr < 2A−kr.

Next we show that there exists C4 such that

(4.15) µM+1 (EM+1(x)) ≤ ν(B(x, s)) ≤ C4µM+1(EM+1(x))

for all x ∈ B0 and for all A−l+1r < s < r. Here M = M(s) ∈ Z+ is the unique

integer such that s/A ≤ A−Mr < s. Note that M ≤ l − 1.

By (4.14), the mass transfer of µM+1 (EM+1(x)) from the point EM+1(x)

takes place over a distance at most 2A−M−1r ≤ 2s/8. Since d(x,EM+1(x)) ≤
A−M−1r < s/8, the triangle inequality gives the lower bound in (4.15).

To prove the upper bound, recall from (4.14) that none of the mass in

NM−1 \B(x, s+ 2A−M+1r) of µM−1 falls in B(x, s). This implies that

(4.16) ν(B(x, s)) ≤ µM−1

Ä
NM−1 ∩B(x, s+ 2A−M+1r)

ä
.

Since s ≤ A−M+1r and NM−1 is an A−M+1r-net, by (MD) there exists C5 > 1

such that

(4.17)
∣∣∣NM−1 ∩B(x, s+ 2A−M+1r)

∣∣∣ ≤ C5.

By the triangle inequality, d(x,EM−1(x), y) < 4A−M+1r for all y ∈ NM−1 ∩
B(x, s+2A−M+1r). Therefore by (4.16), (4.17) and Lemmas 4.7 and 4.5, there

exists C6 > 1 such that

(4.18) ν(B(x, s)) ≤ C6µM−1(EM−1(x)).

Combining (4.18) along with (4.13) and Lemma 4.5, we obtain the desired

upper bound in (4.15).

For small balls we rely on (BG) as follows. If B(x, s) ⊂ B0, s ≤ A−l+2r,

y ∈ B(x, s), there exists C7 > 1 such that El(x) and El(y) can be connected by

a chain of points in Nl given by El(x) = z0, zl, . . . , zN−1, zN = El(y) with N ≤
C7. This can be shown by essentially the same argument as [Kan85, Lemma

2.5] or [MSC15, Prop. 2.16(d)]. Combining this with (2.7) and Lemmas 4.7

and 4.5, we obtain that there exists C8 > 1 such that

C−1
8 f(x) ≤ f(y) ≤ C8f(x).
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Therefore for all balls B(x, s) ⊂ B0 with s < A−l+2r, we have

(4.19) C−1
8 f(x)m(B(x, s)) ≤ ν(B(x, s)) ≤ C8f(x)m(B(x, s)).

Combining (4.15) with Lemmas 4.7 and 4.5, we obtain the volume dou-

bling property for ν for all balls whose radius s satisfies A−l+1r < s < r.

The estimate (4.19) and (BG) for the measure m implies the volume doubling

property for balls B(x, s) with s ≤ A−l+1r and B(x, 2s) ⊂ B0. This completes

the proof of the doubling property given in (4.1).

It remains to verify (4.2). By an application of EHI, (4.7), (4.8) along

with Lemmas 3.5, 3.12 and 3.3, there exists C9 > 1 such that

(4.20) C−1
9 cM+1(EM+1(x)) ≤ CapB(x,As) (B(x, s)) ≤ C9cM+1(EM+1(x))

for all x ∈ B0, for all A−l+1r < s ≤ r, where M = M(s) is as above.

Equations (4.15), (4.19) and (4.20) link the ν-measure and capacity of

balls with those of the generalized cubes Qk,i, while Lemmas 4.5 and 4.7 link

ν-measures and capacities of the Qk,i with their successors and neighbors.

Using these links, as well as the regularity on small scales given by Assump-

tion 2.5, (4.2) follows by a straightforward argument. �

Proof of Theorem 4.2. Fix x0 ∈ X . For n ≥ 1∨r0, let νx0,n be the measure

given by Proposition 4.3, and let

fn :=
dνx0,n

dm
.

Then fn ∈ L∞(B(x0, n),m) and by (4.3), we have for 1 ≤ k ≤ n that

(4.21) C−1−k
0 ≤ ess inf

B(x0,k)
fn ≤ ess sup

B(x0,k)
fn ≤ C1+k

0 .

A compactness argument similar to that in [LS98] yields the existence of a

subsequence nk and a measurable function f , bounded on compacts, such that

(4.22)

∫
X
hf dm = lim

k→∞

∫
X
hfnk dm

for all h ∈ L1(X ,m) with compact support. Taking dµ = fdm then yields the

required measure. �

5. Quasi-symmetry, time change, and the EHI

We recall the definition of quasisymmetry; see [Hei01] for a nice exposition

to this theory. For many results in this section, we do not require that the

metric space (X , d) be a length space.
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Definition 5.1. A distortion function is a homeomorphism of [0,∞) onto

itself. Let η be a distortion function. A map f : (X1, d1) → (X2, d2) between

metric spaces is said to be η-quasisymmetric if f is a homeomorphism and

d2(f(x), f(a))

d2(f(x), f(b))
≤ η
Ç
d1(x, a)

d1(x, b)

å
for all triples of points x, a, b ∈ X1, x 6= b. We say f is a quasisymmetry

if it is η-quasisymmetric for some distortion function η. We say that metric

spaces (X1, d1) and (X2, d2) are quasisymmetric if there exists a quasisymmetry

f : (X1, d1)→ (X2, d2). We say that metrics d1 and d2 on X are quasisymmetric

if the identity map Id : (X , d1)→ (X , d2) is a quasisymmetry.

If f : (X1, d1) → (X2, d2) is η-quasisymmetric, then f−1 : (X2, d2) →
(X1, d1) is ζ-quasisymmetric, where ζ(t) = 1/η−1(1/t). Quasi-symmetry is an

equivalence relation among metric spaces [Hei01, Prop. 10.6]. The following

comparison of annuli follows readily from the definition.

Lemma 5.2 (see [MT10, Lemma 1.2.18]). Let the identity map Id : (X , d1)

→ (X , d2) be an η-quasisymmetry for some distortion function η. Then for all

A > 1, x ∈ X , r > 0, there exists s > 0 such that, writing Bi for balls in (X , di),

(5.1) B2(x, s) ⊂ B1(x, r) ⊂ B1(x,Ar) ⊂ B2(x, η(A)s).

Moreover, for all A > 1, x ∈ X , r > 0, there exists s > 0 such that

(5.2) B1(x, r) ⊂ B2(x, s) ⊂ B2(x,As) ⊂ B1(x,A1r),

where A1 = 1/η−1(A−1).

The property of being a length metric space is not preserved under a qua-

sisymmetric change of metric. Nevertheless, many properties that are relevant

to heat kernel estimates and Harnack inequalities are preserved under such

transformations. For instance, it is well known that the metric doubling prop-

erty (MD) is a quasisymmetry invariant [Hei01, Th. 10.18]. It follows easily

from Lemma 5.2 that quasisymmetric metrics have the same doubling mea-

sures. The EHI is also a quasisymmetry invariant as shown in the following

easy but important lemma.

