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Abstract

We characterize Gaussian estimates for transition probability of a discrete time
Markov chain in terms of geometric properties of the underlying state space. In
particular, we show that the following are equivalent:

(1) Two sided Gaussian bounds on heat kernel
(2) A scale invariant Parabolic Harnack inequality
(3) Volume doubling property and a scale invariant Poincaré inequality.

The underlying state space is a metric measure space, a setting that includes both
manifolds and graphs as special cases. An important feature of our work is that
our techniques are robust to small perturbations of the underlying space and the
Markov kernel. In particular, we show the stability of the above properties under
quasi-isometries. We discuss various applications and examples.
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CHAPTER 1

Introduction

The goal of this work is to characterize Gaussian estimates for Markov chains
and parabolic Harnack inequality for a corresponding discrete time version of heat
equation by two geometric properties on the state space

1. Large scale volume doubling property
2. Poincaré inequality.

A precise statement of this characterization is given in Theorem 1.4. The Gauss-
ian estimates mentioned are upper and lower bounds for the iterated transition
probability kernel. The parabolic Harnack inequality is a regularity estimate for
non-negative solutions of the discrete time heat equation given by u(k + 1,2) =
[Pu(k,-)](z), where P is the Markov operator corresponding to the given Markov
chain.

The hardest and most useful implication in the characterization is that the con-
junction of the volume doubling property and Poincaré inequality implies the two
sided Gaussian estimates and parabolic Harnack inequality. The volume doubling
property and Poincaré inequality are concrete properties the validity of which can
be verified given the geometric data on the space. Also, an important consequence
of this characterization is the stability of Gaussian estimates and parabolic Harnack
inequality under quasi-isometric transformation of the underlying space.

An analogous characterization is well-known for diffusions on Riemannian man-
ifolds [32, 69](or more generally local Dirichlet spaces [76]) and for discrete time
Markov chains on graphs [27]. We extend the characterization of Gaussian esti-
mates for Markov chain to a large family of state spaces that includes both graphs
and Riemannian manifolds. Various applications of Gaussian estimates and Har-
nack inequalities are discussed.

Another motivation comes from the work of Hebisch and Saloff-Coste [44] on
random walks on groups. By the main results of [44], we know that many natu-
ral translation-invariant Markov chains on groups (discrete and continuous groups)
of polynomial volume growth satisfy two-sided Gaussian estimates. However the
arguments in [44] for proving Gaussian lower bounds are specific to the case of
translation-invariant Markov chains as the authors of [44] note “We want to em-
phasize that a number of key points of the argument presented below are specific to
the case of translation invariant Markov chains”. To this end they conjecture “We
have no doubt that, if G has polynomial volume growth a corresponding Gaussian
lower bound holds for (non transition-invariant) Markov chains as well. However,
we have not been able to prove this result. We hope to come back to this question
in the future.” [44, Remark 2]. Our work validates their conjecture.
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2 1. INTRODUCTION

A remarkable feature of our work is that the arguments we develop are robust
under small perturbations of the Markov kernel and the geometry of the under-
lying state space. In particular, we show that parabolic Harnack inequality and
Gaussian estimates for heat kernel for symmetric Markov chains is stable under
quasi-isometric change of the state space and small changes in the Markov kernel.
We do not rely on symmetries of the space (like group structure or transitivity) or
on algebraic properties of the kernel (like translation invariance). As a consequence,
the main results are new even when the state space is R”.

Heat kernel estimates and Harnack inequalities have been subjects of extensive
research for more than fifty years. To place our results in a historical context, we
will describe precisely the characterization of Gaussian estimates of heat kernel and
parabolic Harnack inequality in the context of diffusions over manifolds developed
in [32, 69]. We will also mention several related works, applications and other
historical remarks.

1.1. Diffusions on Riemannian manifolds

For the purpose of the introduction, we describe our results in the restricted
setting of weighted Riemannian manifolds. Let (M, g) be a complete Riemannian
manifold equipped with the Riemannian measure v(dy). A weighted Riemann-
ian manifold (M, g, u) is a Riemannian manifold (M, g) equipped with a mea-
sure p(dy) = o(y)v(dy), where 0 < o € C>®(M) is the weight, and the associ-
ated weighted Laplacian is given by A = —o~'div(ograd)!. We might some-
times consider a Riemannian manifold (M,g) as a weighted Riemannian mani-
fold equipped with Riemannian measure and Laplace-Beltrami operator. We de-
note the balls centered at = and radius r by B(z,r) := {y : d(z,y) <r} and
the volume of the balls by V(x,r) := u(B(z,r)). We denote the open balls by
B(z,r)° :={y : d(z,y) <r}

The heat kernel of the weighted Riemannian manifold (M, g, p) is the fun-
damental solution of a parabolic partial differential equation, the heat diffusion
equation

(1.1) <§t+A)u0.

That is heat kernel is a function (¢,z,y) — p(t,z,y) defined on (0,00) x M x M
such that for each y € M, (t,x) — p(t,x,y) is a solution of (1.1) and for any
¢ € C(M), u(t,z) = [, p(t,z,y)¢(y)pu(dy) tends to ¢(x) as t tends to 0. In
other words, the heat kernel allows us to solve the Cauchy initial value problem
for (1.1). Equivalently, we may view p(t,z,y)u(dy) as the distribution at time ¢ of
a stochastic process (X¢),., started at = (the diffusion driven by A on M). These
two viewpoints are related by the formula

(1.2) ult, z) = /N plt) ldy) = Be(uo(X,)

where u is the solution of Cauchy initial value problem for (1.1) with initial value
condition wug.

IThe negative sign is to ensure that A has non-negative spectrum. Note that A depends on
the Riemannian metric g and the weight o.
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The most classical example of heat kernel is the Gauss-Weierstrass kernel on
2
R™ equipped with the Lebesgue measure, the Laplacian A = — " | % and the
heat kernel is given by

n/2 2
1 d
p(t,x,y) = ( > exp <— <x4’ty) ) , t>0, 2,y €R™.

dmt

We will present a well-known geometric characterization of those weighted Rie-
mannian manifolds on which the heat kernel satisfies two-sided Gaussian bounds,
that is having the property that there exists positive reals c1, co, C1, Cy such that

T oo (15 ) e < i (45F)

for all ¢ > 0 and for all z,y € M.

Next, we describe Harnack inequalities for (M, g, 1) equipped with the weighted
Laplacian A. We say that (M, g, u) satisfies elliptic Harnack inequality if there
exists C' > 0 such that any non-negative harmonic function w in a ball B(x,r) (that
is u satisfies Au =0 in B(z,r)°) satisfies the inequality

(1.3) sup w<C inf w.
B(x,r/2) B(x,r/2)

The constant C' € (0,00) is independent x, r and u. An important consequence
of the elliptic Harnack inequality in R™ for the Laplacian A = — Z?Zl 66—; is that
global positive harmonic functions must be constant (Liouville property). '

J. Moser [61] proved elliptic Harnack inequality (1.3) for divergence form op-
erators of the type

n
0 0
( ) Z 81'1 “J 3xj
i,j=1
where a; ; are bounded measurable real functions on R™ satisfying a; ; = a;; and
the uniform ellipticity condition:

Vo € R", VEER™, ME® <> ai ()6 < A€
,J

for two constants 0 < A < A < oo. This elliptic Harnack inequality implies the
crucial Holder continuity for solutions® of the associated elliptic equation Lu = 0,
a result proved earlier by E. de Giorgi [24] and J. Nash [64] (See also [60]).

An important motivation behind the Holder continuity of solutions obtained
by de Giorgi, Nash and Moser [24, 64, 60] was to solve one of the famous Hilbert
problems. Hilbert’s nineteenth problem asks whether the minimizers of Dirichlet
integrals

E(u) = /QF(VU(:E)) dz

are always smooth, if F' is smooth and strictly convex, where 2 C R™ is bounded. E.
de Giorgi and J. Nash independently answered Hilbert’s question in the affirmative.
We refer the interested reader to [49, Theorem 14.4.1] for a detailed exposition of
the smoothness of the minimizers of Dirichlet integrals using Holder regularity
estimates of de Giorgi and Nash.

2by solutions we mean weak solutions.



4 1. INTRODUCTION

It is a long standing open problem to characterize (in geometric terms) those
weighted manifolds that satisfy elliptic Harnack inequality. A related open question
is to determine whether or not elliptic Harnack inequality is preserved under quasi-
isometries. However several examples of Riemannian manifolds that satisfy elliptic
Harnack inequality are known. For instance, Cheng and Yau [16] proved that there
exists a constant depending only n = dim(M) such that for any positive solution
u of Au = 0 in B(z,r)° on a Riemannian manifold (M, g) with Ricci curvature
bounded from below by —K for some K > 0 satisfies

(1.5) Vin(u) <C(r '+ K) in B(x,1/2).

When K = 0, integrating the gradient estimate along minimal paths we immedi-
ately obtain the elliptic Harnack inequality (1.3) for Riemannian manifolds with
non-negative Ricci curvature.

We now describe the parabolic version of (1.3). For any x € M, s € R, r > 0,
let @ = Q(xz, s,r) be the cylinder

Q(z,s,7) = (s —r%,5) x B(z,r)°.
Let Q4+ and Q_ be respectively the upper and lower sub-cylinders
Qi = (s—(1/4)r2,s) x B(z,7/2)°, Q_ = (s—(3/4)r, s — (1/2)r?) x B(z,7/2)°.
We say that (M, g, 1) satisfies parabolic Harnack inequality if there exists a constant
C'such that for allz € M, s € R, r > 0 and for all positive solutions of (% — A) u =
0in @ = Q(z,s,r), we have
(1.6) supu < C'inf u.

Q_ Q+

The constants 1/4,3/4,1/2 appearing in the definition of Q4,Q_ are essentially
arbitrary choices. The main difference between elliptic and parabolic Harnack in-
equalities is that the cylinders Q4 and @Q_ are disjoint in (1.6) whereas in the
elliptic case (1.3) the infimum and supremum are taken over the same ball.

J. Moser attributes the first parabolic Harnack inequality to Hadamard and
Pini for operators with constant coefficients on R™. In [62], J. Moser proved the
parabolic Harnack inequality for uniformly elliptic operators in divergence form as
given by (1.4). As in the elliptic case, the parabolic Harnack inequality (1.6) implies
Holder continuity of the corresponding solutions. This Hoélder continuity was first
obtained by J. Nash [64] in the parabolic setting and Moser’s parabolic Harnack
inequality gives an alternative proof of Holder continuity. For a proof of Harnack
inequality using the ideas of Nash, we refer the reader to the work of Fabes and
Stroock [31]

The gradient estimates (1.5) of Cheng and Yau was generalized to the parabolic
case by P. Li and S.T. Yau in [58]. The parabolic gradient estimates in [58] im-
plies that complete Riemannian manifolds with non-negative Ricci curvature satisfy
parabolic Harnack inequality (1.6).

In contrast to elliptic Harnack inequality, there is a satisfactory description of
weighted Riemannian manifolds that satisfy the parabolic Harnack inequality as
described below.

THEOREM 1.1. ([32, 69]) Let (M, g, 1) be a weighted, non-compact, complete
Riemannian manifold equipped with the weighted Laplacian A and let p(t,x,y) de-
note the corresponding heat kernel. The following three properties are equivalent:
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(a) The parabolic Harnack inequality: there exists a constant Cy > 0 such that,
for any ball B= B(z,r), x € M, r > 0 and for any smooth positive solution u
of (% + A) u =0 in the cylinder (s —r2,s) x B(x,r)°, we have

supu < Cyinfu
Q_ Q+

with
Q4+ = (s —(1/4)r?,s) x B(x,7/2)°, Q- = (s—(3/4)r*,s — (1/2)r?) x B(z,1/2)°.

(b) Two sided Gaussian estimates of the heat kernel: there exists positive reals
c1,co,C1,Cy such that

ﬁ exp (_ d(aé;i/)rz) <p(t,z,y) < ﬁ exp (J“Z?)Z)

for allt >0 and for all z,y € M.
(¢) The conjunction of
o The volume doubling property: there exists Cp > 0 such that for allx € M,
for all r > 0 we have

Viz,2r) < CpV(zx,r).

e The Poincaré inequality: there exists Cp > 0,k > 1 such that for any ball
B =B(x,r), z€ M, r >0 and for all f € C>(M), we have

(L.7) / 1 — fol2du < Cpr? / jgrad fi2 dy,
B kB

where kB = B(x, kr) and fp = M(%) s fdu.

ExAMPLE 1.2. We present examples of complete, non-compact, weighted Rie-
mannian manifolds satisfying parabolic Harnack inequality and Gaussian bounds
on the heat kernel. We refer the reader to [73, Section 3.3] for a more extensive
list of examples.

e Complete Riemannian manifolds with non-negative Ricci curvature. The
parabolic Harnack inequality was first obtained in this case by Li and
Yau using a gradient estimate [58]. The volume doubling property follows
from Bishop-Gromov inequality [15, Theorem I11.4.5.] and the Poincaré
inequality follows from the work of P. Buser [14] (See [72, Theorem 5.6.5]
for a different proof).

e Convex domains and complement of convex domains in Euclidean space.
We refer the reader to the monograph [41] for this and other examples in
this spirit.

e Connected Lie groups with polynomial volume growth. By a theorem of
Y. Guiv’arch, we know that Lie groups with polynomial volume growth
satisfies volume doubling property. Moreover, Lie groups with polynomial
volume growth satisfy Poincaré inequality[72, Theorem 5.6.1]. Examples
include nilpotent Lie groups like Euclidean spaces and Heisenberg group.
See also [78, Theorem VIII1.2.9]. Moreover volume doubling property and
Poincaré inequality holds for subelliptic ‘sum of squares’ operators sat-
isfying the Hormander condition [78, Chapter V and VIII] under the
Carnot-Carathéodory metric. See also [72, Section 5.6.1].



6 1. INTRODUCTION

e The Euclidean space R, with n > 2 and weight (1+2)*)*/2, o € (—o0, 00)
satisfies parabolic Harnack inequality if and only if o« > —n. It satisfies
the elliptic Harnack inequality for all « € R. These examples are from
[35].

e Any complete, weighted Riemannian manifold with bounded geometry
that is quasi-isometric to a complete, weighted Riemannian manifold sat-
isfying parabolic Harnack inequality. We say a weighted Riemannian
manifold (M, g, n) with weight ¢ has bounded geometry if (a) There ex-
ists K > 0 such that Ric > —Kg (b) There exists C; > 1 such that
o(z)/o(y) € (C;1,Cy) for all z,y € M with d(z,y) < 1 (c) There exists
Cy > 1 such that Cy' < V(x,1) < C, for all z € M. This illustrates
the stability of parabolic Harnack inequality and two-sided Gaussian es-
timates under quasi-isometry [22, 50].

The primary goal of our work is to extend Theorem 1.1 in the context of
discrete time Markov chains on a large class of spaces that include both weighted
Riemannian manifolds and graphs. As mentioned before the hardest and most
useful part of the Theorem 1.1 is (c) implies (a) and (b). The implication (c)
implies (a) was proved independently by Grigor'yan [32] and Saloff-Coste [69].
Both [32] and [69] observed that volume doubling is necessary to obtain (a). In
[69], Saloff-Coste proved that Poincaré inequality is also a necessary condition to
prove (a) using an argument due to Kusuoka and Stroock [55].

The proof of (¢) implies (a) in [69] is an adaptation of Moser’s iteration method.
Moser’s iteration method relies on Poincaré inequality and a Sobolev inequality.
The main contribution of [69] is to obtain a Sobolev inequality using volume dou-
bling and Poincaré inequality (See also [72, Chapter 5], [70]). A. Grigor’yan [32]
carried out a different iteration argument that relied on an equivalent Faber-Krahn
inequality instead of a Sobolev inequality to prove (c) implies (a). Using the meth-
ods of [69], K.T. Sturm [76] generalized the above equivalence to diffusions on
strongly local Dirichlet spaces. More recently in [45], Hebsich and Saloff-Coste
developed an alternate approach to prove Gaussian bounds and parabolic Harnack
inequality using (a). This approach relies on an elliptic Holder regularity estimate
and Gaussian upper bounds to prove parabolic Harnack inequality. We will use the
approach outlined in [45] in our work.

Aronson [3] was the first to use parabolic Harnack inequality to obtain Gaussian
bounds on the heat kernel in the context of divergence form uniformly elliptic
operators in R™ as given in (1.4). Although in Aronson’s work, the parabolic
Harnack inequality was used only to obtain Gaussian lower bounds, both Gaussian
upper and lower bounds can be easily obtained using parabolic Harnack inequality.
Conversely Nash’s approach aimed at deriving Harnack inequality from two-sided
Gaussian bounds on the heat kernel was further developed by Krylov and Safonov
[54] and by Fabes and Stroock [31].

1.2. Random walks on graphs

T. Delmotte extended Theorem 1.1 for discrete time Markov chains on graphs,
which we now describe. To precisely describe the result, we will introduce some
notions concerning symmetric Markov chains. Let (M, d, u) be a metric measure
space by which we mean a metric space (M,d) equipped with a Borel measure
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i Recall that we denote closed ball by B(x,r) and their measure by V(z,r) =
w(B(z,r)). We require V(z,r) € (0,00) for all z € M and for all r € (0, c0).

Let (X,)nen be a Markov chain with state space M and let P be the corre-
sponding Markov operator. Further, we assume that P has a kernel p; : M xM — R
with respect to the measure y, that is for each x € M, we have p;(z,-) € L'(M, i)
satisfying

(18) PF@) = Bf(X0) = [ pile.) ) uld)

for all f € L*(M). Here E, denotes that the Markov chain starts at X, =
2. The equation (1.8) represents the basic relation between the Markov chain
(X)) nen, corresponding Markov operator P and its kernel p; with respect to p.
We will assume that our Markov chain is stochastically complete that is P1 =1 or
equivalently [, pi(z,y)u(dy) =1 for all z € M.

We further assume that the kernel p; satisfies p1(z,-) € L>®(M, u) for allz € M
and that p; is symmetric

(1.9) p1(z,y) = p1(y, v)

for u x p-almost every (x,y) € M x M. Under the symmetry assumption (1.9) and
the assumption p(z,-) € L (M, ) for all z € M, we define the iterated Markov
kernel as for the Markov chain as

Prs(@,y) = /Mpku,z)pl(y,z)u(dz)

for all z,y € M and for all k¥ € N*. It is easy to check that pg(x,y)u(dy) is
the distribution of X} given that the random walk starts at Xo = = (See Lemma
4.2). The function (k,z,y) — pk(x,y) is called the ‘heat kernel’ for the symmetric
Markov chain (X, )nen driven by P on (M, d, u).

Next, we introduce the Laplacian and heat equation for discrete time Markov
chains. The Laplace operator Ap corresponding to the random walk driven by P
is

Ap=1—-P.
The corresponding discrete time heat equation is
(1.10) O+ Apup =0

for all k¥ € N, where dju(-) = u(k +1,-) — u(k,-) denotes the difference operator
and ug(-) = u(k,-). Note that (1.10) can be rewritten as ugy; = Pug. Therefore
the ‘solution’ to the heat equation (1.10) can be written as

u(k,x) = Prug(z) = / pr(,y)uo (4) p(dy) = Extuo(Xy)
M

for all x € M and for all k € N* where ug is the initial value. Note that the above
equation is analogous to its continuous time counterpart (1.2).

To describe the work of T. Delmotte, we consider a given graph as a metric
measure space (M,d,u) where M is the vertex set of the graph, d is the graph
distance metric and p is a measure on the set of vertices such that each vertex has
positive measure. In this context p;(z,y) = p1(y,x) for all z,y € M is sometimes
called the conductance. We denote integer intervals by [a,b] ={k € Z : a <k < b}
for any a,b € Z. The following theorem of T. Delmotte is the analogue of Theorem
1.1 for Markov chains on graphs.
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THEOREM 1.3. ([27]) Let (M, d, ) be an infinite graph equipped with a measure
wu on the set of vertices M. Consider a Markov chain on M with a symmetric kernel
pr. with respect to . Further we assume that there exists o > 0 such that *

alB(w,l)(y) 1 ]-B(m,l)(y)
V(x,1) V(z, 1)
for all x,y € M. Then the following properties are equivalent:
(a) The parabolic Harnack inequality: there exists n € (0,1),Cy > 1, Ry > 0 such
that for all balls B(xz,r), © € M, r > Ry and for all non-negative functions
u:Nx M — R that satisfies Opu + Aug, = 0 in [0, |4n?r?|] x B(z,r), we have

supu < Cyinfu
Qo Qo

(1.11) <pi(zy) <o

where
Qe = [[(n*/2)r*], [n*r*]] x B(z, (n/2)r),
Qe = [[20%r*], [4n*r?]] x B(x, (n/2)r)

(b) Two sided Gaussian bounds on the heat kernel: there exists C1,Cy > 0 such
that for all x,y € M and for all n € N* satisfying n > 2, we have

Cl d(x,y)2
(1.12) Pn(z,y) < WGXP (— Con >

Further there exists ¢y, ca,c3 > 0 such that for all x,y € M satisfying d(x,y) <
csn and for all n € N* satisfying n > 2

C1 ox _d(xvy)Q
(1.13) o) > g o (-2 )

Ccon

(c) The conjunction of
e The volume doubling property: there exists Cp > 0 such that for allx € M,
for all r > 0 we have

V(z,2r) < CpV(x,r)

e The Poincaré inequality: there exists Cp > 0,k > 1 such that for any ball
B = B(x,7) that satisfiesx € M, r > 1 and for all f € L*(M, 1), we have

2 2 1 2
/B|f_fB| dp < Cpr /RB (V(%l) /B(y,l) f(z) = Fw) u(d2)> p(dy),
where kB = B(z, k1), fp = M%) I fap.

Delmotte’s strategy to prove Theorem 1.3 is to use Moser’s iteration method
as developed in [69, 70] to prove a continuous time parabolic Harnack inequal-
ity. The next step is to prove estimates on the corresponding continuous time
kernel obtained using parabolic Harnack inequality. Then a comparison between
discrete and continuous time kernels provides Gaussian bounds on pg which in turn
yields parabolic Harnack inequality for the discrete time heat equation (1.10). The
comparison argument is tricky because the continuous time heat kernel has non-
Gaussian behavior as discovered by Pang [65] and E.B. Davies [23]. The discrete

3 The upper bound in (1.11) was not explicitly stated in [27]. However the upper bound
must hold due to the volume doubling property. Moreover the statement of Poincaré inequality
and parabolic Harnack inequality is slightly different but equivalent to the ones presented in [27].
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nature of space and time causes numerous other difficulties during Moser iteration
that were overcome successfully by Delmotte.