Lemma 5.3. Let (X , di, µ, E ,Fµ), i = 1, 2 be two MMD spaces such that

d1 and d2 are quasisymmetric. If (X , d2, µ, E ,Fµ) satisfies EHI, then so does

(X , d1, µ, E ,Fµ).

Proof. Let CH , A > 1 be constants corresponding to EHI for (X , d2, µ,

E ,Fµ). Then by (5.2), we have EHI for (X , d2, µ, E ,Fµ) with constants CH , A1

> 1, where A1 is as given in Lemma 5.2. �

We introduce the notion of a regular scale function.
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Definition 5.4. We say that a function Ψ : X × [0,∞) → [0,∞) on a

metric space (X , d) is a regular scale function if Ψ(x, 0) = 0 for all x, and there

exist C1, β1, β2 > 0 such that, for all x, y ∈ X , 0 < s ≤ r we have, writing

d(x, y) = R,

(5.3) C−1
1

( r

R ∨ r

)β2
(R ∨ r

s

)β1

≤ Ψ(x, r)

Ψ(y, s)
≤ C1

( r

R ∨ r

)β1
(R ∨ r

s

)β2

.

We now recall the notion of uniform perfectness [Hei01, §11.1].

Definition 5.5. (1) A metric space (X , d) is uniformly perfect if there exists

C > 1 so that for each x ∈ X , and for each r > 0, the set B(x, r) \ B(x, r/C)

is non-empty whenever X \B(x, r) is non-empty.

(2) A measure µ satisfies the reverse doubling property (RVD) if there exist

constants C0 and α > 0 such that

(5.4)
µ(B(x, r))

µ(B(x, s))
≥ C0(r/s)α for x ∈ X , 0 < s ≤ r.

Remark 5.6. Every connected metric space is uniformly perfect. Uniform

perfectness is a quasisymmetry invariant; see [Hei01, Exercise 11.2]. If µ sat-

isfies (VD) and (X , d) is uniformly perfect, then µ satisfies (RVD); see [Hei01,

Exercise 13.1].

Next, we associate a quasisymmetric metric dΨ to any regular scale func-

tion Ψ on (X , d), such that dΨ relates nicely to Ψ.

Proposition 5.7. Let Ψ be a regular scale function on a metric space

(X , d). There exists a metric dΨ : X × X → [0,∞) satisfying the following

properties :

(a) There exist C, β > 0 such that for all x, y ∈ X , we have

(5.5) C−1Ψ(x, d(x, y)) ≤ dΨ(x, y)β ≤ CΨ(x, d(x, y)).

(b) d and dΨ are quasisymmetric.

(c) Assume in addition that (X , d) (or equivalently (X , dΨ)) has infinite diam-

eter and is uniformly perfect. Fix A > 1. Let BΨ and B denote metric

balls in (X , dΨ) and (X , d) respectively. If either BΨ(x, s) ⊂ B(x, r) ⊂
BΨ(x,As) or B(x, r) ⊂ BΨ(x, s) ⊂ B(x,Ar) holds for some x ∈ X , r > 0,

s > 0, then there is a constant C1 > 1 (which does not depend on x ∈
X , r > 0, s > 0) such that

(5.6) C−1
1 sβ ≤ Ψ(x, r) ≤ C1s

β,

where β > 0 is as given by (5.5).

Proof. (a) Let D(x, y) = Ψ(x, d(x, y)) + Ψ(y, d(x, y)). Using (5.3) it

is straightforward to check that there exists K ≥ 1 such that D(x, y) ≤
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K(D(x, z) + D(z, y)) for all x, y, z ∈ X . Therefore by [Hei01, Prop. 14.5]

and (5.3), there exists a metric dΨ on X and β > 0 that satisfies (5.5).

(b) By (5.3) and (5.5), there exists C1 > 0, 0 < γ1 ≤ γ2 such that

C−1
1

Ç
d(x, a)

d(x, b)

åγ1

≤ dΨ(x, a)

dΨ(x, b)
≤ C1

Ç
d(x, a)

d(x, b)

åγ2

for all x, a, b ∈ X that satisfy d(x, a) ≥ d(x, b) > 0. (We can take γi = βi/β.)

Therefore the identity map Id : (X , d)→ (X , dΨ) is quasisymmetric where the

homeomorphism η in Definition 5.1 can be chosen as η(t) = C1 max(tγ1 , tγ2).

(c) As the two cases are very similar, we just treat the case BΨ(x, s) ⊂
B(x, r) ⊂ BΨ(x,As). By uniform perfectness, there exists C2 > 1 such that

there are points y1 ∈ BΨ(x, s) \BΨ(x, s/C2) and y2 ∈ BΨ(x,C2As) \BΨ(x, s).

The upper bound in (5.6) follows from

Ψ(x, r) ≤ cΨ(x, d(x, y2)) ≤ c′dΨ(x, y2)β ≤ c′′sβ,

where we used (5.3) and d(x, y2) ≥ r in the first estimate, (5.5) in the second,

and y2 ∈ BΨ(x,C2As) in the final estimate. Similarly, the lower bound in (5.6)

follows from

Ψ(x, r) ≥ cΨ(x, d(x, y1)) ≥ c′dΨ(x, y1)β ≥ c′′sβ,

where we used (5.3) and d(x, y1) ≤ r in the first estimate, (5.5) in the second,

and y1 /∈ BΨ(x, s/C2) in the final estimate. �

We now introduce Poincaré and cutoff energy inequalities with respect to

a regular scale function Ψ. Recall that a cutoff function ϕ for B1 ⊂ B2 is any

function ϕ ∈ Fµ such that 0 ≤ ϕ ≤ 1 in X , ϕ ≡ 1 in an open neighborhood

of B1, and suppϕ b B2.

Definition 5.8. Let (X , d, µ, E ,Fµ) be a MMD space, and let Ψ be a regu-

lar scale function. We say that (X , d, µ, E ,Fµ) satisfies the Poincaré inequality

PI(Ψ) if there exist constants C,A ≥ 1 such that for all x ∈ X , R > 0 and

f ∈ Fµ,

PI(Ψ)

∫
B(x,R)

(f − f)2 dµ ≤ CΨ(x,R)

∫
B(x,AR)

dΓ(f, f),

where f = µ(B(x, r))−1
∫
B(x,R) f dµ.

We say that (X , d, µ, E ,Fµ) satisfies the cutoff energy inequality CS(Ψ) if

there exist C1, C2 > 0, A > 1 such that the following holds. For all R > 0,

x ∈ X with B1 = B(x,R), B2 = B(x,AR), there exists a cutoff function ϕ for

B1 ⊂ B2 such that for any u ∈ Fµ ∩ L∞,

CS(Ψ)

∫
B2\B1

u2dΓ(ϕ,ϕ) ≤ C1

∫
B2\B1

dΓ(u, u) +
C2

Ψ(x,R)

∫
B2\B1

u2 dµ.
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If there exists β > 0 such that Ψ(x, r) = rβ for all x ∈ X , r > 0, we denote the

properties PI(Ψ) and CS(Ψ) by PI(β) and CS(β) respectively.

The following lemma shows that the Poincaré and cutoff energy inequali-

ties take a much simpler form with respect to the metric dΨ.

Lemma 5.9. Let (X , d, µ, E ,Fµ) be an unbounded, uniformly perfect MMD

space, and let Ψ be a regular scale function. Let dΨ be the metric constructed

in Proposition 5.7 with β > 0 as given in (5.5). Then

(a) (X ,d,µ,E ,Fµ) satisfies PI(Ψ) if and only if (X ,dΨ,µ,E ,Fµ) satisfies PI(β);

(b) (X ,d,µ,E ,Fµ) satisfies CS(Ψ) if and only if (X , dΨ, µ, E ,Fµ) satisfies

CS(β).

Proof. As before, we denote balls in the dΨ and d metrics by BΨ and B

respectively.

(a) Let (X , d, µ, E ,Fµ) satisfy PI(Ψ) with constants C,A ≥ 1. By (5.2),

there exists A′ > 1 such that for all x ∈ X , r > 0, there exists r′ = r′(r) > 0

such that

(5.7) BΨ(x, r) ⊂ B(x, r′) ⊂ B(x,Ar′) ⊂ BΨ(x,A′r).

Let x ∈ X, r > 0 be arbitrary, and let r′ > 0, A′ > 1 be given as above. By

PI(Ψ), (5.7), and Proposition 5.7(c), there exists C ′ > 1 such that

∫
B(x,r′)

∣∣∣f − fB(x,r′)

∣∣∣2 dµ ≤ CΨ(x, r′)

∫
B(x,Ar′)

dΓ(f, f)

≤ C ′rβ
∫
BΨ(x,A′r)

dΓ(f, f)
(5.8)

for all f ∈ Fµ. Further, for all f ∈ L2(X , µ),

∫
B(x,r′)

∣∣∣f − fB(x,r′)

∣∣∣2 dµ = min
a∈R

∫
B(x,r′)

|f − a|2 dµ

≥ min
a∈R

∫
BΨ(x,r)

|f − a|2 dµ =

∫
BΨ(x,r)

∣∣∣f − fBΨ(x,r)

∣∣∣2 dµ.

(5.9)

The Poincaré inequality PI(β) for (X , dΨ, µ, E ,Fµ) follows from (5.8) and

(5.9). The converse is similar.

(b) Let (X , d, µ, E ,Fµ) satisfy CS(Ψ) with constants C1, C2, A ≥ 1. Let

x ∈ X, r > 0 be arbitrary, and let r′ > 0, A′ > 1 be as given in (5.7). By

CS(Ψ), there exists a cutoff function ϕ for B(x, r′) ⊂ B(x,Ar′) such that for
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any u ∈ Fµ ∩ L∞,∫
B(x,Ar′)\B(x,r′)

u2dΓ(ϕ,ϕ) ≤ C1

∫
B(x,Ar′)\B(x,r′)

dΓ(u, u)

+
C2

Ψ(x, r′)

∫
B(x,Ar′)\B(x,r′)

u2 dµ.

(5.10)

Clearly by (5.7), ϕ is also a cutoff function for BΨ(x, r) ⊂ BΨ(A′r). Since

supp Γ(ϕ,ϕ) ⊂ B(x,Ar′) \B(x, r′), by (5.7), we have

(5.11)

∫
BΨ(x,A′r)\BΨ(x,r′)

u2dΓ(ϕ,ϕ) =

∫
B(x,Ar′)\B(x,r′)

u2dΓ(ϕ,ϕ).

Combining (5.10), (5.11), (5.7), and Proposition 5.7(c), we obtain the cutoff

energy inequality CS(β) for (X , dΨ, µ, E ,Fµ). The converse is again similar.

�

We will extend CS(Ψ) to an inequality for cutoff functions for B(x,R) ⊂
B(x,R+ r). We will use the following elementary inequality involving energy

measures.

Lemma 5.10. Let (E ,Fµ) be a regular Dirichlet form on L2(X , µ) with

energy measure Γ(·, ·). Then for any quasi-continuous functions f, ϕ1, ϕ2 ∈
Fµ ∩ L∞, we have∫

X
f2 dΓ(ϕ1 ∨ ϕ2, ϕ1 ∨ ϕ2) ≤

∫
X
f2 dΓ(ϕ1, ϕ1) +

∫
X
f2 dΓ(ϕ2, ϕ2).

Proof. Let ϕ0 = ϕ1 ∨ ϕ2. By [FOT94, Th. 1.4.2(i), (ii)], we have ϕ0 ∈
Fµ, f2 ∈ Fµ. By [FOT94, last equation on p. 206], for each j, we have∫

X
f2 dΓ(ϕj , ϕj) = lim

t↓0

1

t
Ef2.µ

Ä
(ϕj(Yt)− ϕj(Y0))2

ä
.

Here Ef2.µ denotes the expectation where Y0 has the distribution f2 dµ. Com-

bining this with the elementary estimate,

(ϕ0(Yt)− ϕ0(Y0))2 ≤ max
i=1,2

(ϕi(Yt)− ϕi(Y0))2 ≤
2∑
i=1

(ϕi(Yt)− ϕi(Y0))2,

we obtain the desired inequality. �

The cutoff energy inequality CS(Ψ) has the following self improving prop-

erty.

Proposition 5.11 (cutoff energy inequality for all annuli). Let (X , d, µ,

E ,Fµ) satisfy (MD) and CS(Ψ) for some regular scale function Ψ. There exist

CE , γ > 0 such that the following holds. For all R > 0, r > 0, x0 ∈ X with
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B1 = B(x0, R), B2 = B(x0, R + r) and U = B2 \ B1, there exists a cutoff

function ϕ for B1 ⊂ B2 such that for any f ∈ Fµ ∩ L∞,

(5.12)

∫
U
f2dΓ(ϕ,ϕ) ≤ 1

8

∫
U
dΓ(f, f) + CE

Å
R+ r

r

ãγ 1

Ψ(x0, r)

∫
U
f2dµ.

Proof. Let f ∈ Fµ ∩ L∞. Let A > 1, C1, C2 be the constants in CS(Ψ).

Replacing A by dAe if necessary, we can assume that A ∈ N. Let n ≥ 8(A+8),

and coverB(x0, R+r) by ballsBi = B(zi, r/n), i ∈ I such that zi ∈ B(x0, R+r)

and the balls B(zi, r/2n) are disjoint. Then using (MD) there exists a constant

N (which does not depend on n) such that any y ∈ U is in at most N of the

balls B∗i = B(zi, Ar/n). Let Ui = B∗i \Bi.
By CS(Ψ), there exists a cutoff function ϕi for Bi ⊂ B∗i such that

(5.13)

∫
Ui

f2 dΓ(ϕi, ϕi) ≤ C1

∫
Ui

dΓ(f, f) +
C2

Ψ(zi, r/n)

∫
Ui

f2 dµ.

Now let 2 ≤ j ≤ n − A − 1, j ∈ N, and let Ij = {i ∈ I : zi ∈ B(x0, R +

jr/n)}. Set

ψj = max
i∈Ij

ϕi.

Then ψj ≡ 1 on B(x0, R + (j − 1)r/n), and it is zero outside B(x0, R + (j +

A)r/n). Thus ψj is a cutoff function for B(x0, R + (j − 2)r/n) ⊂ B(x0, R +

(j +A+ 1)r/n). We have d(zi, x0) ≤ R+ r for all i ∈ I, so using (5.3),

(5.14)
Ψ(x0, r)

Ψ(zi, r/n)
≤ C

Å
R+ r

r

ãβ2−β1

nβ2 .