1.3. Main results

Next, we state a version of our main result in a restricted setting. Recall that a
weighted Riemannian manifold (M, g, 1) is a Riemannian manifold (M, g) equipped
with a measure g such that u(dy) = o(y)v(dy), where v is the Riemannian measure
and o € C*°(M) is the weight function.

THEOREM 1.4. Let (M, g, i) be a complete non-compact, weighted Riemannian
manifold such that there exists K > 0 such that Ric > —Kg. Furthermore there
exists Cy > 1 such that the weight function o satisfies C;* < o(z)/o(y) < Cy for all
x,y € M with d(xz,y) < 1. Consider a Markov chain on M with a symmetric kernel
pr with respect to p. Further we assume that there exists Cy > 1,h > 0,h' > h
such that

1 (¥) 1B(a,n)(y)

14B(z,n)\Y B(z,h)\Y

— L < < Co——"——

Vi) =PV E 0Ty )

for all x € M and for p-almost every y € M. Then the following properties are
equivalent:

(1.14) Cy

(a) The parabolic Harnack inequality: there exists n € (0,1),Cyg > 1, Ry > 0 such
that for all balls B(x,r), x € M, r > Ry and for all non-negative functions
u:Nx M — R that satisfies Opu + Aug, = 0 in [0, |4n?r2|] x B(z,r), we have

supu < Cginfu
Qo Qo

where
Qe = [[(m*/2)r*], [n*r?]] x B(x, (n/2)r),
Qe = [[20%r*], [4n*r?]] x B(x, (n/2)r)

(b) Two sided Gaussian bounds on the heat kernel: there exists Cy,Co > 0 such
that for all x,y € M and for all n € N* satisfying n > 2, we have

Cl d(x’y)z
(1.15) Pn(z,y) < WGXP ( Con >

Further there exists ¢y, ca,c3 > 0 such that for all x,y € M satisfying d(x,y) <
csn and for all n € N* satisfying n > 2

N (Y )
(116) pn(xvy) 2 V(x, \/ﬁ) eXp ( Con )

(c) The conjunction of
e The volume doubling property: there exists Cp > 0 such that for allx € M,
for all r > 0 we have

V(QS, 2T) < CDV(I7 T)

e The Poincaré inequality: there exists Cp > 0,k > 1 such that for any ball
B = B(x,7), x € M, r > 1 and for all f € L>(M, 1), we have

2 2 1 2
(1.17) /B|f_fB| dp < Cpr /w (V(y,l) /B(y,l) If (z) = f(w) u(d2)> u(dy),
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where kB = B(z, k1), fp = M(%) Jp fdp.

The Poincaré inequalities presented in Theorem 1.1 and Theorem 1.4 are re-
lated. We will show that the Poincaré inequality (1.7) implies (1.17) (See Proposi-
tion 3.20). A partial converse of the previous statement hold as well.

ExaMPLE 1.5. Consider a complete, non-compact Riemannian manifold (M, g)
with non-negative Ricci curvature whose unit balls have a uniform positive volume

lower bound. Define a Markov kernel p(x,y) = Lo@n® g a1 x,y € M. Although

V(z,1)
p is a Markov kernel with respect to the Riemannian measure v, p(x,y) # p(y,x)
in general. However ¢ (z,y) = ‘1;((2’1{)) is a symmetric Markov kernel with respect to

pu(dx) = V(z,1)v(dz) where V denotes the volume with respect to v. By the remark
preceding this example, (M, g, i) satisfy the Poincaré inequalities (1.17) and (1.7).
Moreover (M, g, ) satisfies volume doubling property. Hence the iterated kernel g,
satisfies two-sided Gaussian bounds and the corresponding Laplacian satisfies the
parabolic Harnack inequality. Similarly many other examples known in the diffusion
case can be extended to the discrete-Markov chain case due to Proposition 3.20.

The role of Theorem 1.4 is only to illustrate our main result without introducing
additional definitions. We provide an unified approach to study random walks on
both discrete and continuous spaces. We prove Theorem 1.4 as a corollary of a
general result that also gives an alternate proof of Theorem 1.3.

Given the previous works on characterization of parabolic Harnack inequality
and Gaussian bounds [32, 69, 76, 27, 45] our results should not be surprising.
However we encounter new difficulties that had to be resolved here and which
were not present in previous works. Recall that Moser’s iteration method for Har-
nack inequalities relies on repeated application of a Sobolev inequality[69, 76, 27].
Grigor’yan’s iteration method in [32] uses an equivalent Faber-Krahn inequality
that is equivalent to the Sobolev inequality [4].

The Sobolev inequalities in the previous settings are of the form

25/(5-2) Cr? o2

(1.18) 9167 < s (60 + 7 1)

for all ‘nice’ functions f supported in B(z,r). However for discrete time Markov
chains, the Dirichlet form satisfies the inequality E(f, f) = (I — P)f, f) <2 ||f\|§
This along with (1.18) implies that L?(B(z,r)) € L*/©®=2(B(x,r)) for all balls
B(x,r) which can happen only if the space is discrete. Hence for discrete time
Markov chains on Riemannian manifolds the Sobolev inequality (1.18) cannot pos-
sibly be true. We prove and rely on a weaker form of the Sobolev inequality (1.18)
which seems to be too weak to run Moser’s iteration directly to prove parabolic
Harnack inequality (See Theorem 5.1). Instead we use Moser’s iteration to prove a
version of the mean value inequality which in turn gives Gaussian upper bounds.
We adapt a method of [45] which uses elliptic Harnack inequality and Gaussian
upper bounds to prove Gaussian lower bounds (See Chapter 8). Another difficulty
that is new to our setting is explained in the beginning of Section 7.3.

In the context of diffusions on complete Riemannian manifolds the Sobolev in-
equality (1.18) is equivalent to the conjunction of volume doubling property and
Gaussian upper bounds on the heat kernel [72, Theorem 5.5.6]. In the previous
statement, we may replace Sobolev inequalities with a similar but equivalent set of
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functional inequalities called Faber-Krahn inequalities both in the context of diffu-
sions on Riemannian manifolds [33] and for random walks on graphs [19, Theorem
1.1]. We extend the above equivalences for random walks on a large class of metric
measure spaces (Theorem 7.18).

1.4. Guide for the monograph

This monograph is organized as follows. In Chapter 2, we present the setting of
quasi-geodesic spaces satisfying certain doubling hypotheses, study its basic prop-
erties and develop techniques that would let us compare discrete and continuous
spaces.

In Chapter 3, we introduce Poincaré inequalities and discuss various examples
and non-examples of spaces satisfying Poincaré inequality. We study how these
new Poincaré inequalities on metric measure spaces compare with the previously
studied Poincaré inequalities on graphs and Riemannian manifolds. Then we show
that Poincaré inequality is stable under quasi-isometric transformation of quasi-
geodesic spaces.

In Chapter 4, we introduce various hypotheses on the Markov chain, Dirich-
let forms and study their basic properties. In Chapter 5, we introduce and prove
a Sobolev inequality under the assumptions of large scale volume doubling and
Poincaré inequality. In Chapter 6, we use Sobolev inequality and Poincaré inequal-
ity to run the Moser iteration argument to prove elliptic Harnack inequality.

Chapter 7 is devoted to the proof of Gaussian upper bounds using Sobolev
inequality. In addition, we show that Sobolev inequality is equivalent to the con-
junction of Gaussian upper bounds on the heat kernel and large scale volume dou-
bling property. In Chapter 8 we prove Gaussian lower bounds using elliptic Har-
nack inequality and Gaussian upper bounds. This completes the proof that large
scale volume doubling property and Poincaré inequality implies two sided Gaussian
bound on the heat kernel.

In Chapter 9, we prove parabolic Harnack inequality using Gaussian bounds.
Moreover, we prove large scale volume doubling property and Poincaré inequality
using parabolic Harnack inequality, and thereby completing the proof of the char-
acterization parabolic Harnack inequality and Gaussian bounds. In Chapter 10, we
mention various applications of Gaussian estimates and Harnack inequalities. In
Appendix B, we collect various examples and supplement them with figures and
discussions.






CHAPTER 2

Metric Geometry

Let (M,d, ) be a locally compact metric measure space where u is a Radon
measure with full support. Let B(M) denote the Borel o-algebra on (M,d). Let
B(z,r) :={y € M : d(z,y) < r} denote the closed ball in M for metric d with
center x and radius r > 0. Let V(x,r) := u(B(x,r)) denote the volume of the closed
ball centered at = of radius r. Since M is a Radon measure with full support, we
have that V(x,r) is finite and positive for all € M and for all » > 0. In this
section, we introduce some assumptions on the metric d and measure p and study
some consequences of those assumptions.

2.1. Quasi-geodesic spaces

The main assumption on the metric d of the metric measure space (M,d, 1)
is that of quasi-geodesicity. In Riemannian geometry, the distance between two
points of a manifold is defined as the infimum of lengths of curves joining them.
Such a relation between distance and length of curves is observed more generally
in length spaces.

DEFINITION 2.1. Let (M,d) be a metric space. For x,y € M, a path from z to
y is a continuous map v : [0, 1] — M such that v(0) = z and y(1) = y. We define
the length L(v) € [0, 00] of a path v is the supremum

L(v) = sup Zd(V(ti—l)77(ti))-

P[0,1]
taken over all partition 0 =tg <t; < ... <t =1 of [0,1].
The length of a path is a non-negative real number or +oo.

DEFINITION 2.2. The inner metric or length metric associated with metric
space (M, d) is the function d; : M x M — [0, cc] defined by

di(z,y) = inf L(v)

where the infimum is taken over all paths v from z to y. (M,d) is called a length
space if d; = d. A metric for which d = d; is called an intrinsic metric.

REMARK 2.3. All Riemannian manifolds equipped with Riemannian distance
are length spaces. Since infimum of an empty set is +o0, for points x,y in different
connected components of a metric space (M,d), we have d;(z,y) = +o0o0. Hence
graphs with natural combinatorial metric are not length spaces because distinct
vertices belong to different connected components under the metric topology. See
[40, Chapter 1] or [13, Chapter 2] for a comprehensive introduction of length spaces.

13
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One of the goals of this work is to provide an unified approach to the study of
random walks in continuous spaces like Riemannian manifolds and discrete spaces
like graphs. In view of Remark 2.3, we would like to consider spaces more gen-
eral than length spaces to include disconnected metric spaces like graphs. Quasi-
geodesic spaces provides a natural setting to include both length spaces and graphs
as special cases. Quasi-geodesic spaces are equipped with a weak notion of geodesics
called chains. We recall the following definition of chain and various notions of
geodesicity as presented by Tessera in [77].

DEFINITION 2.4. Consider a metric space (M,d) and b > 0. For 2,y € M, a
b-chain between from x to y, is a sequence v : x = xg,X2,...,Lm = y in M such
that for every 0 < i < m, d(z;,x;11) < b. We define the length I() of a b-chain
v Tg,T1,- .., Ty by setting

—

m—

() = Z d(@is Tit1).

7=

Define a new distance function dy, : M x M — [0, 00| as
(2.1) dp(x,y) = infi(y)

where v runs over every b-chain from z to y. We say a metric space (M, d) is

e b-geodesic if d(z,y) = dp(z,y) for all z,y € M.

e quasi-b-geodesic if there exists C' > 0 such that dy(z,y) < Cd(x,y) for all
T,y € M.

e quasi-geodesic if there exists b > 0 such that (M, d) is quasi-b-geodesic.

REMARK 2.5. We collect some simple consequences of the definitions.

e Any b-geodesic space is quasi-b-geodesic. Moreover b-quasi-geodesic space
is bi-quasi-geodesic for all by > b.

e Any length space is b-geodesic for all b > 0.

e Graphs with natural combinatorial metric are b-geodesic if and only if
b>1. If b < 1, then dy(x,y) = oo for distinct vertices z and y.

The following lemma guarantees that quasi-geodesic spaces are endowed with
sufficiently short chains at many length scales.

LEMMA 2.6 (Chain lemma). Let (M,d) be a quasi-b-geodesic space for some
b > 0. Then there exists C; > 1 such that for all by > b and for all x,y € M, there

exists a by-chain x = xg,T1,...,Tm =y with m < {%fy)—‘ .

PROOF. Since (M, d) is quasi-b-geodesic, there exists C > 0 such that for all
x,y € M, there exists a b-chain x = yg, y1, - . ., yn = ¥y satisfying ZZL:_OI A(yiy Yiy1) <
Cd(z,y). We define a smaller b;-chain zg,x1, ..., 2, where z = y;,. We choose
1o = 0 and define 7; successively by

i =max{l < j <n:d(y,_,,y;) < b1}
for k > 1. Define m = min{j : y;, = y}. By the definition of i, we have that

d(xi, zig1) + d(@it1, Tig2) > d(x;, Tige) > b
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forall  =0,1,...,m — 2. Therefore we have

[y

m—

b
> d(wi wi) > El(m —1).
By triangle inequality, we have S 7" d(xi, ziv1) < S22y d(yi, yir1) < Cd(z, y).
Therefore

m<1+ 2b£d(:z:,y).
1

Hence the choice Cy = 2C' + 1 satisfies the desired conclusion. O

2.2. Doubling hypothesis

The main assumption that we recall below on the Radon measure p is the
doubling property. For a metric measure space (M, d, 1), we denote volume of balls
by V(z,r) = w(B(z,7)).

DEFINITION 2.7. We define the following doubling hypothesis:

(VD)o We say a space (M,d, u) satisfies the local volume doubling property
(VD)joc, if for all » > 0, there exists C,. such that

(VD)ioc V(z,2r) < C.V(x,r)

for all x € M.
(VD)o Wesay aspace (M, d, ) satisfies the large scale doubling property (V D),
if there exists positive reals C,,, o such that

(VD)o V(z,2r) < CpyV(z,1)

for all z € M and r > rq.
(VD) We say a space (M,d, u) satisfies the global volume doubling property
(V D), if there exists a constant Cp > 0 such that

(VD) V(z,2r) < CpV(z,r)
for all x € M and r > 0.

REMARK 2.8. The property (VD) implies (VD) and (VD)jo.. The property
(VD))o is a condition local in r but uniform in z € M while (VD). and (VD)
are uniform in both x and r. The property (VD)) is a very weak property of
bounded geometry introduced in [22]. Since C, depends on r, the local volume
doubling property does impose too much constraint on volume growth as r — oo.
However, we will see in Lemma 2.11 that large scale doubling can be used to control
volume of large balls.

EXAMPLE 2.9. We describe some examples satisfying the above hypothesis on
volume growth. Every connected graph with bounded degree and equipped with the
counting measure satisfies (V' D)jo.. By Bishop-Gromov inequality [15, Theorem
II1.4.5.], Riemannian manifolds with Ricci curvature bounded from below satisfy
(VD)o and Riemannian manifolds with non-negative Ricci curvature satisfy (VD).

We collect some basic properties of spaces satisfying the above doubling hy-
pothesis (VD)joc and (VD).
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LEMMA 2.10. ([22, Lemma 2.1]) If (M,d, n) satisfies (V D)o, then for all
r1,1r2 > 0, there exists Cy, ., such that

(2.2) V(z,re) < CpppV(z,r1)
for all x € M. In particular, for all x,y € M, such that d(x,y) < R, we have
V(:L‘7 T) S Cr,R—l—rv(ya T)

PROOF. Let k be the smallest integer such that 2¥r; > 5. By repeated appli-
cation of (V D)y, the choice

71772 H 02‘7’1

satisfies, (2.2) where the constant Cyi,., is from (V D)joc. The second part follows
from B(z,r) C B(y, R+ r) and (2.2). O

The large scale doubling property (VD). along with (VD). implies a poly-
nomial volume growth upper bound.

LEMMA 2.11. Let (M,d, ) be a metric measure space satisfying (VD)oe and
(VD)so. Then for all b > 0, there exists Cp > 0 such that

(2.3) V(z,2r) < CyV(x,r)
for allx € M and r > b. Moreover this Cy satisfies
V(z,r) r\¢
2.4 < -
24) V(z,s) ~ Cs (s)
for all x € M, for allb < s <r and for all § > logy Cy. Furthermore
Vix,r) 5 (TY?
2. < -
(2:5) Vy,s) — G (s)

holds for allb < s <, for allx € M, for all y € B(x,r) and for all 6 > logy C .

PROOF. Let 19, Cy, be constants from (VD). There is nothing to prove if
ro < b. Assume g > b and let r be such that b < r < ry. Then by Lemma 2.10
and (VD)

V(z,2r) <V(z,2ry) < Cr,V(z,10) < CryChr,V(x,b) < CpyChr,V(x,7).

The case r > 1 follows from (V D)., which concludes the proof of (2.3).
Let b<s <r,k=logy(r/s) and § > logy Cp. Then from (2.3), we get (2.4),

V(z,r) _ V(z,2MFs)
Vix,s) = Vix,s)

To obtain (2.5) from (2.

<a<a;).

note that

4),
(xar) < Vi, 2r) Vi(y,r) T\°
) ( ) <Gy < C? (7) .
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The equation (2.4) implies a polynomial upper bound on the volume growth. In
quasi-geodesic spaces, we can reverse the inequality (2.4) and obtain a polynomial
lower bound for all radii small enough compared to the diameter. The property
stated in following lemma is often called the reverse volume doubling property.
It was known for graphs and Riemannian manifolds and our proof follows similar
ideas.

LEMMA 2.12. Let (M,d, ) be a quasi-b-geodesic space with the measure p sat-
isfying (V D)ioe and (VD). Then there exists ¢,y > 0 such that

o et o))

for all z € M and for all b < s < r < diam(M), where diam(M) = sup{d(x,y) :
x,y € M} denotes the diameter of (M,d, ).

PRrOOF. We first consider the case b < s < r < dlamf(M) Let x € M and let
z € M be chosen such that d(z, z) > (3/7)diam(M). Let x = zg,21,...,Tm = 2
be a s-chain with minimal number of points m. Therefore there exists 3 < k <m
such that 2s < d(z,x) < 3s.

Since d(zg,s) > 2s, we have B(xzy, s) N B(z,s) = (). By Lemma 2.11, there exists
€ > 0 such that

V(x,3s) < V(xg, 65) < e 'V (wg, s)
Therefore we obtain
(2.7) V(z,4s) > V(z,s) + V(zg,s) > (1 +€)V(x,s)
for all z € M and b < s < diam(M)/5. Define k = log,(r/s) and v = log,(1 + ¢).
Then by (2.7)
V(z,r) S V(z, 4k s)
V(z,s) = V(x,s)

forall z € M and b < s < r < diam(M)/5.
The other cases follow from Lemma 2.10 and by choosing

>(A+eft=14e7t (g)7

¢ =min((1+€)'577, Caiam(1r)/5,diam(M)-

2.3. Quasi-isometry

One of the goals of this work is to develop arguments which are robust to small
perturbations in the geometry of the underlying space; for example addition of few
edges in a graph or small changes in the metric of a Riemannian manifold. We
study properties that depends mainly on the large scale geometry of the underlying
space. In this spirit, the concept of quasi-isometry was introduced by Kanai in [50]
and in the more restricted setting of groups by Gromov in [39]. Informally, two
metric spaces are quasi-isometric if they have the same large scale geometry. Here
is a precise definition:

DEFINITION 2.13. A map ¢ : (M;,dy) — (Ms,ds), between metric spaces is
called a quasi-isometry if the following conditions are satisfied:
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(i) There exists a > 1 and b > 0 such that
a”dy(z1,22) — b < da(@(21), (22)) < ady(x1,22) + b

for all x1, x5 € M.
(ii) There exists € > 0, such that for all y € My there exists « € M; such that
da((x),y) <e
We say metric spaces (M;,d;) and (Ma,ds) are quasi-isometric if there exists a
quasi-isometry ¢ : (My,dy) — (Ma, ds).

REMARK 2.14. Quasi-isometry is an equivalence relation among metric spaces.
Quasi-isometry is also called as rough-isometry or coarse quasi-isometry. Property
(i) of Definition 2.13 above is called roughly bi-Lipschitz and (ii) is called roughly
surjective.

We remark that a quasi-isometry is not necessarily a continuous map. More-
over, quasi-isometry is not necessarily injective and not necessarily surjective. How-
ever, we can construct a quasi-inverse ¢~ : (Ma,ds) — (My,d1) as ¢~ (y) = x where
x € My is chosen so that da(¢(x),y) < € where € is given by the above definition.

We now describe some well-known examples of quasi-isometry. The space R?
with Euclidean metric and Z? with standard graph metric (same as L' metric)
are quasi-isometric. Consider a finitely generated group I' with a finite system of
generator A. For an element v # 1, let ||, denote the smallest positive integer
k such that a product of k elements of AU A~!, and put [1|, = 0. This ||, is
called the word norm of T' and defines a word metric da(y1,7v2) = ’*yfl'yg|A. In
other words, d 4 is the graph metric in the Cayley graph of I' corresponding to the
symmetric generating set AU A~!. Assume two finite generating sets A and B of
a group I' which induces metric d4 and dp respectively. Then (T',d4) and (T',dp)
are quasi-isometric (See [67, Proposition 1.15]). Therefore every finitely generated
group defines a unique word metric space up to quasi-isometry and we may often
view a finitely generated group up as a metric space without explicitly specifying
the generating set. A large class of examples of quasi-isometry is given by the
Svarc-Milnor theorem. We refer the reader to [67, Theorem 1.18] for a proof and
original references.

THEOREM 2.15. (Svarc-Milnor theorem) Suppose that (M, d) is a length space
and I is a finitely generated group equipped with a word metric acting properly and
cocompactly by isometries on M. Then I' is quasi-isometric to (M,d). The map
v+ v.xg 1S a quasi-isometry for each fized base point xo € M.

Note that the quasi-isometry between Z¢ and R? is a special case of Theorem
2.15. We will give a general construction of net which approximates a quasi-geodesic
space using a graph with combinatorial metric in next subsection.

The notion of quasi-isometry was extended to metric measure spaces by Couhlon
and Saloff-Coste in [22] which they called “isometry at infinity”. Let (M;,d;, p;),
1 = 1,2 be two metric measure spaces. Define

‘/i(yar) = Wy ({Z € Ml : dz(y7z) < ’/‘}) .