Let Vj = B(x0, R + (j + A + 1)r/n) \ B(x0, R + (j − 2)r/n), so that

supp (Γ(ψj , ψj)) ⊂ Vj .
Let hj be a cutoff function for supp (Γ(ψj , ψj)) ⊂ Vj . By Lemma 5.10,∫

X
f2dΓ(ψj , ψj) =

∫
X
f2hjdΓ(ψj , ψj)

≤
∑
i∈Ij

∫
X
f2hjdΓ(ϕi, ϕi) ≤

∑
i∈Ij

∫
Vj

f2dΓ(ϕi, ϕi).(5.15)

Now let

ϕ =
1

n− 2A− 4

n−A−2∑
j=A+3

ψj .

Then ϕ is a cutoff function for B(x0, R) ⊂ B(x0, R + r). Since every point

in B(x0, R + r) is in the support of at most A + 4 of the energy measures

Γ(ψj , ψj), by Cauchy-Schwarz inequality we have

(5.16)

∫
X
f2dΓ(ϕ,ϕ) ≤ (A+ 4)(n− 2A− 4)−2

n−A−2∑
j=A+3

∫
X
f2dΓ(ψj , ψj).
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Combining (5.15) and (5.16),∫
X
f2 dΓ(ϕ,ϕ) ≤ (A+ 4)(n− 2A− 4)−2

n−A−2∑
j=A+3

∑
i∈I

∫
Vj

f2 dΓ(ϕi, ϕi).

Set Ĩ = {i ∈ I : supp(Γ(ϕi, ϕi)) ⊂ B(x0, R + r) \ B(x0, R)}. If A + 2 ≤ j ≤
n−A−1 and supp (Γ(ϕi, ϕi))∩Vj 6= ∅, by the triangle inequality supp (Γ(ϕi, ϕi))

⊂ B(x0, R + r) \ B(x0, R). Therefore it suffices to consider only the indices

i ∈ Ĩ in (5.15). Since for each i, supp(Γ(ϕi, ϕi)) intersects at most 4(A + 4)

different Vj ’s, we have,

(5.17)∫
X
f2 dΓ(ϕ,ϕ) ≤ 4(A+ 4)2(n− 2A− 4)−2

∑
i∈Ĩ

∫
B(x0,R+r)\B(x0,R)

f2 dΓ(ϕi, ϕi).

Combining (5.17), (5.13), and (5.14), and using that every point is in at most
N different B∗i , we obtain∫
X
f2dΓ(ϕ,ϕ)

≤ 4(A+ 4)2

(n− 2A− 4)2

Ñ
C1

∑
i∈Ĩ

∫
Ui

dΓ(f, f) +
C2Cn

β2

Ψ(x0, r)

Å
R+ r

r

ãβ2−β1 ∑
i∈Ĩ

∫
Ui

f2 dµ

é
≤ 4N(A+ 4)2

(n− 2A− 4)2

Ç
C1

∫
U

dΓ(f, f) +
C2Cn

β2

Ψ(x0, r)

Å
R+ r

r

ãβ2−β1
∫
U

f2 dµ

å
.

Finally, we choose n large enough so that 4N(A + 4)2(n − 2A − 4)−2C1 ≤
1/8. �

Remark 5.12. Note that this quite general argument enables us to deduce

a cutoff energy inequality on arbitrary annuli from CS(Ψ); see [MSC17, Lemma

2.1]. Further, if Ψ(x, r) = Ψ(y, r) for all x, y ∈ X and r > 0, we can modify

the proof by using (5.3) with x = y instead of using (5.14), so that γ = 0 in

(5.12).

Definition 5.13. Let (X , d, µ, E ,Fµ) be a MMD space, and let Ψ be a reg-

ular scale function. We say that (X , d, µ, E ,Fµ) satisfies the capacity estimate

(cap)Ψ if there exist κ ∈ (0, 1) and C > 1 such that for any ball x ∈ X , r > 0,

(cap)Ψ C−1µ (B(x, r))

Ψ(x, r)
≤ CapB(x,r)(B(x, κr)) ≤ Cµ (B(x, r))

Ψ(x, r)
.

If Ψ(x, r) = rβ for all x ∈ X , r > 0, we denote the property (cap)Ψ by (cap)β.

We will now apply these results in the context of a change of measure

on an MMD space. Let (X , d,m, E ,Fm) be a MMD space that satisfies the

EHI and Assumptions 2.3 and 2.5. Let (E ,Fe) denote the corresponding ex-

tended Dirichlet space (cf. [FOT94, Lemma 1.5.4]), and let µ be the measure
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constructed in Theorem 4.2. By construction, µ is a positive Radon measure

charging no set of capacity zero and possessing full support. Let (Eµ,Fµ)

denote the time changed Dirichlet space with respect to µ. We have that

Fm = Fe∩L2(X ,m), Fµ = Fe∩L2(X , µ) and Eµ(f, f) = E(f, f) for all f ∈ Fµ;

cf. [FOT94, p. 275]. Moreover, the domain of the extended Dirichlet space is

the same for both the Dirichlet forms (E ,Fm, L2(X ,m)) and (E ,Fµ, L2(X , µ)).

Theorem 5.14. Let (X , d,m, E ,Fm) be a length MMD space that satisfies

the EHI and Assumptions 2.3 and 2.5. Let µ be the measure constructed in

Theorem 4.2. Then the function Ψ defined by Ψ(x, 0) = 0 and

(5.18) Ψ(x, r) =
µ(B(x, r))

CapB(x,r)(B(x, r/8))
, r > 0,

is a regular scale function. Furthermore, the MMD space (X , d, µ, E ,Fµ) sat-

isfies the Poincaré inequality PI(Ψ) and the cutoff energy inequality CS(Ψ).

Proof. By volume doubling and Corollary 3.13, there exists C2 > 0 such

that for all r > 0 and for all x, y ∈ X with d(x, y) ≤ r, we have

(5.19) C−1
2 Ψ(x, r) ≤ Ψ(y, r) ≤ C2Ψ(x, r).

If R ≤ r, the inequalities are immediate from property (b) in Theorem 4.2 and

(5.19). If s < r < R, then writing

Ψ(x, r)

Ψ(y, s)
=

Ψ(x, r)

Ψ(x,R)
.
Ψ(y,R)

Ψ(y, s)
.
Ψ(x,R)

Ψ(y,R)

and bounding each of the three terms on the right using Theorem 4.2 and

(5.19) gives (5.3). Thus Ψ is a regular scale function.

Let dΨ and β > 0 be as given by Proposition 5.7. Write BΨ(·, ·) for balls

in the dΨ metric. We now show that (X , dΨ, µ, E ,Fµ) satisfies (cap)β. By

Lemma 5.2, there exist A > 8, κ ∈ (0, 1) such that for all x ∈ X, r > 0,

B(x, s1) ⊂ BΨ(x, κr) ⊂ B(x, s2) ⊂ B(x, 8s2) ⊂ BΨ(x, r) ⊂ B(x,As1)

for some s1, s2 > 0. By domain monotonicity of capacity, we have

(5.20)

CapB(x,As1) (B(x, s1)) ≤ CapBΨ(x,r) (BΨ(x, κr)) ≤ CapB(x,8s2) (B(x, s2)) .