DEFINITION 2.16. A map ¢ : (M1,dy, 1) — (Ma, ds, p2), between metric mea-
sure spaces is called a quasi-isometry if the following conditions are satisfied:

(i) ¢: (M1,d1) = (Ms,ds) is a quasi-isometry between metric spaces;
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(ii) There exists a constant C' > 0 such that
C™'Wi(z,1) < Va(g(z),1) < CVi(z,1)
for all x € M.

We say metric measure spaces (Mi,d1, p1) and (Ma,ds, p2) are quasi-isometric if
there exists a quasi-isometry ¢ : (My,dy, p1) — (Ma, da, p2).

REMARK 2.17. Quasi-isometry is an equivalence relation for metric measure
spaces satisfying local volume doubling property (V' D)jo.. The notion of large scale
equivalence as defined in Definition 5.5 of [77] is more general. That is every quasi-
isometry is a large scale equivalence. However a map between quasi-geodesic metric
measure spaces satisfying (VD). is a quasi-isometry if and only if it is large scale
equivalence. See [77, Remark 5.7].

The arguments in this work implies that the long term behavior of natural
random walks depends mainly on the large scale geometry of the quasi-geodesic
space. Other important examples of properties invariant under quasi-isometries are
large scale doubling and Poincaré inequality. (See Proposition 2.20 and Proposition
3.16). We conclude this subsection by proving that the large scale doubling property
is preserved by quasi-isometries for metric measure spaces satisfying (V D)joc. It is
due to Couhlon and Saloff-Coste in [22]. We need the following definition:

DEFINITION 2.18. Let (M,d) be a metric space with X C M and let R > 0.
Then a subset Y of X is R-separated if d(y1,y2) > R whenever y; and y, are
distinct points of Y, and a R-separated subset Y of X is called maximal if it is
maximal among all R-separated subsets of X with respect to the partial order of
inclusion.

The existence of maximal R-separated subsets follows from Zorn’s lemma.
The following lemma compares volume of balls between quasi-isometric metric
measure spaces.

LeEmMA 2.19. ([22, Proposition 2.2]) Let ® : (My,d1, p1) and (Ma,ds, o) be
a quasi-isometry between metric measure spaces satisfying (V D)oc. Then for all
h > 0, there exists Cy, > 0 such that

C’,:lVl(a:,Ch_lr) < Vo(®(x),r) < CpVi(z, Cpr)
for all x € My and for all v > h.

PRrROOF. We denote balls and volumes by B; and V; respectively for ¢ = 1, 2.
Let R > h such that aR — b = R’ > 0 where a, b is from Definition 2.13. Let Y be
a maximal R-separated subset of B(z,r). Thus B(x,r) C Uyey B(y, R). Hence

yey
By Lemma 2.10 and Definition 2.16, we have
(2.9) Vi(y, R) < C1,rVi(y, 1) < C1,rCVa(2(y), 1).

for all y € Y. The balls {B(y, R/2)},ey are pairwise disjoint and hence the balls
B(®(z;), R'/2) are pairwise disjoint. By Lemma 2.10

(2.10) Vo(®(24),h) < Cp g Va(®(z;), R'/2)
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Combining 2.8,2.9 and 2.10

Vi(z,r) < Z C1,rROC1 rVa(2(y), R'/2)

yey
(211) < CLRCCLR/VQ((I)(I'),(Z?“-Fb+RI/2)
The last step follows from the definition of quasi-isometry, triangle inequality and
that B(®(x;), R'/2) are pairwise disjoint. We can choose C5 large enough so that,
ar+b+ R'/2 < Cyr for all r € [h,00). Hence by Lemma 2.11, we have the desired
lower bound on V5 for all » > R and by Lemma 2.10 for all » > h. Similar argument
applied to quasi-inverse ®~! yields
Va(®(z),r) < CVi (P 0 ®(z),Cr).

The conclusion follows from the fact that di(®~! o ®(z),z) is bounded uniformly
for all x € M;. O

For metric measure spaces satisfying (V' D)o, the condition (V' D), is preserved
by quasi-isometries. This is the content of the following lemma.

PROPOSITION 2.20. (][22, Proposition 2.3]) Let (My,dy, p1) and (Ma,da, pi2)
be quasi-isometric spaces satisfying (V D)oc. Then (My,dy, p1) satisfies (VD)oo if
and only if (Mg, ds, po) satisfies (VD)x.

PROOF. Let @ : My — M; be a quasi-isometry. Using Lemma 2.19, there
exists C' > 0 such that
C™ Wy (x,C™lr) < Vi(®(2),7) < CVa(x,Cr)
for all x € My and r > 1. Hence by (2.4), we have
Valw,2r) _ . Vil®(a),2Cr)
Vo(z,r) — = Vi(®(z),C~1r)
for all » > max(C, 1). O

< C?Cp(20?)°

2.4. Approximating quasi-geodesic spaces by graphs

One might think of Z? as a graph approximation or discretization of R¢. More

generally, we can approximate quasi-geodesic spaces by graphs. By [77, Proposition
6.2], a metric space is quasi-isometric to a graph if and only if it is quasi-geodesic.
Therefore quasi-geodesic spaces form a natural class of metric spaces that can be
roughly approximated by graphs.
We begin by recalling some standard definitions and notation from graph theory.
We restrict ourselves to simple graphs. A graph G is a pair G = (V, E) where
V is a set (finite or infinite) called the vertices of G and E is a subset of P(V)
(i.e.,two-element subsets of V') called the edges of G. A graph (V, E) is countable
(resp. infinite) if V is a countable (resp. infinite) set. We say that p is a neighbor
of g (or in short p ~ q), if {x,y} € E. The degree of p is the number of neighbors of
p, that is deg(p) = {¢ € V : p ~ ¢}|. A graph (V, E) is said to have bounded degree
if sup, ¢y deg(v) < oc.

A finite sequence (pg,p1,...,p;) of points in V is called a path from py to p;
of length 1, if each py is a neighbor of pr_1. A graph G = (V, E) is said to be
connected if for all p,q € V, there exists a path from p to ¢. For points p,q € V of
a graph G = (V, E), let dg(p, q) denote the minimum of the lengths of paths from
p to ¢ with dg(p, q) = 400 if there exists no path from p to g. This makes (V,dq)
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an extended metric space. The graph (V| F) is connected if and only if (V,dg) is
a metric space. The extended metric dg is called graph metric or combinatorial
metric of G. Notice that we can recover a graph (V, E) from its (extended) metric
space structure (V,dg) and vice-versa.

Using the above identification, we view a connected graph as a metric space.
We would like to view a connected graph as a metric measure space. This motivates
the definition of weighted graph. A weight m : V — (0,00) on a graph (V, E) is a
positive function on V. With a slight abuse of notation, m induces a measure on
V' (also denoted by m) as

m(A) = Z m(v)
veEA
for each A C V. A weighted graph is a graph (V, E) endowed with a weight m.
By the above, we will identify a weighted graph G = (V, E) with weight m as a
(possibly extended) metric measure space (V,dg, m).
The definition of e-net is due to Kanai in the setting of Riemannian manifolds
(See [50]) and was extended in [22] for weighted Riemannian manifolds.

DEFINITION 2.21. A e-net of a metric measure space (M,d, 1) is a weighted
graph G = (V, E) with weight m described as follows: The vertices V' is a maximal
e-separated subset of M. The edges F are defined by {z,y} € E if and only if
0 < d(x,y) < 3e. The weight m is defined as m(z) = p(B(x,¢€)). Let dg denote
the graph metric of G. We often alternatively view the e-net as (extended) metric
measure space (V,dg, m) defined by the corresponding weighted graph.

The above definition does not guarantee e-net to be a connected graph. However
it is connected and countable in many situations as described in the lemma below.
We collect the basic properties of nets in Proposition 2.22 which builds on the ideas
of [50], [62] and [22].

PROPOSITION 2.22. Let (M,d, ) be a quasi-b-geodesic metric measure space
satisfying (VD)ioc and let € > b. Let G = (X, E) be an e-net of (M,d,p) with
weight m and let (X,dg,m) denote the corresponding extended metric measure
space. Then we have the following:

(a) The collection of balls I = {B(x,¢/2) : x € X} is pairwise disjoint and
the collection J = {B(z,€) : x € X} covers M where B(.,.) denotes closed
metric ball in (M,d).

(b) Bounded degree property: The graph (X, E) is of bounded degree, that is
sup,,c y deg(p) < oo.

(¢) (X,dg,m) satisfies (VD)joc.

(d) There exists A > 0 such that

(212) d(a,y) < da(n,y) < Ad(r,y) + A
for all z,y € X. Therefore G is a connected graph and (X,dg,m) is a
metric measure space.

(e) The metric measure spaces (M, d, u) and (X,dg,m) are quasi-isometric.

(f) X is a countable set. Moreover if diameter(M,d) = oo, then X is an
infinite set.

(g) If (M,d, ) satisfies (VD)so, then so does (X,dg, m).
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(h) Finite overlap property: Define
Ny(6) = o € X s d(z,p) < 3},
for each 6 >0 and p € M. Then sup,c; Np(d) < oc.

PrOOF. We denote the volume of balls in (M, d, 1) and (X, dg, m) by Vi and
Vo respectively.

(a) The collection I is pairwise disjoint because X is e-separated. The collection
J covers M due to the maximality of X.
(b) Let d(p) denote the degree of a vertex p. Since I is a disjoint collection, using
Lemma 2.10

VM (pa 46) Z Z VM (q7 6/2)

qeV,q~p
>Chze >, Val(a,7€) > d(p)Var(p,46)C 5 .-
q€V,q~p
This yields d(p) < C¢/27. for all p € X.
(c) Let z,y € X with ¢ ~ y. By Lemma 2.10, we obtain
m(y) < V(x,4e) <C .
m(x) = V(z,e) '

Hence we have the uniform estimate

(2.13) Cm = sup m(y) < 00.

e X, zry M(T)

By the above inequality and (b), we have

(2.14) m(z) < Ve(z,r) <m(z)Cy, <sup deg(x))

zeX
for all x € X and r > 0. This along with (b) yields (V D)joc.
(d) Let z,y € X. By triangle inequality we have d(z,y) < 3edg(z,y). By Lemma
2.6, there exists C; > 1 and an e-chain © = xg,1,...,2; = y in (M, d) such that
kE < [(Cid(x,y))/€]. Since J covers M, for each x; € M we can choose y; € X
such that d(z;,y;) < e for i = 0,...,k. Note that zy = yo and xp = yx. By
triangle inequality d(y;,yi+1) < 3¢ or equivalently y; ~ y;41 or y; = y;41 for all
1=0,1,...,k — 1. Therefore

d(z,
da(z,y) = da(yo, yr) <k < Cy (<x€y) n 1) .

This implies (2.12) which implies the remaining conclusions.

(e) Tt follows from (d) that the inclusion map ® : (X, dg) — (M, d) is a quasi-
isometry of metric spaces. Substituting m(z) = Vis(x,¢) and » = 1 in (2.14) and
using (b), (2.13) and Lemma 2.10, there exists C' > 0 such that

CWa(z,1) < Vi, 1) < CVg(a, 1).
This proves that ® is a quasi-isometry between the metric measure spaces (M, d, u)
and (X, dg, m).
(f) It follows from (b) and (d) that G is a connected graph with bounded degree.
Hence X is countable. By (2.12), we have diameter(X,dg) > diameter(M, d)/3e.
Therefore if diameter(M,d) = oo, we have that G = (X, E) is a connected graph
with infinite diameter. Hence X is infinite.
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(g) It follows from (c),(e) and Proposition 2.20.
(h) The proof is similar to (b). Using (a) and Lemma 2.10, we have

V(p,0+¢€) > Z V(z,€e/2)

zeX:d(z,p)<d
>Clhospe D, Vi(,25+¢)
zeX:d(z,p)<d
> Np(é)c;;’mewp, 5+ e).
This yields the uniform bound N,(8) < C¢/2 254 0

The bounded degree property and the estimate (2.13) are true for all weighted
graphs (X, d, m) satisfying (VD))o as shown below.

LEMMA 2.23. Let (X,d,m) be a metric measure space satisfying (VD)ioc that
corresponds to a weighted graph G = (X, E) with weight m. Then G is of bounded
degree and

m(y)
2.15 sup
( ) z,yeX:x~y m(x)

PROOF. By (VD)joc, there exists C' > 0 such that
m(y) < V(z,1) <CV(x,1/2) = Cm(x)

for all z,y € X with x ~ y. The above inequality shows that C,, < C and
sup, ¢ x deg(x) < C? O

=C,, <






CHAPTER 3
Poincaré inequalities

Poincaré inequalities and its many variants are functional inequalities that have
been extensively studied. Many results in classical theory of Sobolev spaces, Holder
regularity estimates for solutions of elliptic and parabolic partial differential equa-
tions, properties of harmonic functions, Harnack inequalities can be generalized to
spaces satisfying volume doubling and a Poincaré inequality. See the introduction
in [42] for a survey and references.

Roughly speaking Poincaré inequalities control the variance of a function on
a smaller ball by its Dirichlet energy (integral of the square of gradient) on a
larger ball. We start by reviewing Poincaré inequalities on weighted Riemannian
manifolds. Recall that a weighted Riemannian manifold (M, g, ) is a Riemannian
manifold (M, g) equipped with a measure p having a smooth positive density w
with respect to the Riemannian measure induced by the metric g. The above
function w with 0 < w € C*°(M) is called a weight. Recall that the gradient grad f
of a function f € C°°(M) is defined as the vector field satisfying g(grad f,Y) =
Y f for all vector fields Y. The length of the gradient is denoted by |grad f| =
Vg(grad f, grad f). We denote the Riemannian distance function by d, which makes
(M,d) a length space. In a context when distance function is important, we will
denote the weighted Riemannian manifold (M, g, x) as a metric measure space
(M,d, ). As before for (M,d,n), we denote closed ball and their volumes by
B(z,r) and V(x,r) respectively.

DEFINITION 3.1. We say that a complete weighted Riemannian manifold (M, g)
with measure p satisfies a Poincaré inequality (P) gy, if there exists C; > 0, Cy > 1
such that for all f € C*>°(M), for all x € M and for all r > 0,

(P)im /B )~ foa i) < Cr® / lgrad £ (y)2(dy)

B(z,Car)
where fp(,,) denote the p-average of f in B(z,7)

1
W/B(g”) f(y)u(dy).

The above inequality is sometimes called a weak, local, scale-invariant or L?
Poincaré inequality but we will refrain from using such adjectives. The word local
means that we are interested in average and integrals around some point x. This
is in contrast with global Poincaré inequality in which average and integrals are
over the whole space M. The Poincaré inequality is scale-invariant or uniform
to emphasize the fact the the constants C; and Cs is independent of x or r. For
1 <'p < oo, we might replace (P)g,, with the LP Poincaré inequality

/ 1f () = fBeen| 1(dy) < CrrP / lgrad f (y)|” u(dy).
B(z,r) B(

z,Car)

fB=

25
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instead of L? version presented above. For spaces satisfying global doubling prop-
erty, one can always take Cy = 1 in (P)gy,. This is due to D. Jerison by a Whitney
decomposition argument [47] (see also [72, Section 5.3.2]). The Poincaré inequality
with Co = 1 is called strong Poincaré inequality as opposed to the weak inequality
(P) Rm-

3.1. Gradient and Poincaré inequality at a given scale

To generalize the Poincaré inequality (P)g,, to metric measure spaces, we must
find a suitable definition for “length of gradient”. We will consider a class of random
walks that spreads over different distances. Therefore we define length of gradient
over different scales for a metric measure space. We use the following definition
due to [77] for length of gradient at a scale h for a function f : M — R with
f € L*°(M, p) (denoted by [V fl,).

DEFINITION 3.2. Let (M,d, u) be a metric measure space. For any function
f € L2 (M, ), the length of gradient at a scale h for f is defined as the function

loc

1/2
(3.1) V() = (V(;h) /B - |f<y>—f<x>|2u<dy>> .

for all x € M.

REMARK 3.3. Our definition of [V f|, coincides with [V f], , in the notation of
Tessera [77].

Now that we are armed with length of gradient, we define the corresponding
Poincaré inequality.

DEFINITION 3.4. We say that a metric measure space (M,d, ) satisfies a
Poincaré inequality at scale h, if there exists C; > 0, Cy > 1,79 > 0 such that
for all f € LS (M, i), for all x € M and for all r > rg.

loc
2
P [ 1)~ faen ) < O [ (V81,0 )
B(z,r) B(z,C2r)
where fp(,,) denote the p-average of f in B(z,7)
)
= J(y)u(dy).
V(:C,’I’) B(z,r) ( ) ( )

We will denote the above inequality by Py (rg, C1, Ca) or simply (P,).

[ =

The rest of the chapter is devoted to the study of various properties and ex-
amples of the above Poincaré inequality (P);. In particular, we will show that for
a weighted Riemannian manifold the Poincaré inequality at scale h (P);,, general-
izes the Poincaré inequality (P)g.,, under some mild hypothesis. One of the main
results that we will see in this chapter is that Poincaré inequality (P);, is preserved
under quasi-isometries.

The following simple fact will be frequently used in rest of this chapter. Let
(M,d, 1) be a metric measure space and let A C M with 0 < p(A) < co. Then for
every function f € L>®(A)

(3.2) inf /A £ (v) — ofu(dy) = /A F() — FalPu(dy)

a€cR
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where f4 is the p-average of f in A,

1
fA—m/Afdu.

In other words, mean minimizes squared error.

A Poincaré inequality at scale h implies a Poincaré inequality at all larger scales
h' with b/ > h.

LEMMA 3.5. Let (M,d,u) be a metric measure space satisfying (VD)o and
Poincaré inequality (P)y, at scale h. Then for all k' > h, (M, d, 1) satisfies (P)p.

PROOF. Assume Py (r9,C1,C2). Then for all functions f € LS, and for all
balls B(z,r) with r > ro and € M, we have

2
/ |f_fB(w,r| d/-l'
B(z,r)
< Cyr? / VP du
B(z,Car)

2 Lia,y)<n

:cﬁ/ / Fly) — f()2 2@t g gy
' B(z,Car) B(w,Czr-‘rh’)‘ ( ) ( )| V(y7h)

1d(x y)<h'
< Ch Crr? / F) — F)P 2Lz g, gy
B(z,Car) J B(z,Car+h’) V(ya h/)

which is Py (rg, C1Ch pr, C2). In the last line above, we used Lemma 2.10. O

REMARK 3.6. A question now arises: At what scales h does a Poincaré inequal-
ity (P)p hold 7 We have a satisfactory answer for length spaces and graphs. If a
graph satisfies Poincaré inequality at some scale, it satisfies Poincaré inequality at
all scales h > 1 (See Corollary 3.15). Moreover, a graph does not satisfy Poincaré
inequality for scales smaller than 1 because the gradient at scales smaller than 1 is
identically zero. If a length space satisfies Poincaré inequality at some scale, then
it satisfies Poincaré inequality at all positive scales (See Corollary 3.17). We will
see in Proposition 9.9 that if (P)j is satisfied at for some h > 0 then (P)j is true
for all A > b. We analyze an example which is neither a graph nor a length space
(See Example 3.22) to show that h > b is the best possible bound.

We now show that the constant ¢ in Py (rg, C1,Ca) is flexible.

LEMMA 3.7. Assume the Poincaré inequality Py, (ro,C1,C2) holds for a metric
measure space (M,d, ). Then for every r1 > 0 and there exists constants C1,C}
such that the Poincaré inequality Py (r1,C7, Ch) holds.

PROOF. The non-trivial case to check is r; < rg. Assume B(z,r) with ry <
r < 1. Then for all functions f € LS, (M), by (3.2) we have

loc
- Fotero| du

[ tsenlins [
B(z,r) B(z,
< / |f_fB(I77‘0)|2d,u'
B(z,ro)

Combining the above inequality with Py (rg, C1, Ca) yields
2
R T ) NN e 2

B(fE,CQT‘())
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Hence we can choose C} = C1(ro/r1)? and Ch = Ca(ro/r1). O

3.2. Robustness under quasi-isometry

Since quasi-isometry between metric measure spaces satisfying (V D), is an
equivalence relation, we may expect that a quasi-isometry preserves certain invari-
ants of such spaces. For instance, we saw in Proposition 2.20 that quasi-isometry
preserves the large scale doubling property. In this section, we shall see that quasi-
isometry preserves Poincaré inequality (P);. The approach for proving robustness
of functional inequalities can traced back to the seminal works of Kanai [50, 51, 52]
and further developments by Couhlon and Saloff-Coste [22].

The idea is to show that a functional inequality on the metric measure space
is equivalent to a similar functional inequality on its net. Since quasi-isometry is
an equivalence relation, it suffices to show that the functional inequality on graphs
is preserved under quasi-isometries. To compare functional inequalities back and
forth between a metric measure space and its net, we need to be able to transfer
functions on metric measure space to functions on its net and vice-versa. We start
by developing those tools.

As before, let (M,d, ) be a quasi-b-geodesic metric measure space satisfying
(VD)ioc and let (X, dg, m) be its e-net for some fixed € > b. By Proposition 2.22,
we have that (X, dg, m) is a metric measure space satisfying (V D)jo.. Moreover the
graph corresponding to (X, dg, m) is connected, countable with bounded degree.
Let Dx = sup,cx deg(z) < oo be the maximum degree. We will denote closed
balls in (M,d, ) and (X, dg, ) by B and Bg respectively. Similarly, we denote
their corresponding volumes by V' and Vi respectively.

Given a function g € L{2 (M, ), we a define a function g : X — R on its net
as
(33) i) = o [ gdn
. V($,€) B(z,€) .

for all € M. Conversely, given a function f : X — R on the net, we define
f:M —Ras

(3.4) F=> fx)b.

zeX
where 6, : M — R is defined by

1B(w7e) (p)

(3.5) 0.(p) = S Lo @)

The sum in (3.4) and denominator of (3.5) is a finite sum due to the finite overlap
property of Proposition 2.22(h). Moreover, there exists a constant cx > 0 such
that {0, }.ex is a partition of unity (3 .y 0, = 1) satisfying

(36) CXlB(z,e) <0, < 1B(z,e)

for all x € X.The above properties of the partition of unity 6, can be verified using
Proposition 2.22.