By Proposition 5.7(c) and the regularity of Ψ, s1 and s2 are both comparable

with Ψ(x, s1) � Ψ(x, s2) � rβ. Therefore by (VD), Lemmas 3.5 and 3.12,

(3.13), and (5.20), we have

(5.21)

CapB(x,As1) (B(x, s1)) � CapB(x,8s2) (B(x, s2)) � µ(B(x, s2))

Ψ(x, s2)
� µ(BΨ(x, r))

rβ
.

Combining (5.20) and (5.21), we have that (X , dΨ, µ, E ,Fµ) satisfies (cap)β.

By Lemma 5.3 and Proposition 5.7(b), (X , dΨ, µ, E ,Fµ) satisfies the EHI.
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By Remark 5.6 the space (X , dΨ) is uniformly perfect, and the measure µ

on (X , dΨ) satisfies (RVD). Thus by [GHL15, Th. 1.2], since (X , dΨ, µ, E ,Fµ)

satisfies the EHI and (cap)β, it satisfies PI(β) and CS(β). We now conclude

using Lemma 5.9. �

Theorem 5.15. Let (X , d) be a complete, locally compact, length metric

space with a strongly local regular Dirichlet form (E ,Fm) on L2(X ,m) that

satisfies Assumptions 2.3 and 2.5. The following are equivalent :

(a) (X , d,m, E ,Fm) satisfies the EHI.

(b) There exist a doubling Radon measure µ on (X , d) that is mutually abso-

lutely continuous with respect to m and a regular scale function Ψ, such

that the time-changed MMD space (X , d, µ, E ,Fµ) satisfies the Poincaré

inequality PI(Ψ) and the cutoff energy inequality CS(Ψ).

(c) There exist a doubling Radon measure µ on (X , d) that is mutually ab-

solutely continuous with respect to m, a metric dΨ on X that is qua-

sisymmetric to d, and β > 0, such that the time-changed MMD space

(X , dΨ, µ, E ,Fµ) satisfies the Poincaré inequality PI(β) and the cutoff en-

ergy inequality CS(β) for some β > 0.

Proof. (a) ⇒(b) This follows from Theorem 5.14.

(b)⇒(c) Let dΨ and β > 0 be as given by Proposition 5.7. Quasi-

symmetry of dΨ follows from Proposition 5.7(b). Then PI(β) and CS(β) for

(X , dΨ, µ, E ,Fµ) follow from Lemma 5.9.

(c)⇒(a) By Remark 5.6, (X , d) and therefore (X , dΨ) are uniformly per-

fect. Thus µ satisfies (RVD). By Proposition 5.11 and Remark 5.12, we obtain

the condition (CSA) in [GHL15]. Then by [GHL15, Th. 1.2], we obtain EHI for

(X , dΨ, µ, E ,Fµ). Since dΨ and d are quasisymmetric, the desired EHI follows

from Lemma 5.3. �

Proof of Theorem 1.3. The relation E � E ′ implies that the energy mea-

sure dΓ′(f, f) for E ′ satisfies

(5.22) C−1dΓ(f, f) ≤ dΓ′(f, f) ≤ CdΓ(f, f) for all f ∈ F ;

see [LJ78, Prop. 1.5.5(b)]. This implies stability of Poincaré and cutoff energy

inequalities under such perturbations. Therefore, the desired EHI follows from

stability of property (b) in Theorem 5.15 (or alternatively (c)). �

We remark that the cutoff energy inequality in Theorems 5.15 and 5.14

could be replaced by the slightly weaker generalized capacity estimate given in

[GHL15].

Remark 5.16. (1) The approach using quasisymmetry given in this section

implicitly contains an alternate proof to the main results in [Bas13].
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(2) Theorem 5.15 shows that, after suitable transformations of measure

and metric, the stability of EHI follows from the stability of the PHI(β); see

[BBK06, p. 485 and Def. 2.1(d)] for the definition of PHI(β). It is known that

the index satisfies β ≥ 2; see [Hin02, p. 252]. One might ask if we can improve

Theorem 5.15(c) to obtain PHI(2). A paper in preparation [KM] shows that

this is not possible in general, but on the other hand the Sierpinski gasket

provides a non-trivial example where this is possible; see [Kig08]. See [Kaj13,

§9] for further discussion on this problem.

(3) The constant β > 0 in Theorem 5.15 can be made arbitrarily large by

a “snowflake transform” of the metric dΨ 7→ dεΨ, where ε ∈ (0, 1). We can ask

how small β can be. Recall that a conformal gauge on a set X is a maximal

collection of metrics on X such that each pair of metrics from the collection are

quasisymmetric. By analogy with conformal Hausdorff dimension (see [MT10,

Def. 2.2.1] or [Hei01, p. 121]), we can define the conformal walk dimension of

a MMD space (X , d,m, E ,Fm) as the infimum of all β such that there exist

a quasisymmetric metric dΨ and a Revuz measure µ with full support such

that the time changed MMD space (X , dΨ, µ, E ,Fµ) satisfies PHI(β). The

conformal walk dimension is always at least 2, and by Theorem 5.15 it is finite

if and only if the space satisfies EHI. This raises the following questions: Can

the conformal walk dimension be finite and strictly greater than 2? Is the

infimum in the definition of conformal walk dimension always attained?

(4) By [GHL15, Th. 1.2] the modified space (X , dΨ, µ, E ,Fµ) satisfies heat

kernel upper and lower bounds; see [GHL15] for details.

(5) The classical parabolic Harnack inequality PHI(2) implies that vector

space of harmonic functions with fixed polynomial growth is finite dimensional

[CM97, Th. 0.7]. This result of Colding and Minicozzi settled a conjecture of

Yau on manifolds with non-negative Ricci curvature. This result was extended

by P. Li [Li97, Th. 1] to spaces satisfying a mean value inequality for har-

monic functions with respect to a doubling measure. This theorem of Li along

with our doubling measure µ in Theorem 4.2 implies that the vector space of

harmonic functions with fixed polynomial growth is finite dimensional on any

space satisfying the EHI. Note that one cannot directly use [Li97, Th. 1] to

obtain the above result because there are manifolds that satisfy EHI but whose

Riemannian measure is not doubling.

6. Examples: Weighted Riemannian manifolds and graphs

In this section we return to our two main examples, and give sufficient

conditions for these spaces to satisfy the local regularity hypotheses 2.3 and 2.5.

We first recall some standard definitions in Riemannian geometry. Let

(X , g) be a Riemannian manifold, and let ν and ∇ denote the Riemann-

ian measure and the Riemannian gradient respectively. In local coordinates
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(x1, x2, . . . , xn), we have

∇f =
n∑

i,j=1

gi,j
∂f

∂xi

∂

∂xj
, dν =

»
det g(x) dx,

where det g denotes the determinant of the metric tensor (gi,j) and (gi,j) =

(gi,j)
−1 is the co-metric tensor. For a function f ∈ C∞(X ), we denote the length

of the gradient by |∇f| = (g(∇f,∇f))1/2. The Laplace-Beltrami operator ∆

is given in local coordinates by

∆ =
1√

det g

∑
i,j

∂

∂xi

Ç
gi,j
√

det g
∂

∂xj

å
.