We will now compare norms and gradients for the transfer of functions between
metric measure space and its net. For a metric measure space (M, d, u) and for all
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f e L (A) where A C M, we denote by

1/p
T ( / Iflpdu) .

We adapt the same notation for its net by considering it as a metric measure space.

loc

DEFINITION 3.8. For a function f : X — R on a graph (X, E), we define the
discrete gradient of f at x as

1/2
z) = (Z f(y) —f(af)|2> :

This definition of discrete gradient was used to define Poincaré inequality for
graphs in [22]. We now show that our definition of [V f|, is comparable to ¢ f.

LEMMA 3.9. Let (X,dg, m) be a weighted graph satisfying (V D)ioc. Then there
ezists C' > 0 such that

IV () < 8f(x) < CNVfl(x)
for all functions f: X — R and for all x € X.

PrOOF. We write the gradient as

1 2
(V1. (2))* = ) = F@)Pmiy).
! m(‘r) + ZyeX:yNw m<y) yegf\ﬂi
The conclusion immediately follows from Lemma 2.23. (]

REMARK 3.10. Therefore our Poincaré inequality (P); generalizes the Poincaré
inequality for graphs considered by Delmotte [25, 27]. Using the above lemma, our
definition of (P); for graphs is equivalent to the L? version of (P) for graphs in
[22].

The next lemma compares gradient of a function on net and with its metric
measure space version.

LEMMA 3.11. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)ioc and let (X, d, m) be its e-net for some € > b. For all h > 0, there exists
positive reals C,C’ such that for all x € M, for all v > 1, and for all functions
f: X =R, we have

2
4,1, <1

where & € X is such that d(x,z) < € and f: M — R is defined as in (3.4).

PROOF. Using Lemma 2.10, Proposition 2.22 (a) and (2.12), there exists C; > 0
such that

3.7 /B(a: T)/ f f ‘ 7 éJyza);)h dedy
$ B o J 0 T

s€Bg(z,Cyr)
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forall z € M and r > 1. For all s € X, y € B(s,¢) and z € B(y, h), we have

f) = f(2)

D FOOy) = 0:(2)) = D (f(1) = F()(Oely) = 0:(2))

teX teX

= Y () F9))Ouly) — 0u(2)

teX,d(s,t)<2e+h

For the last line, if d(s,t) > 2¢ + h, then by triangle inequality d(¢t,y) > h + ¢,
d(t, z) > € and therefore 0;(y) = 0:(z) = 0 whenever d(s,t) > 2¢ + h. Let Dx < o0
be the maximum degree of the net from Proposition 2.22(b) and ng = A(h + 2¢) +
A+ h where A is from (2.12). Since |Bg(s,no)| < 2N™, we have

(38) o) -Fe)[<2 > O - s <ADR s (1) - f(s)

teBg(s,n0) teBg(s,n0)

Let po,p1,...,Pds(s,t) be a path from s to ¢t. For all t € Bg(s,ng), by Cauchy-
Schwarz inequality we have

dg(t,s)—1
39  O-fPF<| D (Fo)—fis) | <m0 > B
=0 pEBa(s,n0)

Combining (3.7),(3.8) and (3.9)

IIv?

2

< Y a0

s€Bg(z,C1r) teBg(s,no)

ST CmanTong N Pf)Pm(t)

s€Bg(Z,C1r) teBg(s,n0)

<8CIDYng Y PO m(t)
SEBG(E,037')

hH2,B(w,'r)

IN

for all z € M and all » > 1. The second line follows from (2.13) and the last line
from [B(t,ng)| < 2D%’. O

The following proposition shows that Poincaré inequalities can be transferred
between a metric measure space and its net.

PROPOSITION 3.12. Let (M, d, 1) be a b-quasi-geodesic space satisfying (VD )ioc
and let (X, d, m) be its e-net for some € > b. Then for all h > 5¢, (X, dg, m) satisfies
(P)1 if and only if (M, d, u) satisfies (P)y,.

REMARK 3.13. In general, we do not know if the inequality h > 5¢ in the above
statement is required. We believe that h > b is sufficient but we are unable to prove
this.

PROOF OF PROPOSITION 3.12. Suppose (X, dg, m) satisfies Py (rg, Cy, C5).
Let g € LS, and let g : X — R be defined as (3.3). Let x € M and r > ry be

loc

arbitrary. Let Z € X be such that d(z,Z) < e. There exists C; > 0 such that, we
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have

2
(310) / |g(y) - gB(m,r)’ dy
B(xz,r)
< / lg(y) — al*dy < / l9(y) — af*dy
B(z,r) pEBG(2,C1r) B(p,e)

<2 </B(p’6) lg(y)é(p)Qdvam(p)é(p)al2>

p€BG(Z,Cir)

for all & € R and all functions g. The second line above follows from (3.2), Propo-
sition 2.22 (a) and (2.12). The last line follows from (a +b)? < 2(a® +b?). The first
term above is bounded using Jensen’s inequality as

/B@,e)'g(y)_g( PPl < /m)/B(,,E (=) dz dy

Hence by Lemma 2.10, we have

n= Y / ) Py

pEBG(z,C1r) Y B

1d( z)<2e
< Ce e / / gy—ngLdzdy
“ 2 B(p.e) B(w)' W) =42 V(y, 5€)

pEBg(z,Cir)
(3.11) < (s |||V9‘5e||2,3(x,03r)

for some Cs,C5 large enough. We used Lemma 2.10 and triangle inequality in
second line above and Proposition 2.22(h) and (2.12) in the last line. Choose
a = JBg(z,cir) in (3.10), so as to apply Pi(ro,C1,C3) on (X, d,m) to bound the
second term in (3.10) as

(3.12) L= > m@p) -’ < Cur® 6§l 5. m.com
pEBa(Z,C1m)

For all p,q € X satisfying p ~ ¢, by Jensen’s inequality and triangle inequality we

have
/ / )| dz dy
B(p,e) J B(q, 6)
/ / )| 1d(y 2)<be dz dy
B(p,e) B(«Le)

<)
)
=3
=
|
Sy
—
i)
~
N
I/\

\ /\

Hence for all p € X,

95 (p )I2 (p)
— | / )= 0Lty
lequ Vig,e B(p,4e) B(p,4e)
1
< Cee / / — g(z)2 2S5 g gy
1 X amp BpAe) JB(y, 4e> V(y, 5e)

1d(y z)<be
(3.13) <Coalx [ [ ) - go)f T dzay
’ p,de p,de V(y, 56)
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The third line follows from Lemma 2.10 and the last line from bounded degree
property of Proposition 2.22(b). Combining (3.12), (3.13) along with (2.12) and
Proposition 2.22(h) gives

2
(3.14) I < Cor® |V glsll3 s a.com -

Combining (3.10),(3.11) and (3.14) yields Poincaré inequality (P)s. for (M,d, u).
By Lemma 3.5, we get (P), for all h > 5e.

Conversely, suppose that (M, d, u) satisfies Py, (r1, C%, C}) for some h > 5e. Let
f: X — R be an arbitrary function and define f : M — R as in (3.4). Denote
Bg(p,r) be an arbitrary ball in (X, d, m) where r > 1. Then using (3.2), (VD)o
and the inequality (a + b)? < 2(a? + b?) we have

315) Y @)~ faten| mla)

q€Bg (p,r)
< Z \f(q)*a\Qm(Q)SCsm Z f(q) — o* du
4€Ba (p,n) 4€Ba(z,n) ' B(@:¢/2)
2L 2
<0 ¥ [ (f@-iw)f i -d ) a
4€Ba(pn) Y Blae/2)

for all &« € R. Using Proposition 2.22(a) and (2.12),there exists positive reals
Cs, C11,C2 such that for all » > min(1,71/Cs) and all functions f, we have

ne > [ o as [ -]

a€Bg(p.r) B(p.Csr)

2

(3.16) < Cyr? H’Vf‘hH < Cnr® H(Sng,BC;(p,Clgr) :

2,B(p,Cior)

In the second step above, we fix o = fB(p,CQT) and apply Poincaré inequality (P)y,
and in the last line we apply Lemma 3.11. Let ¢ € X and y € B(gq,¢/2). Since

f(y) = ZtEX:dG(t,q)Sl et(y)f(t)v we have

fo-fwl=| X awU@-rm)s Y@= 10)

teX:d(t,q)<1 teX:d(t,q)<1

< 0f(q)V/Dx.

The last line follows from Cauchy-Schwarz inequality and maximum degree Dy
from Proposition 2.22(b). Using this estimate, we have

h= 2 /B o \f(y)—f(y)\ dy <DxCeo Y 5f(a)*m()

q€Ba(p,r) yEBg(p,r)
2
(317) < DXce/Q ||6f||2,Bg(p,r) .

Thus (P); for (X,d, m) follows from (3.15), (3.16) and (3.17) along with Lemma
3.9. [

We now show that Poincaré inequality (P); is preserved under quasi-isometry
for graphs.

Let (X,d, m) be a weighted graph. Then for the closed balls in the graph, we
have B(z,r) = B(z,|r|). Hence by Lemmas 3.7 and 3.9, we have the following
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equivalent definition of (P);: A weighted graph (X, d, m) satisfies (P);, if there
exists C7 > 0, Co > 1 such that for all f: X — R, for all z € X and for all n € N*.

(3.18) S° W)~ Frem nldy) <Cin? Y ) my)

yEB(z,n) B(z,Can)

where fp(;.n) is the average of f in B(x,n) with respect to measure m. We will
use the alternate definition for the proposition below.

PROPOSITION 3.14 ([22], Proposition 4.2). Let (X1,dy,m1) and (X2, ds2, ms)
be quasi-isometric weighted graphs that satisfy (VD)ioe. Then (X1,d1,mq) satisfies
(P)1 if and only if (Xo,d2, ms) satisfies (P);.

PROOF. We denote the balls, volume of balls and gradient of (X;,d;, m;) by
B;,V;, §; respectively for 1 =1, 2.

Assume that (X;,d;, mq) satisfies (P);. Let ® : X3 — X5 be a quasi-isometry
with Uzex, Ba(®(z),k) = Xo for some k € N*. Let f : Xo — R and let fi(z)
denote the average of f in Bs(z, k) with respect to measure mo. Applying (P); to
the function fi o ® : X7 — R, we have

2
(319) ka od — (fk o (I))Bl(x,n) ||2,B1(m,n) < Cln2 ||51(fk o (P)”;BI(QC,C{n)
For all y € X7, we have
(3.20)

01(fr © @) () m1(y) < Cald1(fi 0 ®)(y)*ma(D(y))
<CyDx, sup  |fi(®(w1)) — fiu(@))ma(®(y))

w1 €X1:wi~y

The first line follows from the quasi-isometry condition m1(y) < C'ma(®(y)) and
the second line from bounded degree property of Lemma 2.23. Since ® is a quasi-
isometry, there exists I > 0 such that By(®(y),l) C ®(B1(y,1)) for all y € X;.
An application of Cauchy-Schwarz inequality along the minimal path ®(w;) =

P0sD1s-- -, Ps = P(y) gives
s—1
Fi(®(w1)) = fe(@W)) <Y 1fr(®P:) = Fr(®(pis1))
i=0
(3.21) <l > Paf(x)

z€Ba(2(y),1)

for all y,wq € X; such that y ~ w;. Combining (3.20), (3.21) and (2.15) of Lemma
2.23, we obtain

(3:22) 51(fr 0 @) () ma(y) < CoDxICL, Y Pafu(2)*ma(2)
zEB2(2(y),1)

Since @ is a quasi-isometry, there exists C4 > 0 such that
Uzea(By(2,0)n) B2(2,1) € Ba(®(x), Cyn)
for all z € X; and n € N*. Combining this with (3.22) and Lemma 2.23 gives

(3.23) 181(f 0 B2 5, .oy < C 162

2
|2,B2(<I>(a:),Cén)
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for all n € N*, for all z € M and for all functions f. We write,

Bafi(2) = D k() — fuly)

yeXa:y~z
1 o 2
<22 | vem 2 VO - f&F 0

! 2
+V2(y, k) Seg(:y’k) If(s) — f(2)"ma(s)

2Dy, ,
SO

F G S () - fePmals).

V2(Z’ k) SEBy(z,k+1)

The second and third lines above follow from (a + b)? < 2(a? + b?) along with
Jensen’s inequality. The last two lines follow from Lemmas 2.23 and 2.10 to compare
Va(z, k) < Vo(y,k + 1) < CyVa(y, k). By Lemma 2.23, we have mo(t) < CLVa(z, k)
for all z € X5 and for all t € By(z,k + 1). It follows that

Pafe()? < Cs > If(1) = £(2)
teB2(z,k+1)
An application of Cauchy-Schwarz inequality similar to (3.21) yields
Bofu(2) < Cs(k+ DX 37 Paf(y))
YyE By (Z,]f+1)

Finally by Lemma 2.23,

2 2
(3.24) 162 £k ()2, B, (0 (@),01n) < Co 16212, B, (00),04m)
Combining (3.19), (3.23) and (3.24), we have
2 2
(3.25) | fro® = (fi o ®)p, (@) HQ,BI(I’,}) < Cgn? 102115, 5, (@ (2),c1m)

Suppose we prove that
(3.26) ||f - fBQ(fp(m),n)H;BQ@W,”) < Cg ||52f\\3,32(q>(m),cgn)

+Cy||[feo®— (fuo ‘I’)Bl(x7cgn)|f§731(gﬂ7cén) :
Then (3.25) and (3.26) gives

2
(3.27) /- fBZ(CD(x)vn)||2,B2(<I>(z),n) < Cyon? H52f(z)||§,32(<1>(m),0én) :

for all x € M; and for all n € N*. Thus we obtain Poincaré inequality for all balls
centered in the image of ®. Let y € Ms. Then there exists § € M; such that
y € Ba(®(Y), k). It follows from (3.2) that

17 = Tty < 1 = om0

2
< Hf - fBz(‘b@)vn"‘k)||27Bg(<f—'(ﬂ);n+’€)
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Hence by (3.27), we have (P); for (Xa,ds, ms).
It remains to show (3.26). Let ®~! : My — M; denote the quasi-inverse such that
®~1(mgy) € M; is such that da(ma, (® o @71)(ma)) < k. We have by (3.2) and
(a+b)? < 2(a® + b?) that
2 2
1S = IBa@@m |,y @@y my < 1 = 2,5y (@(@)n) < 281 + 28
where )
_ —1
S1= Hf —Jro®o® ||2,Bg(<1>(ac),n)
and )
—1
Sy =|[fro®od®™" — O‘H2,32(<1>(x),n)
for all « € R. Let z = ® o ®~1(2), then da(z,2) < k. We bound S; as
Si= Y ) =SB ma(z)

z€B2(®(x),n)

< ¥ S 1)~ F@Pma(t) | maz)

zEBs(®(z),n) ‘/2( ’k) teB2(z,k)

<Cn Z Z |62f(t)\2m2(z)

2EBa(®(z),n) t€ Ba(z,2k)

—_

I\

2
< Cr2 1021112, By (@ (), com) -

The second line follows from Jensen’s inequality. The third line follows from
dy(z,Z) < k and an application of Cauchy-Schwarz inequality similar to (3.21).
The last two lines follows from bounded degree property and (2.15) of Lemma 2.23.
For the second term Ss, we have

S<Cis Y. |fio@0d T (2) —af'mi(@7(2))
zEBo(P(x),n)

2
< Cullfeo® = ally g, @0

We use the fact that ® and @' are quasi-isometries. Indeed, for C§ big enough
O~ 1(By(®(x),n)) C Bi(z,C4n), since ®~! is a quasi-isometry with

dy(z,® 0 ® (z)) < k.

Moreover [{z € X3 : ®7*(2) = w}| is uniformly bounded over all w € X;. Choose
C{ = max(C%,Cg). The bounds on Sy and S, along with the choice a = (fy o
®) B, («,czn) concludes the proof of (3.26). O

COROLLARY 3.15. Let (X,d, m) be a weighted graph satisfying (VD)o and let
h > 1. Then (X,d,m) satisfies (P)1 if and only if (X,d, m) satisfies (P)p,.

PROOF. By Lemma 3.5, (P); implies (P)p.
Conversely, assume (X, d, m) satisfies (P);. Fix k = [h]. Since |V f|, = [V f|, for all
functions f: X — R, (X, d, m) satisfies (P)y. k-fuzz of a weighted graph is defined
as the weighted graph (X,dj,m) where the edges are defined by di(z,y) = 1 if
and only if 1 < d(z,y) < k for z,y € X. It is straightforward to verify that
the k-fuzz (X, dg, m) satisfies (VD))o and is quasi-isometric to (X,d,m). Since
(X, d,m) satisfies (P)g, the k-fuzz (X, di, m) satisfies (P);. Hence by Proposition
3.14, (X, d, m) satisfies (P);. O
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As outlined at the start, the robustness of Poincaré inequality on graphs in
Proposition 3.14 can be transferred to arbitrary quasi-geodesic spaces using Propo-
sition 3.12.

PROPOSITION 3.16. For i = 1,2, let (M;,d;, ;) be quasi-b;-geodesic spaces
satisfying (VD)ioc. Assume (My,dy,u1) and (Ma,ds, p2) are quasi-isometric. Let
hi > 5by and for all hy > 5by. Then (My,dy, 1) satisfies (P)n, if and only if
(Mz, da, p2) satisfies (P)n, -

ProOOF. It is a direct consequence of Propositions 3.12 and 3.14. (]

The above Proposition along with the fact that length space is b-geodesic for
all b > 0 gives the following.

COROLLARY 3.17. Let (M,d, 1) be a length space satisfying (V D)ioc. Then for
every hi,hy > 0, (M, d, 1) satisfies (P)p, if and only if (M,d, u) satisfies (P)p,-

3.3. Poincaré inequalities in Riemannian manifolds

In this section, we see the relationship between various Poincaré inequalities on
a weighted Riemannian manifold. We start by introducing some Poincaré inequal-
ities from [22].

DEFINITION 3.18. We say that a complete weighted Riemannian manifold
(M, g) with measure p satisfies (P)s if there exists rg > 0, C1 > 0, Cy > 1
such that for all f € C*°(M), for all x € M and for all r > r¢, we have

Pl [ VO - Sl < Cor® [ fprad f(0) ()
B(z,r)

B(z,Car)

where fp(,,) denote the average of f in B(x,r) with respect to u. We say that a
complete weighted Riemannian manifold (M, g) with measure p satisfies (P)oc if
there exists Cq > 0, C2 > 1 such that for all f € C*°(M), for all z € M and for all
r > 0, we have

(P)ioc / £ (W) = FBan| uldy) < C; lgrad f ()| u(dy)
B(z,r) B(z,Car)

where fp(,,) denote the average of f in B(x,r) with respect to p.

It is clear that (P) gy, implies (P)s and (P)joc. The inequality (P)o is a weak
assumption. For instance, manifolds with a lower bound on Ricci curvature satisfy
(P)ioc. Inequality (P). is a large scale version of (P)gy,.

PRrROPOSITION 3.19. ([22, Proposition 6.10]) Let (M, g, 1) be a weighted Rie-
mannian manifold satisfying (VD)ioe and (P)ioe and let (X,d, m) be its e-net for
some € > 0. Then (M,g) with measure p satisfies (P)s if and only if (X,d, m)
satisfies (P)1.

Propositions 3.19 and 3.12 along with Corollary 3.17 gives the following

PROPOSITION 3.20. Let (M, g, 1) be a weighted Riemannian manifold with Rie-
mannian distance d. Denote by (X,dg,m) be an e-net of (M, d, 1) for some ¢ > 0.
Assume (M, d, i) satisfies (VD)o and (P)ioc. Then the following are equivalent:

(a) (M,d,u) satisfies (P)oo-
(b) (M,d, ) satisfies (P)y, for some h > 0.
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(¢) (M,d, ) satisfies (P)y, for all h > 0.
(d) (X,dg,m) satisfies (P);.
(e) (X,dg,m) satisfies (P);, for some h > 1.

3.4. Poincaré inequality: Examples and Non-examples

A large class of examples for (P);, can be obtained from Proposition 3.16 and
3.20. For instance, Buser proved (P)g,, for Riemannian manifolds with non-
negative Ricci curvature. Therefore by Proposition 3.20, Riemannian manifolds
with non-negative Ricci curvature satisfy (P);, for all positive scales h. The follow-
ing example is from [35].

ExaMPLE 3.21. [Euclidean space with radial weights] Consider R™ with stan-
dard Riemannian metric g, Euclidean distance d and measure du,(z) = (1 +
2]*)*/2 dz. Tt is easy to verify that (R™,d, o) satisfies (V D)joe and (P)joe. More-
over (R™,d, j1q) satisfies (VD) if and only if & > —n. If n > 2, then (R",d, p1q)
satisfies (P)o and therefore (P); for all values of & € R and A > 0 (See Remark
3.13 in [35]). However, (R, d, 1i,) does not satisfy (P)s for a > 1. Tt can be easily
seen using the test function fo(z) = [ (1 + t2)=*/2dt. By [35, Theorem 7.1(i)],
(R, d, puq) satisfies (P)s if =1 < @ < 1. Due to an unpublished result of Grigor’yan
and Saloff-Coste, (R, d, j14) satisfies (P) if and only if a < 1.

EXAMPLE 3.22. We describe an example of quasi-geodesic space which is nei-
ther a graph, nor a length space. Consider the ‘Broken line’ BL C R

BL=|J[n—1/4,n+1/4]
neL
It is quasi-b-geodesic if and only if b > 1/2. We equip it with the Euclidean
distance d and restriction of Lebesgue measure p on BL. (P), is not true for
(BL,d,p) if h < 1/2. Tt can be seen using the test function f : BL — R defined
by f(x) = (=1)l=+1/4], However, it can be shown that for (BL, d, i) satisfies (P)j,
for all h > 1/2.

ExaMPLE 3.23 (Hyperbolic space). Consider the Hyperbolic n-space H"” with
Riemannian distance dy and Riemannian measure p. (H",dy, 1) satisfies (VD)o
and (P)joc. However (H", d, 1) does not satisfy (V' D)), because the volume of balls
grows exponentially. Further (H",d, ) does not satisfy the Poincaré inequality
(P)oo-

Another example in a similar spirit is the infinite d-regular tree Ty equipped
with graph distance metric and counting measure. It is easy to very that if d > 3,
T4 does not satisfy (VD). and does not satisfy (P), for all h > 0.