A weighted manifold (X , g, µ) is a Riemannian manifold (X , g) endowed

with a measure µ that has a smooth (strictly) positive density w with respect

to ν. Let w be the smooth function such that

dµ = wdν.

On the weighted manifold (M, g, µ), one associates a weighted Laplace operator

∆µ given by

∆µf = ∆f + g (∇ (lnw) ,∇f) for all f ∈ C∞(X ).

We say that the weighted manifold (M, g, µ) has controlled weights if the func-

tion w defined above satisfies

sup
x,y∈X :d(x,y)≤1

w(x)

w(y)
<∞,

where d is the Riemannian distance function. The corresponding Dirichlet

form on L2(X , µ) is given by

E(f1, f2) =

∫
X
g(∇f1,∇f2) dµ, f1, f2 ∈ F ,

where F is the weighted Sobolev space of functions in L2(X , µ) whose dis-

tributional gradient is also in L2(X , µ). We refer the reader to Grigor′yan’s

survey [Gri06] for details of the construction of the heat kernel, Markov semi-

group and Brownian motion on weighted manifolds for motivation, as well as

applications.

Our second example is weighted graphs. Let G = (V, E) be an infinite

graph, such that each vertex x has finite degree. For x ∈ V , we write x ∼ y if

{x, y} ∈ E. For D ⊂ V, define

∂D = {y ∈ Dc : y ∼ x for some x ∈ D}.

We define a metric on V by taking d(x, y) to be the length of the shortest path

connecting x and y. We define balls by

Bd(x, r) = {y ∈ V : d(x, y) < r}.
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Let w : E → (0,∞) be a function that assigns weight we to the edge e.

We write wxy for w{x,y} and define

(6.1) wx =
∑
y∼x

wxy.

We extend w to a measure on V by setting w(A) =
∑
x∈Awx. We call (V, E, w)

a weighted graph. An unweighted graph has we ≡ 1.

The Dirichlet form associated with this weighted graph is given by taking

EG(f, f) = 1
2

∑
x

∑
y∼x

wxy(f(y)− f(x))2,

with domain F =
{
f ∈ L2(V, w) : EG(f, f) <∞

}
. We define the Laplacian on

G by setting

∆Gf(x) =
1

wx

∑
y∼x

wxy(f(y)− f(x)).

We say that a function h is harmonic on a set D ⊂ V if ∆Gh(x) = 0 for all

x ∈ D. (Note that for ∆Gh(x) to be defined for x ∈ D, we need h to be defined

on the set D ∪ ∂D.)

The statement of the elliptic Harnack inequality for a weighted graph is

analogous to the EHI for a MMD space. We say G = (V,E,w) satisfies the EHI

if there exists CH <∞ such that if x0 ∈ V, R ≥ 1, and h : B(x0, 2R+1)→ R+

is harmonic in B(x0, 2R), then

sup
Bd(x0,R)

h ≤ CH inf
Bd(x0,R)

h.

The cable system of a weighted graph gives a natural embedding of a graph

in a connected metric length space. Choose a direction for each edge e ∈ E,

let (Ie, e ∈ E) be a collection of copies of the open unit interval, and set

X = V ∪ (∪e∈EIe).

(Following [Var85] we call the sets Ie cables.) We define a metric dc on X by

using Euclidean distance on each cable. If x ∈ V and e = (x, y) is an oriented

edge, we set dc(x, t) = 1−dc(y, t) = t for t ∈ Ie. We then extend dc to a metric

on X ; note that this agrees with the graph metric for x, y ∈ V. We take m to

be the measure on X that assigns zero mass to points in V, and mass we|s− t|
to any interval (s, t) ⊂ Ie. For more details on this construction. see [Var85],

[BB04].

We say that a function f on X is piecewise differentiable if it is continuous

at each vertex x ∈ V, is differentiable on each cable, and has one-sided deriva-

tives at the endpoints. Let F0 be the set of piecewise differentiable functions

f with compact support. Given two such functions we set

dΓ(f, g)(t) = f ′(t)g′(t)m(dt).
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(While the sign of f ′ and g′ depends on the orientation of the cable, this does

not affect their product.) We then define

E(f, g) =

∫
X
dΓ(f, g)(t), f, g ∈ F0,

and we take F to be the completion of F0 with respect to the norm

||f ||E1 =
( ∫

f2dm+ E(f, f)
)1/2

.

We extend E to F , and it is straightforward to verify that (E ,F) is a closed

regular strongly local Dirichlet form. We call (X , dc,m, E ,F) the cable system

of the graph G. We define harmonic functions for the cable system as in

Section 1.

We remark that (up to a constant time change) the associated Hunt pro-

cess X behaves like a Brownian motion on each cable and like a “Walsh Brow-

nian motion” (see [Wal78]) at each vertex: starting at x it makes excursions

along the cable I{x,y} at a rate proportional to wxy/wx.

There is a natural bijection between harmonic functions on the graph G
and the cable system X . If h is harmonic on a domain D ⊂ X , then h|V
satisfies ∆Gh(x) = 0 for any x ∈ V such that B(x, 1) ⊂ D. Conversely, let

D0 ⊂ V, and suppose that h : D0 ∪ ∂D0 → R is G-harmonic. Let D be the

open subset of X that consists of D0 and all cables with an endpoint in D0.

Define h by setting h(x) = h(x), x ∈ D0 ∪ ∂D0 and taking h to be linear on

each cable. Then h is harmonic on D.

Definition 6.1. We say that G has controlled weights if there exists p0 > 0

such that

(6.2)
wxy
wx
≥ p0 for all x ∈ V, y ∼ x.

This is called the p0 condition in [GT02]. Note that it implies that vertices

have degree at most 1/p0, so that an unweighted graph satisfies controlled

weights if and only if the vertex degrees are uniformly bounded.

Lemma 6.2. Let (X , d, µ, E ,F) be the cable system of a weighted graph

G = (V, E, w). If X satisfies the EHI with constant CH , then G has controlled

weights.

Proof. (By looking at a linear (harmonic) function in a single cable we

have that CH ≥ 3.) Let x0 ∈ V, and let xi, i = 1, . . . n be the neighbors of x0.

Let r < 1
2 , and let yi, zi be the points on the cable γ(x0, xi) with d(x0, yi) = r,

d(x0, zi) = 2r. Set pj = wx0,xj/wx.

Let D = B(x0, 2r) and hj be the harmonic function in B(x0, 2r) with

hj(zi) = δij . We have hj(x0) = pj , hj(yi) = 1
2pj if i 6= j and hj(yj) = 1

2(1+pj).
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So using the EHI with i 6= j,

2h(yj) = 1 + pj ≤ 2CHh(yi) = CHpj ,

which leads to the required lower bound on pj . �

Remark 6.3. See [Bar05] for an example that shows that the EHI for a

weighted graph, as opposed to its cable system, does not imply controlled

weights.