Examples 3.21 and 3.23 illustrates all the four possibilities that can occur with
properties (VD) and (P)s. It is summarized in the table below.
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(VD)s | (P)s | Examples

True True | (R™,d, o) withn >2and @ > —norn =1
and a € (—1,1)

True False | (R, d, o) with a > 1

False True | (R™,d, pq) with o < —n

False False | (H",dy, p)

TABLE 1. Examples of spaces in relation to the properties (V' D).,

and (P)so




CHAPTER 4

Markov kernel, Semigroup and Dirichlet forms

In this chapter, we consider Markov chains on metric measure space (M, d, u).
Let B denote the Borel o-algebra on (M, d). Our work concerns long term behavior
of a natural family of Markov chains on the state space M. We will recall some
standard definitions and facts about discrete time Markov chains.

A Markov transition function is a map P : M x B : [0, 00) such that z — (x, A)
is B-measurable function on M for all A € B and A — P(z, A) is a probability
measure on (M, B) for all x € M. A Markov transition function P on (M, B) is
u-symmetric if

(4.1) / / s () s ()P (, dy) u(de) / / wr () us (y) P (x, dy)u(dz)

for all measurable functions uy,us : M — [0,00).

REMARK 4.1. For the rest of this work, we assume that the our Markov tran-
sition function is p-symmetric with respect to some measure pu.

Associated with a p-symmetric Markov transition function P is a Markov op-
erator P, which is a linear operator defined by

(4.2) / f(y)P(z,dy)

on the set of bounded measurable functions. The operator P extends as a con-
traction operator on LP(M) = LP(M,p) for all p € [1,00]. With a slight abuse
of notation, we denote this extension again by P : LP(M) — LP(M) for each
1 < p < o0. Moreover P is positivity preserving, i.e. if f > 0 then Pf > 0.

The n-th iteration P™ of the operator P is just the operator associated with
kernel P" defined inductively by

P (x,A) := 77"71(2, AYP(z,dz)
M

for all x € M, for all measurable sets A € B and P! := P. We now have the
Markov semigroup of linear operators (Pn)neNo where PV is the identity operator
on L?(M). The Chapman-Kolmogorov equation is given by

(4.3) Pz, A) = / P (z, AYP™(x,dz)
M
for all A € B and for all m,n € N*. By Fubini’s theorem, (4.3) implies the semigroup

property Pt f = PmPf for all m,n € Ng and f € L'(M).
The operator A := I — P is the Laplacian which generates the Dirichlet form

E ) = U AF) aan) = / / )2 P, dy) pu(d).
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on L?(M) with full domain D(€) = L?(M).
For every Markov transition function P on (M, B) there exists a Markov chain
(Xn,Ps)nen,,zem on some path space (2, F) such that

Pz, A) = P, (X, € A).

(one can always choose the canonical path space 2 = M®No F = B®No and
Xn(w) = wy for w = (wo,w1,...).) The transition function P™ is then given by
P(x,A) = P,(X,, € A) and the operator P" by P"f(z) = E,f(X,). The u-
symmetry of P is equivalent to the p-reversibility of the Markov chain:

]P)H(Xo cA X € B) = PH(Xl cA Xy€ B)

where P, is a measure (not necessarily a probability measure) defined by P, (-) :=
Jor Pa()pe(dz).
If P(z, ) < p for all x € M, we denote its kernel by p : M x M — [0, 00), that
is
Pz, A) = /Ap(x, y)u(dy)

for all x € M and for all A € B. The kernel p is called a Markov kernel with
respect to p. The kernel p(x,-) is the Radon-Nikodym derivative of P(x,-) with
respect to p, that is P(x, A) = [, p(x,y)p(dy) for all z € M and all A € B. The
p-symmetry of P implies symmetry of kernel, that is p(x,y) = p(y,x) for all p x u
almost every (x,y) € M x M. By definition, we have p(z,-) € L*(M,p) for all
x € M. However, we assume that p(x,-) € L®(M,p) for all x € M. Under the
assumption p(z,-) € L' N L, we define iteratively

(4.4) Pry1(z,y) = [Ppr(z,-)] (y) = /M pr(z, 2)p1(y, 2)pu(dz)

where p; := p and k € N*. The function py for k € N* is called the heat kernel. We
will show some basic properties of heat kernel defined in (4.4).

LEMMA 4.2. Let (M, d, 1) be a metric measure space and let P be a u-symmetric
Markov transition function satisfying P(x,-) < u for all x € M. Let pi(z,-) =
%}f") denote the corresponding Markov kernel. Assume further that py(z,-) €

L>(M, p) for all x € M. The the kernel py, defined in (4.4) satisfies

(a) pr(z,-) = %ff“) for all k € N*. That is P*(x, A) = prk(J;,z)u(dz) for
all x € M, for all k € N* and for all A € B.

(b) pr(z,y) = pr(y,x) € [0,00) for all x,y € M and for all k > 2.

(c) pri(x,y) = P (pi(, ) (y) for all x,y € M and for all k,1 € N*.

PROOF. Since pi(z,-) > 0 p-almost everywhere for all € M, by induction
we have that py(z,y) € [0, +o0] for all z,y € M and for all k& > 2. Therefore by
induction on k, we have

/Mpkﬂ(%y) dy = /M A il 2,2 ddy = /Mpm,z) /M pr (2, y) dy d
:/Mpk(x,z)dz: 1.

In the first line above we used Fubini’s theorem and that py(y,2) = p1(z,y) p X p-
almost everywhere. Since ||px(z,-)|l; = 1 for all z € M and for all £k € N*, we
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have

Prr1(z,y) = [Ipk(z, )p1(y, )l < ek, )l 1p1(Ys )l oo < P2y, ) llo < 00

for all kK € N* and for all z,y € M.
First we show (b) by induction. The result is obvious for k = 2. If k > 2, we
have

Pt (z,y) = /M pr(x, 2)p1(y, 2) dz = /M (2, 2)p1(y, 2) dz
B /M /M Pr-1(2, w)p1 (2, w)p1(y, 2) dw dz.

In the first line above, we used the induction hypothesis. By the above formula for

pr+1(z,y) it is clear that pri1(z,y) = pr+1(y, ) for all z,y € M.
Now we verify (a) by induction. For k € N*, we have

Pk (g, A) / Pk (2, AP(z,dz) = / (/ pr(z,w) dw> p1(z, 2)dz

// pr(z, w)p1(z, 2 dzdw—//pszplxz)dzdw
=/pk+1(wa$)dw:/17k+1($,w) dw
A A

for all A € B. In the first line above, we used induction hypothesis, the second line
follows from Fubini’s theorem, (b) and the p X p-a.e. symmetry of py. The last line
again follows from (b).

By definition of py (4.4), we have

pr+1(z,y) = P (px(z,-)) (v)

for all 2,y € M. Therefore (c) follows from repeated application of the above
equality. (Il

REMARK 4.3. In light of (iii) above, we may alternatively define py(z,-) as
the Radon-Nikodym derivative %. However this alternate definition for pg(x,y)
makes sense only for p-almost every y € M (for a fixed value of ). Nevertheless,
since p1(y,-) € L*™ and pg_1(z,-) € L', it is clear that for all k& > 2, the function
(z,y) — pr(x,y) defined in (4.4) is well-defined for all z € M and for all y € M.
Hence for k > 2, py, : M x M — R>¢ is a genuine function (as opposed to px(z, -) just
being in L'). For k > 2, py is a genuine function on M x M but py(z,-) € L' N L>®
for all x € M.

Many questions concerning the long term behavior of the Markov chain can
be answered if we know pi. Therefore estimates on pg(z,y) for all x,y € M and
for all £k € N* is of importance. Based on the remarks above on pg, any bound
on pi(z,-) must be understood in the p-almost everywhere sense for £k = 1 and in
a point-wise sense for k > 2. The estimates on heat kernel gives both qualitative
(e.g. recurrence/transience, Liouville property) and quantitative (e.g. estimates on
Green’s function, Holder regularity) information on the long term behavior of the
Markov chain. See Chapter 10 for applications of Gaussian estimates on the heat
kernel.
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EXAMPLE 4.4. Let (M, d, u) satisfy (VD)o and let h > 0. Consider the natural

ball walk with Markov kernel k with respect to y defined as k(z,y) = 2222 The
corresponding Markov transition function C is not necessarily p-symmetric because
k(x,y) # k(y,z) in general. Consider the measure ' < p with %(m) = V(z,h).

The Markov kernel of K with respect to u' is p(z,y) = V?f(}f)i% Hence K is

p/-symmetric. Such ball walks on compact Riemannian manifolds were studied in
[56].

A Markov chain (X, Py )nen, zenm is said to be lazy if inf, e Py (X1 = z) > 0.

EXAMPLE 4.5. Consider a metric measure space (M, d, u) with a p-symmetric
Markov transition function P. Define the Markov transition function

Po(z, A) = %(P(x,A) +6,(A)

where 0,(A) = 14(z) denotes the Dirac measure at z. Note that Py, u-symmetric
and corresponds to a lazy Markov chain. Assume P has a kernel p with respect to
. Then Pr, has a kernel with respect to p if and only if 6, < p for all z € M. If
P is the Markov operator corresponding to P, then P, = (I + P)/2 is the Markov
operator corresponding to Pr, where I is the identity operator on LP(M). Hence
the corresponding Laplacian operators A and Aj, are related by Ay = A/2.

Some basic properties of a symmetric Markov kernel are listed without proof
in the lemma below.

LEMMA 4.6 (Folklore). Let P denote a p-symmetric Markov transition func-
tion over a metric measure space (M,d, u) and let P be the corresponding Markov
operator. Then P is a contraction on all LP(M, ), that is

(4.5) 12, < £,

for all p € [1,00] and for all f € LP(M). A consequence of (4.5) is the inequality
(4.6) Ef.N) =T~ P)f.)<2|Ifl;

for all f € L?>(M). Moreover P is self-adjoint on L*(M), that is

(4.7) (f,Pg) = (Pf,g)

for all f,g € L?>(M,u) where (fi, f2) = fM fifadp denotes the inner product on
L*(M, ).

We list some elementary properties of a symmetric Markov kernel below.

LEMMA 4.7 (Folklore). Let P denote a p-symmetric Markov transition function
over a metric measure space (M, d, p) and let p be the corresponding Markov kernel.
Then for all x € M, the function
(4.8) n — pon(x,x)

is non-increasing. Moreover we have

(4.9) Pan(@,y) < pan (@, ) *pay (y, y)'/?

for all x,y € M and for all n € N*.
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PROOF. Note that the first claim follows from (4.5) by

2 2 2
P2n+2(2, @) = |[pns1 (@, )l = [|Ppn(@, )2 < lpa(z, )l = p2n(2, ).
For (4.9), we simply use Cauchy-Schwarz inequality to obtain

Pan(2,y) = (Pn(2,.),Pn(y,.)) < Hpn(xa )||2 lpn (y, )Hz

4.1. Assumptions on the Markov chain

We introduce the main assumptions on the Markov chain in the following def-
inition.
DEFINITION 4.8. For h > 0, a Markov transition function P on (M, B) is said
to be (h, h')-compatible with (M, d, p) if
(a) P is p-symmetric.
(b) There exists a kernel p; such that P(z, A) = [, p1(x,y)u(dy) for all z € M
and for all A € B. By (a), we have p(z,y) = p1(y, z) for all u x p-almost
every (z,y) € M x M.
(¢) There exists reals ¢;,C; > 0 and A’ > h such that
C1 CVl
—1 < < — 1 /
V(z,h) B(x,h)(l/) <pi(z,y) < Viz, 1) B(z,h )(y)
for all x € M and for p-almost every y € M.
(d) There exists a > 0 such that

(4.11) pa(z,y) > api(z,y)
for all € M and for p-almost every y € M, where p, is defined by (4.4).

(4.10)

The corresponding Markov kernel p; is said to be (h, h')-compatible with (M, d, u).
If a Markov transition function P satisfies (a),(b),(c) above we say that P (respec-
tively p1) is weakly (h, h')-compatible with (M, d, p).

Similarly, we say the corresponding Markov operator P is (weakly) (h,h')-
compatible with (M, d, u) if the Markov transition function P is (weakly) (h,h')-
compatible with (M, d, u).

REMARK 4.9. (i) Let (M,d, p) satisty (VD)joc and hy > hy > 0. If a
Markov kernel p; is (h1, h')-compatible with (M,d, i) then p; is (ha, h')-
compatible with (M, d, u).

(ii) The condition (d) in Definition 4.8 may seem unnatural, but is impor-
tant for certain technical reasons. The proofs on Caccioppoli inequality
(Lemma 7.8) and discrete time integrated maximum principle (Proposi-
tion 7.12) and relies crucially on laziness of walks. Condition (d) enables
us to compare the behavior of a given random walk with its lazy version
as presented in Example 4.5.

(iii) There are several examples for which (d) is satisfied. For instance, a
Markov kernel on weighted graphs satisfying (VD)o is weakly (h,h')-
compatible if and only if it is (h, h’)-compatible. Consider a Markov ker-
nel p weakly (h,h)-compatible with a length space (M,d, ) satisfying
(VD)joc, then pis (h,h) compatible.

(iv) Lemmas 4.11 and 4.16 show that the assumption (d) is not restrictive for
obtaining Gaussian estimates.
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(v) The condition (4.10) is an analog of the uniform ellipticity condition (1.4).
We record some important consequences of Condition (d) in Definition 4.8.

LEMMA 4.10. Let (M,d,p) be a metric measure space and let P be Markov
operator that is (h, h')-compatible with (M,d, ). Then the corresponding kernel py
satisfies
(412) pk-‘rl(xv y) > Qapy (Z‘, y)

for all x,y € M and for all k > 2 where o is same as in (4.11). Moreover the
operator (P — (a/2)1)? is positivity preserving, that is if f : M — R satisfies f > 0,
then (P — (a/2)1)2f > 0.

PROOF. Since P* is a Markov operator, by (4.11) and Lemma 4.2(c) we have

Prt2(,y) — aprga (@, y) = PF [pa(a, ) — api(z, )] (y) > 0

for all k € N* and for all z,y € M. This proves (4.12).
By (4.11) and f > 0, we have

(P — (/21 f(x) = (P> — aP)f(z) + (a/2)*f(x)
> (P2~ aP)f(z) = /M ) wa(z,y) — aps (2, 9)) dy > 0
for all z € M. O

The following lemma shows that a large enough convolution power of a weakly
compatible kernel is compatible under some mild conditions.

LEMMA 4.11. Let (M,d, ) be a quasi-b-geodesic space satisfying (V D)ioe and
let p1 be a Markov kernel weakly (h, h')-compatible with (M,d, ) for some h > b.
Then there exists k € N* for which p; is (h,lh')-compatible with (M,d, u) for all
l € N* such thatl > k.

PROOF. Properties (a) and (b) of Definition 4.8 follows directly from the weak
compatibility of p;. It only remains to check properties (¢) and (d). Assume that
p1 satisfies (4.10). Let x,y € M with d(z,y) < h'/. By Lemma 2.6, there exists even
number k£ € N* such that for all [ > k > 2, there exists a b-chain xg, z1, ..., 2; with
g =, x; = y. Define hy = (h — b)/2. By Chapman-Kolmogorov equation

n(z,y)
Z/ / p(z,y1)p(yi, y2) - p(i—1,y) dyrdyz . . . dyi—1
B(xl_l,hl) B(wl,hl)

-1
il

> dyrdys ... dy;—
/B(a:ll,hl) /B(zl,hl) V(e W)V(y,h) ... V(y—1,h) 7 !
1—1 ~2—1
&1 Choan
> : dyrdys ... dy;—
x/B(évll,hl) /B(ml,hl) V(l‘,h)v(l‘l,h) ...V(.Tl_]_,h) ' g '
(4.13) > 7&1_10’%*_22

Vx,h)

The third line above follows weakly (h,h’)-compatible condition (4.10) and the
fourth line follows from Lemma 2.10. Combining with the fact that p is weakly
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(h, h')-compatible along with Lemma 2.10 gives the following lower bound: For all
I >k and | € N*, there exists c¢;,; > 0 such that

. C1,1
(4.14) min(p;(z,y), pi1(z,y)) > mlB(Lh')(y)
for all z,y € M. Hence by (4.14) and (4.10) we get pj+1 > «a;py for some oy > 0.
Since P is positivity preserving, we have

pa(r,y) = (sz1pl+1($’ -)) (y) > oy (Plilpl(xv -)) (y) = ampi(z,y)
which is condition (d) of Definition 4.8. Note that (4.14) implies that p; satisfies
the lower bound in condition (c¢) of Definition 4.8.

Now we turn to the corresponding upper bound for p;. Since P is a contraction
on L, there exists C; > 0 such that p,,(z,y) < C1/V(z,h) for all z,y € M and
all m € N*. By triangle inequality p,,(z,y) = 0 if d(x,y) > mh’ for all m € N* and
for all x,y € M. Hence by Lemma 2.10 we have the desired conclusion. O

REMARK 4.12. We now justify the condition h > b in the above lemma. It is to
avoid pathological examples of the following kind: Consider a ball walk of Example
4.4 with h < 1/2 on Broken line space (BL,d, 1) from Example 3.22. It is easy to
check that such a random walk never leaves a connected component. Similarly, the
ball walk of Example 4.4 with h < 1 on a graph always stays at one point.

4.2. Gaussian estimates

The main property of a Markov kernel that we are interested in are Gaussian
estimates for its iterated kernel p,.

DEFINITION 4.13. A p-symmetric Markov kernel p on (M, d, p) is said to satisfy
Gaussian upper bound (GUE) if there exists Cq,Cs > 0 such that

palay) < V(flmexp (~d(z,y)?/Con)

for all x,y € M and for all n € N* satisfying n > 2.

Similarly, a p-symmetric Markov kernel p on a metric measure space (M, d, )
is said to satisfy Gaussian lower bound (GLE) if there exists ¢1,cz2,c3 > 0 such
that

(GUE)

(GLE) pn(z,y) = V(Tl\fn) exp (—d(z,y)?/can)

for all z,y € M satisfying d(z,y) < cgn and for all n € N* satisfying n > 2.
A p-symmetric Markov kernel p on a metric measure space (M, d, ) is said to
satisfy two sided Gaussian bound (GE) if it satisfies (GUE) and (GLE).

The condition d(z,y) < cgn in (GLE) is needed because p,(x,y) vanishes for
compatible kernels if d(x,y) > cn for some constant ¢ > 0. In many situations, the
above Gaussian estimates are equivalent to the following (a priori weaker) estimates
which are easier to prove. We require the estimates in Definition 4.13 to hold only
for large enough n in the definition below.

DEFINITION 4.14. A p-symmetric Markov kernel p on (M, d, 1) is said to satisfy
Gaussian upper bound (GUE), if there exists C1,Cy,ng > 0 such that

(GUE) exp (—d(ac7 y)2/02n)

Cq
pn(xay) < W
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for all x,y € M and for all n € N* such that n > nyg.
The conditions (GLE)s and (GE) are defined analogously.

Under mild conditions, we show that (GE). implies (GE).

LEMMA 4.15. Let (M,d, ) be a quasi-b-geodesic space satisfying (V D)ioe and
let p1 be a Markov kernel weakly (h,h')-compatible with (M,d, p) for some h > b.
The following hold:

(a) If p1 satisfies (GUE), then py satisfies (GUE).
(b) If p1 satisfies (GLE)o , then py satisfies (GLE).
(¢) If p1 satisfies (GE) , then p1 satisfies (GE) .

PrOOF. Note that p; satisfies (4.10).

(a) The Gaussian upper estimate for p, where n > ng follows from (GUE) .
If n < ng, we simply use that P is a contraction in L°® along with (4.10)
to obtain

CllB(w,noh’) (y)
Vi, )

<y ew (-d<g;g>2)

for all z,y € M and for all n < ng. The first line above follows from
triangle inequality, ||P||;«_,;~ = 1 and (4.10). The second line follows
from Lemma 2.10.

(b) The Gaussian lower bounds for p,, where n > ng follows from (GLE).
Let hy = min(h/2, h —b). Using ideas similar to the proof of Lemma 4.11
(see (4.13)), there exists ¢, c3,cq4 > 0 such that

pn(z,y) <

pn(,y)
Z/ / p(z,y1)p(yi, y2) - P(Yn—1,Y) dyrdya . . . dyn 1
B(m,hl) B(w,hl)

c2c5 1Bz 0) (Y) € _d(l“,y)2
Ve.h) = Vo) p( )

C4Mn
for all n < ng and for all z,y € M such that d(z,y) < (b/ng)n.
(c) It is a direct consequence of (a) and (b).

O

LEMMA 4.16. Let (M,d, ) be a quasi-b-geodesic space satisfying (V D)ioe and
let p be a Markov kernel weakly (h,h')-compatible with (M,d, u) for some h > b.
For some k € N*, if py, satisfies (GE)s then p satisfies (GE).

PrROOF. By Lemma 4.15 it suffices to show that p satisfies (GUFE)s and
(GLE) .
Suppose p = p; satisfies (4.10). For n > k, there exists A = kh’ > 0 such that
(4.15) pu(z,y) < sup  prpnsk) (T, 2)
2€B(y,A)
for all z,y € M and for all n € N* with n > k. This follows from Chapman-
Kolmogorov equation along with the fact that the support of p;(-,y) is contained
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in B(y,kh') for all | < k. Since py, satisfies (GUE), there exists C1,Cy > 0 and
ng > 0 such that

Cl d(ﬂj‘,y)z
(4.16) Pmk(2,y) < WGXP < Com )

for all z,y € M and for all m € N* satisfying m > ng. By (4.15),(4.16) and (2.4),
there exists C3,C4 > 0 and ny > 0 such that

Cs ( d(m,z)Q)
4.17 n(2,Y) < —= su exp | —
@in Pa(@:9) V@, /i) senipay © Cyn

for all z,y € M and for all n € N* satisfying n > n;. For every z € B(y, A), we
have
(4.18) d(z,y)? < (d(z,2) + A)* < 2(d(z,y)* + A?).

By (4.17) and (4.18), we have that p satisfies (GUE) .
It remains to show that p satisfies (GLE)o. The proof is similar to above. As
in (4.15), we have the complementary inequality,

4.19 y) > inf . ,
(4.19) Pn( y)_zeg(lyympm k) (T, 2)

for all z,y € M and for all n € N* with n > k. Since py satisfies (GLE), there
exists ¢y, ¢, c3,n9 > 0 such that

O (M)
(4.20) Pmk(T,y) 2 V(z,/m) p( com )

for all z,y € M and for all m € N* satisfying m > ny and d(z,y) < csm. By (4.19),
(4.20), there exists c4,c5 > 0 and ng > 0 such that

C1 : d(xay)Q
4.21 W(zy) > — L inf _85Y)
(421) Pal@,y) 2 V(z,y/n) zeJIBr(ly,A) P ( cqn
for all z,y € M and for all n € N* satisfying n > ny and d(z,y) < csn. By
interchanging y and z in (4.18) along with (4.21) yields (GLE)s for the kernel

P. O

We describe two examples that does not fall under the framework given by
Definition 4.8 but nevertheless the methods developed in this work still applies.

EXAMPLE 4.17 (Random walk with jumps supported in an annulus). We con-
sider a measured, complete, length space (M,d, u) satisfying diam(M) = 400 and
(VD)ioe . Let P be a u-symmetric Markov operator whose kernel p(z,y) satisfies
the following estimate: there exists C; > 0 and h > 0, hy > 0, hy > 0 such that

lB(xth)\B(I,hl) (y)
V(z,h)

B(z,20)\B(x,h) ()

V(z,h)
for all x € M and for u-almost every y € M.

In this case, it is easy to verify that the density po is weakly (h/5,2hs)-
compatible with (M,d, ). Note that for all x € M, there exists z € M such
that d(z, z) = 3h/2. Note that by Lemma 2.10 and (4.22), there exists Cy > 0 such
that for all z,y € M with d(z,y) < h/5

1
(4.22) ot

<plx,y) <4

C_l
T,y) > T, w Jw) pldw) > —2——
ez [ e ) 2 e
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and for all z,y € M with d(x,y) < 2hs we have
_ G
V(‘Tv 2h2) ’

Therefore py is weakly (h/5,2hs2) compatible with (M, d, u).

For example, it is clear that the application to Liouville property will not be
affected if we replace the operator P by P2. If the underlying space satisfies volume
doubling and Poincaré inequality we can use our main results to obtain Gaussian
estimates (G E) provided (M, d, u) satisfies (V D)o, and (P);,. To prove the above
statement, we simply note by Theorem 1.4, Lemma 4.11 and Lemma 4.16 that ps
satisfies (GF) and by a similar argument p3 satifies (GE).

pa(a,y) < / p1 (@, w)ps (y, w) pldw) <
B(z,2h3)

ExAMPLE 4.18. We describe another example similar to Example 4.17. Con-
sider R™ equipped with Euclidean distance d and Lebesgue measure p. Let e denote
an arbitrary unit vector in R"™. Consider the p-symmetric random walk with the
kernel
1B(212e,1)UB(e—2¢,1) (Y)

2V (x,1)
Although p is not compatible with (R™, d, i), similar to Example 4.17 one can check
that (R™,d, u) satisfies that py and ps are (1/3,9)-compatible with (R™,d, u) and
that the kernel p;, satisfies (GE) .

p(x,y) =

4.3. Comparison of Dirichlet forms

Let (M, d, 1) be a metric measure space with a y-symmetric Markov operator
P and corresponding kernel p. Recall that we defined the Dirichlet form £(f, g) =
(f, Ag) for f,g € L?>(M). We define another Dirichlet form &, which is the Dirichlet
form corresponding to the Markov operator P2, that is

Ef,9) = (f. (I = P)g) = | fl5 — IPf]l5-
for all f,g € L?(M).

REMARK 4.19. Functional inequalities involving the Dirichlet form (for instance
Nash, Sobolev, log Sobolev, Poincaré inequalities) can be transferred to an inequal-
ity concerning the Markov semigroup, which in turn sheds light on asymptotic
behavior of Markov chains. For a continuous time Markov semigroup (P;)i>0 a

2
crucial identity to carry out this is % = —2E(P,f, P,f) (for instance [5, Theo-
rems 4.2.5 and 6.3.1]) By the above definition, we have a similar identity for discrete
time Markov semigroup:

N2 2 2
O [[PR 1|, = (1P, = [PRFIl, = €. (PR F, PR ).
for all f € L?(M). This is the main reason why we sometimes prefer &, instead of
E.
The above remark motivates us to compare the Dirichlet forms £ and &,.

LEMMA 4.20. Consider a p-symmetric Markov chain on (M, d, u) with Markov
operator P and Dirichlet forms £ and &, defined as above. We have the following:
(a) E.(f, f) < 26(f, f) for all f € L2(M).
(b) Assume further that P has a strongly (h, h')-compatible kernel p with re-
spect to (M, d, p). Then there exists a constant C' > 0 such that E(f, f) <
CE.(f, f) for all f € L3(M).
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PROOF. (a) Note that

(PF.1) < 3 (PF.PI + (1, 5) =

Hence

EU ) = Fowe = (PE Pt 2 (o f) = 5 (P2F.1) + () = 56.07.6)

(b) The conclusion follows from Property (d) of Definition 4.8 by observing
that

(1.23) 2.0 =5 [ | @)= 1) oty dady
(1.21) e N =5 [ [ 0@ 1) ) dzdy

((P2f, )+ (£, )

N | =

O

REMARK 4.21. The inequality E(f, f) < CE.(f, f) is not true in general. Con-
sider nearest neighbor (simple) random walk on a finite bipartite graph. Let f be
a function on the graph that assigns 4+1 to one partition and -1 to other. It is easy
to check that Pf = —f and therefore 2 ||f|\§ =E(f, f) < CE(f, ) =0 fails.

4.4. Markov chains killed on exiting a ball

To obtain lower bounds on the heat kernel, we consider the corresponding
Markov process killed on exiting a ball B (See Chapter 8). Moreover functional
inequalities like Nash and Sobolev inequalities that we will encounter are local to
balls. Motivated by these considerations, we introduce Markov chains killed on
exiting a ball and their corresponding Markov operator and kernel. Let (X, )nen
be a Markov chain on (M, d, ) driven by a p-symmetric Markov operator P with
kernel p; with respect to p. The corresponding Markov chain (X.2),,cx that is killed
on exiting a ball B has state space B U {0p} where Op is the absorbing cemetery
state. The Markov chain (X2), ey killed on exiting B is defined as

xB _ X, ifn<(
no BB 1fn2(

where ( is the lifetime of the process defined by
¢ =min{k : Xy ¢ B}.

For the killed Markov chain, we consider functions f : B U dg — R with the
‘Dirichlet’ boundary condition f(9z) = 0. Therefore, we can define corresponding
quantities like Markov kernel and Markov operator just by restriction to B. Define
the restricted kernel pg : B x B — R, as a restriction of p; on B x B. We endow
B with the measure pup which is the restriction of p to all Borel subsets of B. We
denote by L?*(B) = L?(B, ug). We define the Markov operator Pp with kernel pp
with respect to up as

@) Paf@) = [ T ndn) = [ poten) @),
Define the corresponding Dirichlet forms

(4.26) 5B(f,f) =(f,(I - PB)f>L2(B)v 5f(f, f={U- Pé)fﬁ?(B)
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for all f € L?(B). Similar to (4.4), we define the kernel pZ(z,y) iteratively as

(4.27) ﬁL@w%:V@f@ﬁﬂwzﬁfﬂ%@ﬁwwmwd

for all £ € N* and for all z,y € B. It is easy to check that the proof of Lemma
4.2 (b),(c) applies to the kernel pg. As before, the function (z,y) — pZ(z,y) is
well-defined for all k > 2. Further pg(z,-) € L'(B) for all z € M. It is easy to see
that

for all x,y € M and for all k > 2.

The operator Pp is positivity preserving, that is f > 0 implies Pgf > 0.
However unlike P, the operator Pp is not necessarily conservative, that is Pl # 1
in general. Analogous to (4.5), we have that Pp is a contraction on all L?(B) for all
1 < p < +00. We also define the corresponding ‘Dirichlet Laplacian’ Ap, := I—Pp.

We will compare Dirichlet forms on balls with Dirichlet forms on M below.

LEMMA 4.22. Let f € L*(B) and let f € L*(M) denote an extension of f
defined by

~ in B
= {0k
Then
(a) EP(f, 1) =E(f. 1)
(b) EE(f, ) = E(F, 1)
Proor. For (a), observe that
EP(f. ) =, 2y — (PBS, F)r2(m)
=(f. Frzony — (PF, Frzany = E(F, £)
For (b), we have
EB(f. f)={f, P r2s) — (Psf. Ppf)12(B)
=(f, JE>L2(M) — (15 Pf, 1BPf>L2(M)
> (f, Flreany — (P, PPz = E(F, ).
([l

We warn the reader of the following abuse of notation. We may consider a
function f € L?(B) as a function in L?(M) using the extension given by (4.29).
Alternatively we may consider a function f € L?(M) as a function in L?(B) by the
restriction f|g.



CHAPTER 5

Sobolev-type inequalities

J. Moser proved parabolic Harnack inequalities for second-order uniformly ellip-
tic divergence form operators in R? [62]. This approach was successfully adapted by
numerous authors. The previous versions of Theorem 1.4 as given in [69, 27, 76|
used Moser’s iterative method as a crucial ingredient. Along with Poincaré in-
equality and volume doubling, Moser’s iteration relies on repeated applications of
a Sobolev inequality.

We recall the difficulty arising due to Sobolev inequalities mentioned in the
introduction. The Sobolev inequalities in the previous works [69, 25, 27, 76] are
of the form

Cr? _
(5.1) 1125 52 < W (e ) +r21712)

for all ‘nice’ functions f supported in B(x,r). However (5.1) along with (4.6) implies
that L2(B(x,r)) C L?*/0®=2)(B(x,r)) for all balls B(z,r) which can happen only if
the space is discrete. Hence for discrete time Markov chains on continuous spaces
the Sobolev inequality (5.1) fails to hold. In this chapter, we prove a weaker form
of the above Sobolev inequality (see (5.2)) and study its properties. In the next
two sections, we will use the Sobolev inequality (5.2) to run the Moser’s iterative
method and obtain elliptic Harnack inequality and Gaussian upper bounds.

We adapt the approach of [69] to obtain a Sobolev inequality using (VD)
and (P)s. The main result of this chapter is the following Sobolev inequality.

THEOREM b5.1. Let (M,d, ) be a quasi-b-geodesic metric measure space sat-
isfying (VD)ioc, (VD)o and Poincaré inequality at scale h (P)y. Suppose that a
Markov operator P has a kernel p that is (h, h')-compatible with respect to . Let
Pg and EP denote the corresponding Markov operator and Dirichlet form restricted
to a ball B C M. Then there exists § > 2 and Cs > 0 such that for all v > 0, for
all z € M, and for all f € L*(B), we have

057“2

(5.2) HPBng&/(éfQ) < Vi, (5B(f7 f+r? ||f||§)
where B = B(z,r).

REMARK 5.2. Since Pg is a contraction, note that (5.1) implies (5.2). Since we
rely on the weaker Sobolev inequality (5.2), our methods give an unified approach
to Gaussian bounds for graphs and continuous spaces. However we will encounter
new difficulties due to (5.2).

Let s >0 and f € L] (M, ). We define fs as
1

(53 @) = foten = gy . St
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5.1. Pseudo-Poincaré and Nash inequalities
As in [69, Lemma 2.4], we need a pseudo-Poincaré inequality.

LEMMA 5.3 (Pseudo-Poincaré inequality). Under the hypotheses of Theorem
5.1, there exists Cy > 0 and sg > 0 such that

(5.4) If = £sl13 < Cos®E(f, £)
for all f € L?>(M) and for all s > sq.

PRrOOF. Let (X,d,m) be a 2s-net of (M,d, ) as given in Definition 2.21. By
Proposition 2.22(a), the collection of balls J = {B(z,2s) | © € X } cover M. There-

fore
If = fslla < ()] u(da)
’ 2;J/ 8
(5.5) <2 <2§€:J /QB f(x) — fap|*pu(da) + /23 fs(x) — fsB|2M(d$)> -

For the first term, we use (P),, to obtain Cq,Ca, s1 > 0 such that
(5.6)

() = fap*u(de) < / f(z) = fsp)*pu(dz) < C182 / IV 117 () p(de)

2B 3B 3C2B

for all s > s¢ and for all f € L2(M). For the second term in (5.5), we use Jensen’s
inequality to obtain

2 ]- 2
/2 (o) = funl () < / o /B )~ fos(y) i

(5.7) < ([ veestutan) - ([ 1160 - fanlutan)

for all f € L2(M) and for all 2B € J. By (2.4), there exists C3 > 0 such that
po [ MDA i 1 Vb g,
op V(z,s)  w(2B) Jop  Vi(z,s) 1(2B) Jaop V(z,s)

for all s > s¢ and for all 2B € J. By (5.5),(5.6),(5.7) and (5.8), there exists Cy > 0
such that

(59 I - LB <G+ o5t Y / VI (@)ulde) < Cos2E(f. )
2BeJ

for all f € L?(M). The last inequality in (5.9) follows from Proposition 2.22(h),
(4.23) along with (4.10). O

The following lemma is a consequence of doubling hypothesis.

LEMMA 5.4. Let (M,d, 1) be a measure space satisfying (VD)o and (VD)oo
Then for all b > 0, there exists Cy, > 0, 6 > 2 such that

2 Co [\ o2
(5.10) 1505 < oy (5) W1

for all f € LY(M) is supported in B = B(z,r) and for allb< s <r
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PrOOF. By Hdélder inequality, we have

(5.11) 1fsll3 < N fello £l -

Since f is supported in B(x,r) and s < r we have

1 114 V(y,3r)
1 £slloo < LI sup < su — .
! yEB(z,r+s) V(ya ) V(ZL', T’) yEB(z,r+s) V(ya S)
By (2.4), there exists C1 > 0 and § > 2 such that
Cl T d
5.12 < (,)
(512) Ifuloe < 57275 (5) 141,
for all b < s < r and for all f € L! supported in B(z,).
Further there exists C' > 0 such that

1
igh= ek [ e [ G

1
z —— u(d dz
sLWHJﬂ>L@QW%QMym<>
619 zaf e[ g e =G,

for all b < s < r and for all f € L! supported in B(x,7). The second line follows
from Fubini’s theorem and (5.13) above follows from (2.5). The desired conclusion
(5.10) follows from (5.11),(5.12) and (5.13). O

Next, we show a Nash inequality using the pseudo-Poincaré inequality and
doubling hypotheses by adapting the approach of [69, Theorem 2.1].

PROPOSITION 5.5. Let (M,d, ) be a quasi-b-geodesic metric measure space
satisfying (VD)ioc, (VD)oo and Poincaré inequality at scale h (P),. Suppose that
a Markov operator P has a kernel p that is (h, h')-compatible with respect to p. Let
& denote the Dirichlet form corresponding to P. Then there exists § > 2, Cy > 0
such that

Cnr? _ 2 4/6
Vo (EG D +r 217 1E) 171

for all v >0, for all x € M, and for all f € L*(M) with f supported in B(x,r).

(5.14) IPFIT ) <

PrOOF. We start with an observation that (5.14) follows directly for small
values of r. Let rg > 0 be an arbitrary constant. If r < rq, by (4.10) and (2.2),
there exists Cp, Cy > 0 such that for all functions f € L'(M) supported in B(x,r),
we have

Pflo <IIf sup
1Pl [ H1 o V) S

.
! yEB(x,ro+h’) V(yv h/)

V(yv 27'0 + h/)

(5.15) < [fll,  sup < I1£1]
V(.’L‘ TO) ! yEB(z,ro+h’) V(ya h/) V( ) b
By Hélder inequality along with (5.15) and (4.5), we have C3 > 0 such that
1/2 2 o Cs
(5.16) 1P flly < IPFIST P fI S V2 /112



54 5. SOBOLEV-TYPE INEQUALITIES

for all function f € L?(M) supported in B(z,r) with r < ro. By (5.16) and (4.5)
and by the choice Cy > C’;l/é, it suffices to show (5.14) for the case r > rq.

Note that
(5.17) 1P flly < [1Pf = (PFslly + 1P sl -

We use pseudo-Poincaré inequality (Lemma 5.3) to bound the first term and use
the (h, h')-compatibility of P along with doubling hypotheses to bound the second
term. To obtain (5.14), we minimize the bound on right hand side of (5.17) by
varying s.

By Lemma 5.4, there exists Cy > 1 and 79 > 0 such that
(5.18) I1Pf = (Pfslly < Cosv/EPS, Pf)

for all f € L?(M) and for all s > rg.
By (5.10) and (4.5), there exists Cy > 0 and 6 > 2 such that

(5.19) 1Pl < gt (5) 1,

(z,7)1/2 \s

for all f € L?(M) supported in B(z,r) and for all 1y < s < r. Combining
(5.17),(5.18), (5.19), we obtain

C 5/2
(6200 IPflly < Cos (VEPLPD + 17 1Pfl) + b (5) 14

for all f € L*(M) supported in B(z,r) and for all s > rg and for all r > rg. In
order to minimize the right side of (5.20), the choice of s (up to a constant factor)
is

IFI3 7 o
5.21 s = o .
(5.21) 1) ((g(Pf,Pf)+r‘2 ||Pf||§>v<w>>

However, we want to choose s > ro in (5.20). We will do that by showing that
s1(f) is bounded below. For all » > rg, by (4.6) we have

(5.22)  E(PF, P +r2|Pfl5 < @+ PS5 < @+ ) [IPFllo 11
for all f € L2(M). Since f is supported in B(z,r), there exists C5, Cg > 0

1 Cs V(y,2r+h')
Pflo < Cs|lf sup < f sup
IPfllo < Cs £l e V) = Vi) I HlyEB(LHh,) Vi )

Cs 5
(523) < V(x,r)r ||f||1

for all f € L? supported in B(z,r) with » > ry. The first line above follows from
(4.10) and the second line follows from (2.4) and r > ro. By (5.22) and (5.23),
there exists ¢; > 0 such that

IF115r° o
(5.24) s1(f) = ((E(Pf,Pf) T+l PfQ)V(x,r)> >

for all z € M, for all r > ry and for all f € L?(M) supported in B(z,r). By
plugging in s = (rg/c1)s1(f) in (5.20), there exists Cy > Cg/é such that
CN7”2

Vo gy (EPFPH T2 IPSIE) LA

(5.25) IPfT <
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for all z € M, for all > rq and for all f € L?(M) supported in B(x,r). By (4.5),
we have

(5:26)  VEPLPDH = |- 2| < |- Py, = VEFT)
for all f € L?(M). By (5.24),(5.25) and (4.5), we obtain the desired Nash inequality
(5.14). O

Before we proceed, we restate the above Nash inequality for functions defined
on balls.

COROLLARY 5.6. Let (M, d, ) be a quasi-b-geodesic metric measure space sat-
isfying (VD)ioc, (VD)oo and Poincaré inequality at scale h (P)y,. Suppose that a
Markov operator P has a kernel p that is (h,h')-compatible with respect to . Let
Pg and EB denote the corresponding Markov operator and Dirichlet form restricted
to a ball B C M. Then there exists § > 2, Cn > 0 such that

5 o7 P f2H@/8) < Cnr? £B 22 4/5
G21) Pl < e (PG +r R ) IR

for all v >0, for all x € M, and for all f € L*(M) with f supported in B(x,r).
PROOF. We define f € L2(M) as in (4.29). Since Pf = Ppf on B, we have
1Paflly < HPfH . Combining this observation along with || f[|, = Hf‘ , Lemma
2 P
4.22(a) and Proposition (5.5) yields (5.14). O

REMARK 5.7. It is easy to prove Nash inequality (5.27) using Sobolev inequality
(5.2) just by an application of Holder inequality

6/(6+2 2/(6+2 5/(6+2 2/(5+2
1P flly < 1P Flopiasy 1P FIT O < (1P fllgsalh, LI/

along with the fact that Pg is a contraction on L!(B). However proving (5.2) using
(5.27) is harder. There is a direct and elementary approach using slicing of functions
developed in [4]. Their approach was used by Delmotte in the setting of graphs
[25, Theorem 4.4] to prove a Sobolev inequality. However those slicing techniques
not so seem to apply directly for proving (5.2), since the (sub-Markov) operator
Pp does not commute with the slicing maps f — (f — s)+ At. It is an interesting
open problem to make this approach work for our Sobolev-type inequalities.

5.2. Ultracontractivity estimate on balls

In light of the above remark, we adapt a different approach based on Hardy-
Littlewood-Sobolev theory for discrete time Markov semigroups as developed in
[21, Theorems 5 and 6]. Our approach is to obtain an upper bound for ||P§
using (5.27) which in turn is used to prove the Sobolev inequality (5.2).

Hl%oo

LEMMA 5.8. Let (M, d, p) be a quasi-b-geodesic metric measure space satisfying
(VD)ioe, (VD)oo. Suppose that a Markov operator P has a kernel p that is (h,h')-
compatible with respect to u. Let Pg and EB denote the corresponding Markov
operator and Dirichlet form restricted to a ball B C M. Further assume that the
operators Pp satisfy the Nash inequality (5.27) with constant § > 2. There exists
Cy > 0 such that

Cu(l +T2)5/2 (1 _,_T—Q)k—l
V(x,r) ko/2

(5.28) 12510 <
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for allx € M, for all r > 0 and for all k € N* where B = B(x,r).

REMARK 5.9. If two side Gaussian estimate (GE) holds for py, and if we choose
r =< Vk, then the upper bound (5.28) is sharp up to a constant factor.

PROOF OF LEMMA 5.8. Let x € M, r > 0 and B = B(x,r). Our first step
is an upper bound for ||P§H1_>2. Let f € L'(B) be an arbitrary function with
Ifll; = 1. The constants in this proof do not depend on the choice of z € M,
keN*, r>0or f € L'(B).

Then by Hoélder inequality,

2
1Pefllz < IPeflL I1PBflla < Il 1PBflloe = 1P fll -
By (5.15) and (5.23), there exists C; > 0 such that

&) (1 + T‘2)6/2

2
(5.29) 15 fll2 < 1Peflloe < =55

By (5.27), along with Lemma 4.22 and Lemma 4.20(b), there exists Cy > 0 such
that

CN7"2

2+(4/9) B -2 2 4/8
530 IPagls ) < e (80,00 +7 lol2) ol

for all r > 0, for all z € M, and for all g € L?(B) where B = B(x,r). Define
v = (14772 6D || Pk |2

for all k € N*. Substituting g = P& f in (5.30) and using the fact that HngHl <

£, = 1 and EB(PLF, PEf) = HngHz — HP]ngHz, we obtain the following
difference inequality for vy:

14(2/6) Cn(1+41r?)