It is straightforward to verify

Lemma 6.4. Let G have controlled weights. The EHI holds for G if and

only if it holds for the associated cable system.

We conclude this section by showing that a large class of weighted man-

ifolds and cable systems satisfy our local regularity hypotheses (BG). To this

end, we introduce a local parabolic Harnack inequality which turns out to be

strong enough to imply (BG).

Definition 6.5. We say a MMD space (X , d, µ, E ,F) satisfies the local

parabolic Harnack inequality (PHI(2))loc if there exist R > 0, CR > 0 such that

for all x ∈ X , 0 < r ≤ R, any non-negative weak solution u of (∂t + L)u = 0

on (0, r2)×B(x, r) satisfies

(PHI(2))loc sup
(r2/4,r2/2)×B(x,r/2)

u ≤ CR inf
(3r2/4,r2)×B(x,r/2)

u;

here L is the generator corresponding to the Dirichlet form (E ,F , L2(X , µ)).

Lemma 6.6.

(a) Let (M, g, w) be a weighted Riemannian manifold with controlled weights

such that (M, g) is quasi-isometric to a manifold with Ricci curvature

bounded below. Then (M, g, w) satisfies (PHI(2))loc.

(b) Let G = (V, E, w) be a weighted graph with controlled weights. Then its

cable system satisfies (PHI(2))loc.

Proof. (a) If (M′, g′) has Ricci curvature bounded below then (M′, g′)
satisfies (PHI(2))loc by the Li-Yau estimates. By [HS, Th. 2.7], the property

(PHI(2))loc is stable under quasi-isometries and under introducing controlled

weights.

(b) By taking R < 1 this reduces to looking at either a single cable (i.e.,

an interval) or a finite union of cables. See [BM] for more details. �

Lemma 6.7. Let (X , d,m, E ,F) be a MMD space that satisfies (PHI(2))loc.

Then (X , d,m, E ,F) satisfies Assumption 2.3 and (BG).
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Proof. We refer the reader to [BM] for the proof of Assumption 2.3. By

[HSC01, Th. 2.7] the heat kernel on this space satisfies a two-sided Gaussian

bound at small time scales. These imply the volume doubling property at

small scales.

Using the heat kernel upper bounds given in [HSC01, Lemma 3.9], we

obtain the following Green’s function upper bound. There exist A > 1, a ∈
(0, 1), C0, r0 > 0 such that for all x ∈ X , r ∈ (0, r0) and for all y ∈ B(x,Ar)

such that d(x, y) = ar, we have

gB(x,Ar)(x, y) ≤ C0
r2

m(B(x, r))
.

A matching lower bound follows from [HSC01, Lemmas 3.7 and 3.8], after

adjusting r0, a if necessary.

Clearly, ((PHI(2))loc) implies a local EHI for small scales. By using the

local EHI along with the results in Section 2 (see Remark 3.16), there exist

r0, C1 > 0 such that

C−1
1

m(B(x, r))

r2
≤ CapB(x,8r)(B(x, r))

≤ m(B(x, r))

r2
for all x ∈ X for all r ∈ (0, r0).

This implies (2.8) with γ2 = 2. Hence (BG) follows. �

Proof of Theorem 1.4. Assumption 2.5 follows from Lemmas 6.6 and 6.7.

Assumption 2.3 follows from [BM]. The conclusions now follow from Theo-

rem 1.3. �

7. Stability under rough isometries

As well as stability of the EHI under bounded perturbation of weights,

our results also imply stability under rough isometries.

Definition 7.1. For each i = 1, 2, let (Yi, di, µi) be either a metric measure

space or a weighted graph. A map ϕ : Y1 → Y2 is a rough isometry if there

exist constants C1 > 0 and C2, C3 > 1 such that

X2 =
⋃
x∈X1

Bd2(ϕ(x), C1),(7.1)

C−1
2 (d1(x, y)− c1) ≤ d2(ϕ(x)ϕ(y)) ≤ C2(d1(x, y) + c1) for x ∈ Y1,(7.2)

C−1
3 µ1(Bd1(x,C1)) ≤ µ2(Bd2(ϕ(x), c1))

≤ C3µ1(Bd1(x,C1)) for x, y ∈ Y1.
(7.3)

If there exists a rough isometry between two spaces, they are said to be roughly

isometric. (One can check this is an equivalence relation.)
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This concept was introduced by Gromov [Gro81] (under the name quasi-

isometry) in the context of groups and by Kanai [Kan85] (under the name rough

isometry) for metric spaces; in both cases they just required conditions (7.1)

and (7.2). Condition (7.3) is a natural extension when one treats measure

spaces; see [CSC95] and [BBK06].

If two spaces are roughly isometric then they have similar large scale

structure. However, as the EHI implies some local regularity, we need to

impose some local regularity on the spaces in the class we consider.

Definition 7.2. We say a MMD space satisfies a local EHI (denoted EHIloc)

if there exist r0 ∈ (0,∞) and CL <∞ such that whenever 2r < r0, x ∈ X and

h is a non-negative harmonic function on B(x, 2r), then

ess sup
B(x,r)

h ≤ CL ess inf
B(x,r)

h.

Remark 7.3. An easy chaining argument shows that if X satisfies EHIloc

with constants r0 and CL, then for any r1 > r0, there exists C ′L = CL(r1) such

that X satisfies EHIloc with constants r1 and C ′L.

Definition 7.4. Let X = (X , d,m, E ,F) be a MMD space. We say X
satisfies local regularity (LR) if there exists r0 ∈ (0, 1), CL <∞ such that the

following conditions hold:

(B1) X satisfies (BG);

(B2) the Green’s function and operator satisfies Assumption 2.3;

(B3) X satisfies EHIloc with constants r0 and CL;

(B4) there exists C0 > 0 such that for all x0 ∈ X and for all r ∈ (0, r0), there

exists a cutoff function ϕ for B(x0, r/2) ⊂ B(x0, r) such that∫
B(x0,r)

dΓ(ϕ,ϕ) ≤ C0m(B(x0, r)).

The final condition (B4) links m with the energy measure dΓ(·, ·) at small

length scales.

Lemma 7.5.

(a) Let (M, g, w) be a weighted Riemannian manifold with controlled weights

such that (M, g) is quasi-isometric to a manifold with Ricci curvature

bounded below. Then (M, g, w) satisfies (LR).

(b) Let G = (V, E, w) be a weighted graph with controlled weights. Then its

cable system satisfies (LR).

Proof. Properties (B1)–(B3) all follow from Lemmas 6.6 and 6.7. For

(B4), it is sufficient to look at a cutoff function ϕ(x) that is piecewise linear in

d(x, x0). �
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Our main theorem concerning stability under rough isometries is the fol-

lowing.

Theorem 7.6 (Stability under rough isometries). Let Xi = (Xi, di,mi,

Ei,Fi), i = 1, 2 be MMD spaces that satisfy (LR). Suppose that X1 satisfies the

EHI, and X2 is roughly isometric to X1. Then X2 satisfies the EHI.

Sketch of the proof. The basic approach goes back to the seminal works of

Kanai [Kan85], [Kan86b], [Kan86a]; see [CSC95], [HK04], [BBK06] for further

developments.