(531) Uk+1 ~ W(Uk — Uk+1)

for all k € N*. Next, we ‘solve’ the difference inequality given by (5.31). Define
(5.32) Cy = max (01, (6C) /2)6/22<1+<6/2>><6/2>) .

We claim that
(5.33) v < Co

for all kK € N*. We prove (5.33) by induction. The base case k = 1 follows from
(5.29) and (5.32). For the inductive step, assume that (5.33) holds for all k =
1,2,...,n for some n € N*. We will show that (5.33) holds for k = n + 1. Assume
to the contrary that

(1 + 7"2)6/2

(534) Un41 > Cy V(l‘,’l")

(n + 1)—5/2
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By (5.31), (5.34) and the induction hypothesis, we obtain
1+(2/8) _ CnCo(1 + r?2)t+/2) (n_a/z —(n+ 1)—5/2)
n+1 V(.’)L‘77°)1+(2/6)

CNCo(L+ )26 152

V(x,r)1+2/9) 2"
02(1 +T2)1+(5/2)
V(x,r)1+(2/9)
1+(2/6)
(147%)°/2 —5/2

5.35 < (Cyr—-—_t— 1)~%/ .
539 < (e
The second line above follows from intermediate value theorem, the third line follows

from n > 1 and the last line follows from (5.32). The desired contradiction follows
from (5.34) and (5.35). Using (5.31), we obtain the estimate

02(1 + 7,2)6/2 (1 T T—Q)k—l
V(x,r) ko/2

for all z € M and all r > 0 where B = B(x,r). Since Pg is self-adjoint operator in
L?(B), by duality we have the bound

HPL(k/Q)JH ‘ )
oo 12 12

Using the above bound along with (5.36) yields (5.28) for k& > 2. The case k = 1
follows from (5.29). O

(6CN)/2)2"+0/2) (4 1)~ (1+(/2))

(5'36) HPEH?HZ S

HPB ‘P[(k/QﬂH

Hl%

We are ready to prove the Sobolev inequality (5.2) using the ultracontractivity
estimate (5.28) above.
For an operator T', we define the operator (I —T)

(I-T)"%= Zaka

1/2 as

where ay, is defined by the Taylor series (1 — x) = 1 apx” for x € (=1,1). By
a classical estimate on coefficient of Taylor series, there exists C, > 0 such that
ct Cy

<ap < —28
A >~ (k’—i—l)l/Q

(5.37) SE

for all & € N>o.

5.3. Local Sobolev inequality

We use the ultracontractivity estimate (5.28) to obtain Sobolev inequality (5.2).
The proof uses Riesz-Thorin and Marcinkiewicz interpolation theorems which we
briefly review in Appendix A.

PROPOSITION 5.10. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (VD )ioc, (VD)oo. Suppose that a Markov operator P has a kernel p that
is (h, h')-compatible with respect to u. Let Pg and EP denote the corresponding
Markov operator and Dirichlet form restricted to a ball B C M. Assume that there
exists C,, > 0 such that

Cu(l +T2)5/2 (1 +T_2)k_1
V(x,r) ko/2

(5.38) 125 ] 1o <



58 5. SOBOLEV-TYPE INEQUALITIES

for all x € M, for all v > 0 and for all k € N* where B = B(x,r). Then we have
the Sobolev inequality (5.2).

PROOF. As in the proof of Nash inequality (5.14), we start by considering the
case r < 1. By (5.15), there exists Cy > 0 such that

Ch
V(z,7)

(5.39) 1Pl o <

for all balls B = B(x,r) with r < 1. Since Pp is a contraction on all LP(B), we
have

(5.40) 1P llas-1)/(6-2)>26-1)/(6-2) < 1-
Applying Riesz-Thorin interpolation between (5.39) and (5.40) yields

c N\
1PBllys26/(5-2) < (V(I,T))

for all balls B = B(x,r) with » < 1. By choosing Cg > 012/6, we have (5.2) for all
balls B(x,r) with r < 1.
Next we consider the case r > 1. Since

1/2 |2
)

E8(f. N+ 115 = [[(@+ 21 - o) 4]
it suffices to show that there exists Cy > 0 such that
o ~1/2 (14 r2)1/2
5.41 HP [—(1+r2)1py)~" H <oyt
( ) B ( (1+775) B) 2525/(5—2) — 2 V(x,r)l/o

for all balls B = B(z,r) with r > 1. To see this, note that Cs = maX(Cf/é7 203)
satisfies (5.2). Define

(1+r%)
u(B) '
Let p e [1,6) and g € [6/(d — 1), 00) satisfy

(5.42) E(B) = e

Tp:=Pp(I—(14+r2)""Pg)

(5.43) pl=q¢gt+sh

For all p € [1,6) and g € [§/(d — 1), 00) satisfying (5.43), we show that the operator
T is of weak-type (p, ¢). An application of Marcinkiewicz interpolation then yields
(5.2). Recall that T = > 50 ap_1(1 +772)"¢=DPE For N € N*, we define
operators

N
RB,N = Zak,1(1 + T_Q)_(k_l)Pg, SB,N = TB — RB,N—
k=1

By (5.38) and Riesz-Thorin interpolation, we obtain

—2\(k—1
<05/pE(B)6/<2p>(1+7“ )ED/

(5.44) P50 < 157p)
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for all balls B, for all k € N* and for all 1 < p < oo. For each p € [1,4), there exists
C3 > 0 such that

oo

1558y < D ar—a(L+r 3 E PR
k=N-+1
< C’i/pE(B)‘S/@p)C’a Z L—1/2,—4/(2p)
k=N+1
(5.45) < OgE(B)é/(2p)N7§/(2(I)

for all balls B, where ¢ is given by (5.43). In (5.45) C3 depends only on p, g, but
not on B = B(z,r). In the second line above we use (5.44) and (5.37) and we used
(5.43) and p € [1,6) in the last line. By the same argument as above and increasing
C3 = C3(p) if necessary, we may assume that

(5.46) 15,0 < CsE(B)Y/P)

for all balls B.
Let g € LP(B) satisfy [[g[|, = 1. For A > 0, let Ng = No(\, B) denote the

smallest positive integer such that CgE(B)é/(Qp)Ngd/(zq) < A\/2. By union bound,
for each p € [1,0) and ¢ given by (5.43), there exists Cy, C5 > 0 such that

pup{r € B : [Igg(z) > A} <up{z € B : |Rgn,g9(z) > A2}

+up{r e B : |Sgn,9(x) > \/2}
pp{z € B : |Rpn.g(x) > A/2}
(/N | R woll”

p—r0o0

<
<

No p
< CU(2/A)” (Z k1/2> < Cy(2C,)PAPNE/?
k=1

(5.47) < C3E(B)1/?\1

for all balls B = B(xz,r). In the second step above we used the definition of Ny. The
third step follows from Chebyshev inequality, the fourth step follows from (5.37)
and ||P§|}1Hp < 1. The last step (5.47) follows from (5.37), (5.43), (5.46) and the
definition of Ny. By Marcinkiewicz interpolation theorem and the estimates given
by (5.47), there exists Cs > 0 such that

ITBll2-25/(5-2) < Co vV E(B)
for all balls B = B(x,r). This is precisely (5.41) which we intended to prove. O

We record two important consequences of Proposition 5.10 first of which is the
proof of Theorem 5.1

PrROOF OF THEOREM 5.1. Theorem 5.1 follows from Corollary 5.6, Lemma 5.8
and Proposition 5.10. (]

The next corollary shows that Sobolev inequality is necessarily true under dou-
bling hypothesis and Gaussian upper bounds (GUE).

COROLLARY 5.11. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (VD )ioc, (VD)oo. Suppose that a Markov operator P has a kernel p that
is (h,h') compatible with respect to p. Further assume that iterated kernel py that
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satisfies (GUE). Let Pg and EP denote the corresponding Markov operator and
Dirichlet form restricted to a ball B C M. Then the Sobolev inequality (5.2) holds.

ProoF. By Proposition 5.10 it suffices to show the ultracontractivity estimate
(5.38) on HPE . By (GUE), there exists C; > 0 such that

Ch
5.48 Pk S osup  pe(y,2) S sup —————
( ) || B||1~>oo yEB,zEB ( ) yEB(z,r) V(Z% \/E)

for all balls B = B(z,r) and for all k£ € N*. By (2.4), there exists § > 2 and C3 > 0
such that

H1—>oo

(5.49)
s
“up 1 - 1 sup V(x,2(r VVE)) - 1 c, 2(r v V)
veB@n) V(z,Vk) ~ V(@) yep@rn  V(y, VE) Vi(z,r) vk
for all balls B(x,r) and for all £ € N*. The desired estimate (5.38) follows from
(5.48) and (5.49). O

5.4. Sobolev inequality implies large scale doubling property

Next, we show that Sobolev inequality implies (V D)., under natural hypothe-
ses. More precisely

PROPOSITION 5.12. Let (M, d, i) be a metric measure space satisfying (V D)oc-
Let P be (h,h') compatible Markov operator in a metric measure space (M,d, 1)
satisfying Sobolev inequality (5.2). Then (M, d, 1) satisfies the large scale doubling
property (VD).

We need the following volume comparison lemma.

LEMMA 5.13. Let (M,d, p) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and let k' > b > 0. Then there exists Cy > 0 such that

(5.50) V(z,r+ 1) < CoV(x,r)
for all x € M and for all r > 3h'.

PROOF. Let Y be a maximal h’-separated subset of B(z,r) where z € M and
r > 3h’. The collection of balls {B(y,h’'/2) : y € Y} are disjoint and hence

(5.51) Viz,r) > > V(y,h')2).

yeYNB(z,r—h')

However since B(x,r) C Uyey B(y, h') and r > 3h/, we have

(552) w 7& B(Z‘, r—= 2h/) - UyEYﬂB(z,rfh’)B(ya h/)a

By quasi-b-geodesicity and b < R/, there exists C1 > 0 such that for all z €
B(z,r + '), there exists a b-chain g, 21, ...,z b-chain from z to z such that
(5.53) x; € B(z,r — 2h') and d(z;,2) < C1 1.

Combining (5.52) and (5.53), we obtain
(554) B(l'v T+ h/) g UyEYﬁB(m,r—h’)B(y, (Cl + 1)h/)
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Combining (5.54),Lemma 2.10 and (5.51), we obtain

V(e,r+h)< Y V(y,(Ci+1)I)
yeYNB(xz,r—h")

< Cwa,ci4+0)0 Z V(y,h'/2) < Chijocognyn Vi, ).
yeEYNB(z,r—h’)

O

PROOF OF PROPOSITION 5.12. . We adapt the argument of [19, Proposition
2.1]. However unlike in [19, Proposition 2.1], we do not consider volumes of arbi-
trarily small balls.

Let z € M and r > 3k’ be arbitrary. For s > 0, define the ‘tent function’

fs(y) = max(s — d(z, ), 0).

By (h,h') compatibility of P, we have Ppg(, ;) fan > B'1p(y pry. Therefore by ap-
plying (5.2), we have

Cgr?
2 (6—2)/s S 2 -2 2
(W)*V (z, k') < 7V(x,r)2/5 ((h’) V(x,4h') +r~*(3h") V(x,?)h'))
for all > 3k’ and for all x € M. Combined with Lemma 2.10, there exists C; > 0
such that

Vx,r)

< O
V(z, W) — G

(5.55)

for all » > 3k’ and for all z € M.

Let 30" < s < 7. Then by (h,h') compatibility of P, we have Pp(; . fs >
(5/6)1B(z,s/2)- Hence by Sobolev inequality (5.2), (4.10) and Lemma 4.22(a), we
obtain

CsT2

(5/6)%V (z,s/2)0=2/% < Ve,

(W)?V (2,54 h) +17%5°V (z,s))

Combined with Lemma 5.13, there exists Cy > 0 such that

OV (x,7) 2/6 5—2)/6

for all x € M and for all 31’ < s < r. We replace s by s/2 in (5.56) and iterate to
obtain
(5.57)

. 6 (2/8) i_o(6-2)7 /&7 o

V(z,s) >4~ Si6d6-2)/80 [ 8 Vix,r) ’ V(x, 8/21')(6—2)1/51
027‘6

for all 3n’ < s/2°~! < s < r. In particular if we choose i = [log,(s/3h')], we have
(3n')/2 < s/2* < 3h'. Hence by (5.57) and (5.55),we have
(5.58)

Ve, s) > 4~ Z520i(0=2)7/8 SV (w,r)\ & 20Dy gy O
= Corf Cyrd
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for all x € M and for all 31" < s < r, where i = [log,(s/3h")]. By (5.58), there
exists C's > 0 such that

(5.59) m < Cs(r/s)0s0-2/8

for all x € M and for all 3n" < s < r, where i = [log,(s/3h')]. Since the map
S > exp (5((5 — 2)/6)Mog2(s/3h)1 1 s) is bounded in [3h/, 0), by (5.59) there exists
C4 > 0 such that

Vz,r) 7\

") < ¢ (7)
V(z,s) ~ s

for all x € M and for all 31" < s < r. The above equation clearly implies (VD).

O



CHAPTER 6

Elliptic Harnack inequality

In this chapter, we prove elliptic Harnack inequality for non-negative harmonic
functions. As before, we consider a metric measure space (M, d, u) and a Markov
operator P that is (h, h’)-compatible with (M, d, u). Recall that the operator A :=
I — P is the Laplacian corresponding to P.

6.1. Harmonic functions

DEFINITION 6.1. Let P be a Markov operator on (M, d, ). A function f: U —
R is P-harmonic in B(x,r) if

Af(y) = fly) = Pfly) =0

for all y € B(z,r).

Similarly, we say f : M — R is P-subharmonic (resp. P-superharmonic) in
B(z,r) if

Af(y) <0 (resp. >0)

for all y € B(x,r).

We say a function f : M — R is P-harmonic (resp. subharmonic, superhar-
monic) if Af =0 (resp. Af <0, Af >0).

REMARK 6.2.

(a) Consider a Markov operator P that is (h,h’)-compatible with (M,d, u). By
(4.10), Pf(y) depends only on f in B(y,h’). Therefore the property that
f : M — R is P-harmonic in B(z,r) depends only on the values of f in
B(xz,r + h'). Hence in this case it suffices to have B(x,r + k') C Domain(f).

(b) We use the term harmonic instead of P-harmonic if the Markov operator P is
clear from the context. Same holds for superharmonic or subharmonic func-
tions.

The main result of the chapter is the following elliptic Harnack inequality.

THEOREM 6.3 (Elliptic Harnack inequality). Let (M,d, u) be a quasi-b-geodesic
metric measure space satisfying (V.D)ioc, (VD)oo and Poincaré inequality at scale
h (P)y. Suppose that a Markov operator P has a kernel p that is (h, h')-compatible
with respect to u for some h > b. Then there exists ¢ > 0,79 > 0,Cg > 0 such that
for all x € M, for all r > ¢ and for all non-negative functions u : B(z,r) — R>¢
that are P-harmonic in B(x,r) the following Harnack inequality holds:

(6.1) sup v <Cg inf .
z€B(x,cr) z€B(z,cr)

In (6.1), the sup and inf must be understood as essential sup and essential inf
with respect to pu.

63
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We follow Moser’s iteration method [61] to prove the elliptic Harnack inequality.
Our approach is an adaptation of Delmotte’s approach except that we have to rely
on a weaker version of Sobolev inequality and a modified version of John-Nirenberg
inequality. Moser’s iteration relies on estimating the quantities

©2) w3 = (b [ )

for different balls B’ C B and for different values of p € R\ {0}. By Jensen’s
inequality, p — ¢(u,p, B') is non-decreasing function. The function ¢ satisfies
lim, ,_ ¢(u,p,cB) = inf.pu and lim,, 1 ¢(u,p,cB) = sup.gu [49, Lemma
14.1.4]. To obtain (6.1), Moser’s iterative method relies on establishing bounds
of the form ¢(u,p1,B’) < Cp, p,d(u, p2, B”) for different values of pi,ps € R\
{0} satisfying p; < ps. Sobolev inequality and Poincaré inequality are crucial
ingredients to run this iterative procedure. For a function f that is defined on a
ball B, we denote the mean integral by

fBz]ifdMZﬁ/deu.

We start with a local version of the above elliptic Harnack inequality.

LEMMA 6.4. Let (M,d, ) be a quasi-b-geodesic space satisfying (VD)o and
let P be a weakly (h, h')-compatible Markov operator with (M, d, i) for some h > b.
There exists C > 0 and ro > 0 such that
(6.3) u(y) < Cu(z)
for all z € M, for all v > 1o, for all y,z € B(x,r/2) satisfying d(y,z) < h' and for
all non-negative functions v : B(x,r + h') = R harmonic in B(z,r).

PROOF. There exists ¢; > 0 and [ € N* such that
c1lp(z2n) (W)

V(w,h')

for all y,w € M. The proof of (6.4) is analogous to that of (4.13). Therefore by

(6.4), (VD)o weak (h,h')-compatibility of p; and triangle inequality, there exists
¢ > 0 such that

(6.4) pi(z,w) = pi(w, z) >

c1lp onn (W) S c11p(yny(w)
V(w,h) —  V(w,h)
for all y, 2z, w € M satisfying d(y, z) < h'.
Choose 1 large enough so that r/2 + Ih/ < r + A’ for all » > ry. Note that
for every harmonic function v : B(x,r + k') — R in B(x,r) with r > ry and for all
z € B(x,r/2), we have

(6.6) u) =P = [ e wu(witd)

B(z,lh")

(65) pl(za w) Z

> cop1(w,y) = capr(y, w)

By (6.6) and (6.5), we obtain
(6.7)
u(z) =/ pi(z, w)u(w)p(dw) > 02/ p1(y, w)u(w)p(dw) = cou(y)
B(z,lh") B(y,h')
for all non-negative harmonic functions w in B(z,r) for all z € M, for all z,y €
B(x,r/2) with r > ro. The choice C' = ¢, ' satisfies (6.3). O
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6.2. John-Nirenberg inequality

Moser [61], used John-Nirenberg inequality to obtain an estimate of the form
¢(u,—q, B") < C'¢(u,q, B') for some ¢,C’ > 0. An alternative approach is to use
an abstract lemma of Bombieri and Guisti was later proposed by Moser [72, Section
2.2.3].

John-Nirenberg inequality is an estimate on distribution of functions of bounded
mean oscillation which were introduced in [48]. A locally integrable function
f: B — R define is of bounded mean oscillation (BMO) if

1
f = sup 7/ f = fprldp < oo
1 Earoc) e p(B') B’l |

John-Nirenberg inequality states that functions of bounded mean oscillation have
an exponentially decaying distribution function.

In [1, Theorem 5.2] a version of John-Nirenberg inequality is shown for spaces
satisfying the doubling hypothesis (V' D). However for us, the metric measure space
(M, d, i) only satisfies (V D)joc and (VD). Since we do not have doubling hypoth-
esis on arbitrarily small balls, we introduce a modified version of BMO seminorm
(BMO seminorm at scale h) defined as

1
©8)  Wflomowemmn=, 5w po [ |~ o dn
BMO(B(o,m0)):h B(y,r)CB(zo,r0),r>h V(y77’) B(y,r) ‘ (y )|
Our proof is motivated by the presentation in [1]. We start by recalling the
Vitali covering lemma.

LeEMMA 6.5 (Vitali covering lemma). Let F be a family of balls with positive
and uniformly bounded radii in a metric space (M,d). Then there exists a disjoint

subfamily G C F such that
U Bc |58

BeF Beg

In fact, every ball B € F meets a ball B’ € G with radius at least half that of B and
therefore satisfies B C 5B’.

The proof of Vitali covering lemma follows from an application of Zorn’s lemma.
We refer the reader to [46, Theorem 1.2] for a proof of Lemma 6.5. A crucial ingre-
dient in the proof of John-Nirenberg inequality is the following version of Calderén-
Zygmund decomposition lemma. Since we replaced (VD) by weaker assumptions
(VD)joc and (V D), we need some other method to control the behavior of a BMO
function at small length scales. This is why we assume a local Harnack inequality
(by Lemma 6.4 the local Harnack inequality holds for harmonic functions).

LEMMA 6.6 (Calderén-Zygmund decomposition lemma). Suppose (M,d, p) be
a metric measure space satisfying (VD)ioc and (VD). Let f be a non-negative
locally integrable function on B(xg,11rg) for some ro > r1 > h > 0. Further we
assume that there exists C1 > 1 such that f satisfies the local Harnack inequality

(6.9) fly) <Cif(2)
for all y,z € B(xg,ro + h) satisfying d(y, z) < h. Further, assume that

1
6.10 Ao = 7/ fdu
(6.10) 0= Vi(zg,r) B(xo,1170)
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Then there exists countable (possibly finite) family of disjoint balls F = {B;} of
disjoint balls centered in B(xo,r) and satisfying 5B; C B(xg, 11rg) for all B; € Fy
so that

(i) f(z) < Ci)hg for all x € B(xg,70) \ (UBiG}' 5BZ—).
(’LZ) Ao < :’[Bi fd/J < CQ)\O f07” all B; € Fy.
(iii) Cy'Xo < f5p. [ dp < Ao for all B; € Fo.

The family of balls Fo satisfying the above conditions are called Calderon-Zygmund
balls at level N\g. Moreover if \g < A\ < ... < Ay, then the family Calderon-
Zygmund balls F,, corresponding to different levels A, may be chosen in such a way
that every B;(Ant1) € Fnt1 is contained in some 5Bj(\,) where Bj(A,) € Fy.

PROOF. We denote B(xg,79) as By. Define a maximal function

MBof(x) = MB(mg,ro)f(x) = sup ][ fd:u
B(y,r)CB(xo,r0+h): B(y,r)
yEB(zo,7r0),r>h,B(y,r)dx

for all x € B(xg,r). We define
Ey\ = {x € B(20,70) @ Mp(ag,ro)f(x) > /\}.