We use the characterization of EHI in Theorem 5.15 and transfer func-

tional inequalities and volume estimates from one space to the other. A key

step of this transfer is carried out by a discretization procedure using weighted

graphs.

We can approximate an MMD space (X , d,m, E ,Fm) by a weighted graph

as follows. For a small enough ε, we choose an ε-net V of the MMD space

(X , d,m, E ,Fm) that is a maximal ε-separated subset of X. The set V forms

the vertices of a graph whose edges E are given by u ∼ v if and only if

d(u, v) ≤ 3ε. Define weights by wuv = m(B(u, ε)) + m(B(v, ε)) if {u, v} ∈ E.

(Many other choices are possible.) We then define wx as in (6.1) and hence

obtain a measure w on V. It is easy to verify that the metric measure spaces

(X , d,m) and (V, E, w) are roughly isometric.

The next step is to transfer functions between MMD space and its net.

This transfer of functions has the property that the norms and energy measures

are comparable on balls (up to constants and linear scaling of balls), which in

turn implies that functional inequalities such as the Poincaré inequality and

cutoff energy inequality can be transferred between a MMD space and its net.

Using the notation of [SC04], we denote by rst a “restriction map” that takes

a function f : X → R on the MMD space to a function rst(f) : V→ R on the

graph defined by

rst(f)(v) =
1

m(B(v, ε))

∫
B(v,ε)

f(y)m(dy) for v ∈ V.

Similarly, we denote by ext an “extension map” that takes a function f : V→R
on the net to a function ext(f) : X → R on the MMD space defined by

ext(f)(x) =
∑
v∈V

f(v)χv(x),

where (χv)v∈V is a “nice” partition of unity on X indexed by the vertices of

the net V satisfying the following properties:

(i)
∑
v∈V χv = 1;

(ii) there exists c ∈ (0, 1) such that χv ≥ c on B(x, ε/2) for all v ∈ V ;

(iii) χv ≡ 0 on B(v, 2ε)c for all v ∈ V ;
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(iv) there exists C > 0 such that χv ∈ Fm and E(χv, χv) ≤ Cm(B(x, ε)) for

all v ∈ V .

The maps rst and ext are (roughly) inverses of each other, and they preserve

norms and energy measures on balls. Therefore volume doubling, the Poincaré

inequality, and the cutoff energy inequality can be transferred between a MMD

space and its net.

A difficulty that is not present in the previous settings in [CSC95], [HK04],

[BBK06] arises from the change of measure in the characterization of the EHI

in Theorem 5.15. This change of symmetric measure does not affect the energy

measures in the cutoff energy and Poincaré inequalities. However the integrals

on the left side of the Poincaré inequality and the final integral in the cutoff

energy inequality involve the measure measure µ constructed in Theorem 4.2.

Let g be such that dµ = gdm. The integrals for the cutoff energy and Poincaré

inequalities on the net then are taken with respect to the measure rst(g) dµ. It

is easy to verify using (4.3) that the metric measure spaces (X , d, µ) and the net

equipped with the measure rst(g) dw are roughly isometric, and therefore inte-

grals with respect to the measures g dm and rst(g) dw are comparable on balls.

Thus, starting with the space X1 we take g1 = dµ1/dm1, where µ1 is the

measure given by Theorem 4.2. Write Vi for the nets for Xi, i = 1, 2. We

take g̃1 = rst(g1) and then transfer g̃1 to a function g̃2 on V2 using the rough

isometry between V1 and V2. The function g2 = ext(g̃2) then gives a measure

dµ2 = g2dm2 on X2. As in [CSC95], [HK04], [BBK06] we can then transfer the

cutoff energy and Poincaré inequalities across this chain of spaces, and deduce

that the space (X2, d2, µ2, E2,F2) satisfies the conditions in Theorem 5.15(b),

and therefore satisfies the EHI. �

Proof of Theorem 1.5. This is a direct consequence of Lemma 7.5 and

Theorem 7.6. �

We conclude this paper by suggesting a characterization of the EHI in

terms of capacity, or equivalently effective conductance. Let D be a bounded

domain in X . As in [CF12] we can define a reflected Dirichlet space ‹FD; the

associated diffusion ‹X is the process X reflected on (a) boundary of D. (For

the case of manifolds or graphs, this reflected process can be constructed in a

straightforward fashion). For disjoint subsets A1, A2 of D, define

Ceff(A1, A2;D) = inf{ED(f, f) : f |A1 = 1, f |A2 = 0, f ∈ ‹FD}.
Let D(x0, R) = {(x, y) ∈ B(x0, R) : x, y ∈ B(x0, R/2), d(x, y) ≥ R/3}. As

in [Bar05] we say that (X , d,m, E ,F) satisfies the dumbbell condition if there
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exists CD such that for all x0 ∈ X , R > 0, writing D = B(x0, R) we have

sup
(x,y)∈D(x0,R)

Ceff(B(x,R/8), B(y,R/8);D)

≤ CD inf
(x,y)∈D(x0,R)

Ceff(B(x,R/8), B(y,R/8);D).

[Bar05] asked if the dumbbell condition characterizes EHI. However G. Kozma

[Koz05] remarked that a class of spherically symmetric trees satisfy the dumb-

bell condition, but fail to satisfy EHI. These trees also fail to satisfy (MD). We

can therefore modify the question in [Bar05] as follows.

Problem 7.7. Let (X , d,m, E ,Fm) satisfy (LR), the dumbbell condition

and metric doubling. Does this space satisfy the EHI?
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Internat. Math. Res. Notices no. 2 (1992), 27–38. MR 1150597. Zbl 0769.

58054. https://doi.org/10.1155/S1073792892000047.

[SC92b] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds,

J. Differential Geom. 36 no. 2 (1992), 417–450. MR 1180389. Zbl 0735.

58032. https://doi.org/10.4310/jdg/1214448748.

[SC95] L. Saloff-Coste, Parabolic Harnack inequality for divergence-form

second-order differential operators, Potential Anal. 4 no. 4 (1995), 429–

467, Potential theory and degenerate partial differential operators (Parma).

MR 1354894. Zbl 0840.31006. https://doi.org/10.1007/BF01053457.

[SC04] L. Saloff-Coste, Analysis on Riemannian co-compact covers, in Sur-

veys in Differential Geometry. Vol. IX, Surv. Differ. Geom. 9, Int. Press,

Somerville, MA, 2004, pp. 351–384. MR 2195413. Zbl 1082.31006. https:

//doi.org/10.4310/SDG.2004.v9.n1.a10.

[Stu96] K. T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack

inequality, J. Math. Pures Appl. (9) 75 no. 3 (1996), 273–297. MR 1387522.

Zbl 0854.35016.

[Var85] N. T. Varopoulos, Long range estimates for Markov chains, Bull. Sci.

Math. (2) 109 no. 3 (1985), 225–252. MR 0822826. Zbl 0583.60063.

[VK87] A. L. Vol′berg and S. V. Konyagin, On measures with the

doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 no. 3

(1987), 666–675. MR 0903629. Zbl 0649.42010. https://doi.org/10.1070/

IM1988v030n03ABEH001034.

[Wal78] J. B. Walsh, A diffusion with a discontinuous local time, in Temps Locaux,
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