First consider Ay. By definition for every = € Ej,, there exists a ball B, =
B(yy, 72 ) satisfying y, € By, * € By, By € B(xo,70 + h), r, > h and

Let k = k, € N* be such that 571, < 2rg < 5%r,. Then By C 5B, C 11B,.
Combining this with (6.10), we have

1
][ fu < / Fdu< o <Ay
5% B, w(Bo) 11Bo

However since fB’ fdu > Ay, there exist smallest n, > 1 such that

(6.12) F rdusa
5nx B,

and

(6.13) ][ Fdu> Ay
59 B,

for all j = 0,1,...,n, — 1. The balls 5"+ =1 B, forms a covering of Ej, . Therefore
by Vitali covering lemma (Lemma 6.5), we pick a family Fy of pairwise disjoint
balls B; = 5"+ ! B, satisfying E), C Uper, 5B. We now check the construction
above satisfies the desired properties. By (6.12), (6.13) and (2.4), there exists
C > 0,60 > 0 such that

AN <][ fdu < Ch55][ fdu < CpL5°Ay.
5nz—1R, 5nz B,

Choosing Cy = 5°Cy, we obtain properties (ii) and (iii) of Calderén-Zygmund
decomposition.
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It remains to verify (i). If € By \ (Up,er5Bi) € Bo\ Exy, we have
Mp, f(z) < An. Therefore by (6.9), we have

A 2 My f(@) 2 f  fduz G ()
B(z,h)
This give property (i). We have now constructed the desired decomposition at level
An. Next we consider Ay _1.
Since Ey, C Ex,_,, for every z € FEj,, we may start with exactly the same
ball satisfying (6.11) as before. For every z € Ex,_, \ Ex,, we choose a ball
B, = B(yz,rs) satistying B, 3 x, y, € Bo, 7 > h, B, C B(zo,r0 + h) and

(6.14) M <...<An_1 <][ fdu.
B,

As before for each ball B,, we choose the smallest integer m, > 1 such that
(6.15) ][ fdu <Ay

57z B,
and
(6.16) ][ fdu>An_1

59 B,

for j =0,1,...,m,; — 1. Note that if z € E),, then n, < m,. As before, we apply
Vitali’s covering lemma to the balls {5+ 7B, : x € Ex,_, } to obtain a pairwise
disjoint family of balls Fx_; satisfying (i)-(iii) with Ao replaced by An_1.

Let B;(Ax) € Fn. Then B;(Ay) = 5"~ B, for some x € Ej, . Since n, < m,,
we have B;(Ay) C 5™~ B,. By Vitali’s covering lemma, there exists B;(Ay_1) €
Fn—1 such that B;(Ay) C 5™+~ 1B, C 5B;(An_1). We continue this procedure to
get decomposition at all levels A\g < ... < Apn. O

REMARK 6.7. In the above proof, we use (6.9) to obtain property (i) of the
Calderén-Zygmund decomposition. Typically property (i) is proved using Lebesgue
differentiation theorem. However the proof of Lebesgue differentiation theorem
requires (VD). (See [1] and [46, Theorem 1.8])

Next, we prove the John-Nirenberg inequality for spaces satisfying (V D). and
(VD).

PROPOSITION 6.8 (John-Nirenberg inequality). Let (M,d, u) be a metric mea-
sure space satisfying (VD )joc and (VD). Let f be a non-negative locally integrable
function on B(zg,11rg) for some ro > h > 0. Further we assume that there exists
C1 > 1 such that f satisfies the local Harnack inequality

(6.17) fly) <C1f(2)

for all y,z € B(xo,7m0 + h) satisfying d(y,z) < h. Then there exists Co > 0 such
that

(6.18)  p({z € Bo : |f = fBol} > A) < Cop(Bo) exp(=A/(C2 || f | moimy).n)

for all A\ > 0. The constant Cy depends only on C1,h and constants associated with
doubling hypotheses (VD)1oe and (VD)so.
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PROOF. Let By = B(zg,r9). Without loss of generality, we assume fp, =
0 and ||fllgaro(ipy),n = 1 - It suffices to consider f such that fp, = 0 and

Ifl Baro@1By),» = 1 as we may replace the function f by (f—f5,)/ |/l ppro1s0)n-
By (2.4), there exists C5 > 0 such that

1
w(Bo)

/ |f—fBo|dM§03][ \f = fiiBol dp + C3|fB, — fi1B,|
118, 11By

< Cs ||f||BMo(1lBo),h/ + CS]{B lf = fiipl dp
0

<263 |1 fl smoipen = 2C5-

If B; is the Calderén-Zygmund balls at level C I\ where X\ > 2C1C%, then by
Lemma 6.6

(i) |f(z) < Xforall x € By \ U;5B;.
(i) Cy 1)\<fB Ifldp < C3CTE for all 5.

(iii) C;7rCstA < fsp, Ifldp < CF '\ for all j.

By (i) and (2.4), we have

(6.19) p({ze By ¢ |f(x) >\ < Z (5B;) <032,,L

In order to estimate }_, p(B;), we consider Calderén-Zygmund decomposi-

tion at levels Cflx\ > Cfl'y > 2C2 as in Lemma 6.6. We partition the family
{B, (01_1/\)}j as follows: First we collect those which are contained in 5B;(Cy ).

From the remaining balls we collect those balls which are contained in 5Bo(C; ')
and so on. More precisely, we partition the Calderén-Zygmund balls at level C; X
as

{Bi(Cr'™N} = U{BI(CT 'V} e, -
k
where J;.’s are defined as

Ji={j: B;j(C{"\)C5
={j : B;(C{'\) C5By(C'y),j ¢ J1}
Js={j : Bj(C;y'N) C5

and so on. By (ii), we have

)\Zu (CTIN) <clz/ Ifl dp

B;(Cy ')

(6.20) <0122/( . f] d.

k je€Ji
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In addition for each k, we have

j;/m e < Z/ (171 = [fy o) o
S ]f Fopaior | di+ O 3 w(By(CrIN)

Jj€Jk JE€Jk
< =¥ |dp+CT ')
/53k(011)\ 5B4(C1 ) ! ]g,:k
< pBBH(CTIN) +Crty > u(B;(CTHA
Jj€Jk
< Cap(Bi(CT)) + Oty Y (B (Cr1A).
JE€Jk
The fourth line above follows from || f|lgyvo115,),, = 1+ We sum over k and use
(6.20)

/\Zu Ccr'N) <ClcSZNBk ) ) u(B(CrA))

J
for all A >~ > 2C;C3. This 1mphes

(A — 'yZu Crt\) <C1C?,ZMBk ')

for all A >~ > 20,C3.
In particular if A > a := 2C,C%, we have

(6:21) D B0+ ) < ;;uwkwﬂ»

Let A > a and let N = |A/a]. Then we apply the Calderén-Zygmund decompo-
sition at levels C7 'a < 2C7'a < ... < C7'Na. By (6.19) and repeated application
of (6.21), we obtain

p({z e By« |f(x)] > A}) <p({z e By : |f(x) > Na})
<CgZu (CT'Na)) < 0327 N+1Zu (Crta))
J

< 2032 Nu(11B,) < 4C527*u(Bo)

(6.22) < 4C% exp(—(AIn2)/a)u(By)

The case A < a follows easily since

p({z € Bo : [f(2)l > A}) < u(Bo) < ACE exp(—(A1n2)/a)u(By).
The choice Oy = max(4C%, a/In2) satisfies (6.18). O

We have the following corollary.

COROLLARY 6.9. Let (M,d,p) be a metric measure space satisfying (VD )joe
and (VD). Let f be a non-negative locally integrable function on B(xg, 11rg) for
some rg > h' > 0. Further we assume that there exists C1 > 1 such that f satisfies
the local Harnack inequality

(6.23) fly) <C1f(2)
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for ally, z € B(xg,ro+h') satisfying d(y, z) < h. Then there exists co, Co > 0 such
that

(6.24) / e(COf(y)/”fHBMO(llBO)Th/) dy/ 6(*Cof(y)/Hfugmo(nso),h’) dy < Cg,u(BO)z
By B

0

where By = B(xo,70). The constants ¢, Cy depends only on Ci,h' and constants
associated with doubling hypotheses (VD)o and (VD)s.

PROOF. There exists Cy, C3 > 0 such that

[ e (ot = F2)/ 1 llomsoss ) 4
Bg

< u(Bo) —&-iu ({y €By : k< L) Rl < l<:+1}> gco(k+1)

Hf”BMO(llBO),h’

< u(By) (1 +Co ) eCO(k+1)e_k/C2> < Cou(Bo)
k=0

In the last line above, we fix ¢ = 1/(2C3) where Cy is the constant from Propo-

sition 6.8. Replacing f by —f in the above inequality and multiplying those two

inequalities yields (6.24). O

6.3. Discrete Calculus

Before we dive into computations, we introduce simplifying notations and col-
lect basic rules that mimics calculus rules in a discrete setting. Let f be a function
on N x M or on M. Depending on context, we may abbreviate f(k,z) to fx(x), fx
or even f.

1. ‘Gradient’
(6.25) Vayf = fly) — f(z)
and the ‘time derivative’
(6.26) Ouf(z) = f(k+1,2) — f(k,x).
2. Differentiation of product
(6.27) Vay(f9) = (Vay )g(y) + (Vayg) f(2).
3. Differentiation of square
(6.28) Vayf? = 2(Vay ) f () + (Vay f)*.
4. The same formulas for the ‘time derivatives’:
(6.29) O (fg) = (Okf)gr+1 + (Or9) fx
and
(6.30) O(f?) =200k f) fr + (O f)?.

5. Let A = I — P denote the Laplacian corresponding to a p-symmetric
Markov operator P with kernel p;. Then

Af(x) = (I - P)f(x) = /M P (2 9)V e dy.
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6. Integration by parts: If f,g € L?(M, p), then
o3 [ Af@a@de=5 [ [ (Vo nTaomn ) s
M

7. Consider a p-symmetric Markov operator with kernel p;. We define |V f|
corresponding to the Markov operator P as

(6.32) V() = /M<vzyf>2p1<x7y> dy.

We caution the reader to be aware of different uses of the symbol V in (3.1), (6.25)
and (6.32) with slight change in subscript. The subscript could be a positive real
number, a pair of points or a Markov operator. We hope the different notations of
V would be clear from the context.

6.4. Logarithm of a harmonic function

If u is a positive harmonic function, then we show that log u has bounded BMO
seminorm. This combined with John-Nirenberg inequality yields ¢(u, —q,c1B) <
C'¢(u, q,c1 B) for some ¢,C’" > 0 and ¢; € (0,1).

LEMMA 6.10. Let (M,d,un) be a quasi-b-geodesic metric measure space satis-
fying (VD)ioe, (VD)oo and Poincaré inequality at scale h (P);,. Suppose that a
Markov operator P has a kernel p that is (h, h')-compatible with respect to p for
some h > b. Let u be a positive P-harmonic function on B = B(x,r). Let n be
a non-negative function on B satisfying supp(n) C B(z, (r/2) — h'). There exists
Co > 0 and ro > 2h' satisfies

(6.33)

Lo (wt ) W) dyde <o [ [ (Vi) dyds
B/2JB/2 u(z) B/2JB/2

for all balls B, for all functions u, n satisfying the above requirements.

PROOF. Define v := n?/u. By product rule (6.27)

(6.34) Vyeth = Vi (1/u)n(2)? + (1/u(y)) V2 (u?).
Using integration by parts (6.31) along with supp(n) C B(z, (r/2) — k'), we deduce
(6.35) [ ] 59,0 dydz =0,

B/2JB/2

Combining (6.34), (6.35), we have

1
/ / pl Y,z yzu) (Vyz ) 7](2)2 dy dz
B/2.JB/2 u

(6.36) / / 1Y, 2) Vytl [V yon?| —— dy dz.
B/2J)B)2 ( )

By Lemma 6.4, u satisfies the local Harnack inequality on B/2 for large enough
balls B. Hence there exists ¢, C; > 0 and rg > 2k’ such that

(6.37) —(Vyzu) (vyzD _ W - (nZEZ;)Z

(6.38) Vet /u(y) < Ciln ZE?J;’
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for all positive P-harmonic functions v on B = B(z,r), for all y,z € B/2 with
d(y,z) < h’ and r > rg. Combining (6.36), (6.37) and (6.38), we obtain

Ili’LL(y) i z 2 z
/B/Q/B/Qpl(y&) (1 u(z)> n(z)°dyd

g z z n7u<y) z
630) <[ ) ) ] v

Since p1(y, 2) = p1(z,y) for pu x p-almost every (y,z) € M x M, we have

/B/2 /3/2 P1(y: 2)Vyznln(y)

(6.40) z/ / p1(y, 2)[Vynn(2)
B/2.JB/2
By (6.39) and (6.40)

/B/2 /B/Qpl e (ln%) n(2)? dy dz
(6.41) < 21 /B . /B L P2Ttn(z)

By Holder inequality

(/3/2 /B/zpl(y7z)|vyzn|n(z>

(6.42)

)] o
In u(z)'dyd

u)] o
lnu(z)‘dyd

uly)
In (2)‘ dy dz

In u(z)’dyd )

2
u\xr
/ / p1(y, 2) V| dy dz - / p1(y, 2) (ln( )> n(2)? dy dz.
B/2JB/2 B/2.JB/2 u(y)

Combining (6.41) and (6.42), we obtain (6.33) with Cy = 4C%/c3. O

In the next proposition, we show that logarithm of a harmonic function has
bounded mean oscillation. Then using John-Nirenberg inequality we prove a weak
form of elliptic Harnack inequality.

PROPOSITION 6.11. Under the assumptions of Theorem 6.3, there exists ¢ > 0,
¢o € (0,1) and Co,ro > 0 such that

(643) ¢(’U,, —q, COB) < OOQS(ua q, COB)
for all P-harmonic functions w on B = B(z,r) with r > r¢ and for all x € M.

PROOF. Let ¢; € (0,1) (its value will be determined later in the proof). Let
B = B(z,r) and let By = B(x1,71) C ¢1 B with r; > h’. For any positive harmonic
function w on B, by (P)s there exists Cq,Cq,C3 > 1 such that

/ Inu(y) — (nu)p,[? dy < Cyr? / V(w2 (y) dy
Bq CyBq

2
6.44 < Cyr pi(y,2) (In—= ) dydz
(6.44) et ( >(1“(y))dd
(CQ+1)Bl (02+1)B1 u(z)
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We used (P);, in the first line and (4.10) and r > A’ We choose ¢; = 1/(3(Ca + 2)),
so that (Cy + 1)B; C B/3 for all B; C ¢ B. We define n as

n(y) = mas (me (0, (Co+ 2)“; d(y,x1)>> |

r
Note that for large enough r, we have suppn C (Co + 2)B; C (Cy + 2)e1 B C
B(x,(r/2) — h'). Since n =1 on (Cy + 1) By, there exists C4,C5 > 0

2
/ / p1(y,2) <ln u(y)) dydz
(CQ+1)Bl (C2+1)B1 U’(Z)

</c2+2>31 /02+2 (. )(m ZEZ;)QU(z)Qdydz

(6.45) < 04/ / P1(y, 2) (Vyen)® dydz < Csryu(By)
B/2 JB/2

In the last line above we used Lemma 6.10, (4.10), definition of 7, triangle inequality
and (2.4). By Holder inequality

2
616 ([ o) - (uwslds) <uw) [ ) - (os Py
B; B,
Combining (6.44), (6.45) and (6.46) we obtain
(6.47) ”hlu”BMO(clB B = (0305)1/2

for all positive harmonic functions v on B = B(z,r) and for all r sufficiently large.
By Lemma 6.4, (6.47) and Corollary 6.9, there exists ¢ > 0,Cs > 0 such that

o(u, q, (c1/11)B)4¢(u, —q, (e1/11)B) "1 < C§
for all sufficiently large balls B and for all positive P-harmonic functions v on B.
This immediately yields (6.43). O

6.5. Mean value inequality for subharmonic functions

For the rest of the chapter, we will rely on (V D)., (VD)o and the Sobolev in-
equality (5.2) to prove Theorem 6.3. We obtain various inequalities on subharmonic
functions. The following elementary property of subharmonic and superharmonic
functions is useful.

LEMMA 6.12. Let P be a Markov operator.

(a) If [ is a non-negative function that is P-subharmonic in B(x,r), then fP is
P-subharmonic in B(x,r) for all p € [1,00).

(b) If [ is a positive function that is P-superharmonic in B(xz,r), then fP is P-
subharmonic in B(x,r) for all p < 0.

PrOOF. If y € B(x,r), then by Jensen’s inequality and the fact that f is
P-subharmonic in B(z,r)
fPly) < (Pf(y))” < (Pf2)(y).
This proves (a). We again use Jensen’s inequality, f is P-superharmonic in B(x,r)
and p < 0 to obtain

fPly) < (Pf(y)" < (PfP)(y)
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Moser’s iteration relies on repeated application of the following Lemma.

LEMMA 6.13. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and (VD). Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with respect to v for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). There exists Co > 0 such that

(6.48)  ¢(u,2(1+2/68),B(z, (1 —o)r —h') < Coo™ODp(u,2, Bz, + h'))

for all x € M, for all v > 3R/, for all o € (0,1/2) and for all functions u that are
non-negative and P-subharmonic on B(x,r).

PRrROOF. Define

(6.49) ¥(y) = max (0, min (1, T_d(“’)» .

ar

Note that ¢ = 0 in B(z,r)¢ and ¢ = 1 in B(z, (1 — o)r). Since Au < 0 in B(z,r)
and u > 0, we have

0<— /B W) dy

1

=3 / / P1(y, 2) (Vy=(¥%u)) (Vyzu) dy dz
B(z,r+h’) J B(x,r+h’)

1

—5 [ nwae) (V) dyds
B(xz,r+h’) J B(xz,r+h’)

1
(6.50) ! / / P2 (9, 2)u(2) (Vyt?) (Vo) dy d.
2 B(xz,r+h') J B(z,r+h’)

The above steps follows from integration by parts (6.31) and product rule (6.27).
We use the inequality ab < a?/4 + b* to obtain

’u(z) (Vysz) (Vyzu)‘ = (v (y) + ¥ (2)u(2)(Vy00) (Vyzu)

1
(6.51) < 1 (7 () +9%(2) (vyzuf +20%(2) (V)
Since p1(y, z) = p1(z,y) for pu x p-almost every (y, z), we have
(6.52) . /Bl p1(y, )(un dydz —/ /B1 p(y, = )(Vyzu)2 dydz

where By := B(z,r + h’). Combining (6.50), (6.51) and (6.52)
(6.53)

/ ()02 () (Vyow)? dydz < 4 / / p1 (g, 2)u2(2) (Vi) dy d.
By J B

The inequality (a + b)? < 2(a? + b?) along with product rule (6.27) implies

/]31 ~/31 p1(y, 2 yz(¢u))2 dydz < Q/BI Al pl(y72)¢2(y) (vyzu)Z dydz

(6.54) + 2/ / pi(y, 2)u?(2) (V) dy dz.
By J By

Combining (6.53) and (6.54), we obtain

(6.55)

/Bl /B p1(y, 2) (Vo= (vu))® dydz < 10/ /B Py, 202 (2) (V) dy dz.
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By (6.49) and (4.10), there exists C; > 0 such that
(V=) Py, 2) < ()01 ?pa(y, 2)
for all y € M and for p-almost every z € M. Combined with (6.55), we have
(6.56) / / p1(y, 2) (Vyz(wu)) dydz < 10(h')%o _27"_2/ u?(2) dz.
B1 J B, By
We define

uy = Pp(y,(1—0)r) U, ug 1= Pp, (Yu).
Since ¢ =1 in B(z, (1 — o)r), by (4.10) we have
(6.57) uz(y) = ui(y) = Puly) = uly) — Auly) = u(y)
for all y € B(z, (1 —o)r — h'). By (6.57) along with Holder inequality, we have

/ W20H2/) gy < / 2R g
B(z,(1—c)r—h’) N B(z,(1—0)r)
2/8 (6-2)/8
< (/ u? du) </ u525)/(6_2) d,u)
B(z,(1—0)r) B(z,(1—0)r)
2/8 (6—2)/6
B(z,(1—0)r) B(z,(1—0)r)

n (6.58), we used that Pp (1—o)r) is a contraction in L? and that us > u in
B(z,(1 — o)r). By Sobolev inequality (5.2), Lemma 4.22(a) and integration by

parts (6.31)
(6-2)/5
(/ u29/-2) du>
B

(r+n) 2
< Osg i MM,M/ [, P2 (Tt dyas

1
6.59 Csr——~ *d
(6.59 Oy o [, o0
By using (6.58), (6.59), (6.56), ¥ < 1, r > 3k’ and (2.4), there exists Co > 0 such

that
][ W20+@I9) gy < Cpo? ][ 2 dy
B(z,(1—0)r—h') B(z,r+h')

This immediately yields (6.48). O

1+(2/9)

We modify the proof of the Lemma 6.13 to obtain a reverse Poincaré inequality
for all P-harmonic functions (not necessarily non-negative). The below reverse
Poincaré inequality and its proof is essentially same as (6.56).

LEMMA 6.14 (Reverse Poincaré inequality). Let (M, d, p) be a quasi-b-geodesic
metric measure space satisfying (VD)o and (VD)s. Suppose that a Markov op-
erator P has a kernel p that is weakly (h, h")-compatible with respect to p for some
h>b. For all Q) > 1, there exists C = C(2) such that for all P-harmonic functions
u, for all x € M and for all r > 3h'/(2 —1)

(6.60) / Vpu? du < C’I“_Z/ u? dp.
B(z,r) B(z,Qr)
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In particular, there exists Cr = C(2) such that such that for all P-harmonic func-
tions u, for all x € M and for all v > 30’

(6.61) / IV pul? dp < C’Rr_z/ u? dp.
B(z,r) B(z,2r)

PrOOF. We repeat the steps in the proof of Lemma 6.13. Define

(6.62) ¥(y) := max (0, min (1, Q(Q__h;); d_(;”h%/)» :

Note that ¢ = 0 in B(z, Qr—h')¢ and ¢ = 1 in B(z,r+k). Since Au = (I — P)u =
0, for all » > 3h’/(Q — 1) and for all € M we have

_ / ¥ (y)uly) Auly) dy = — / 2 (y)u(y) Auly) dy
M B(z,Qr—h')
:_;/B( ) )/B( ) )pl(y,z) (V= (%)) (V20 dy dz

1
= —5/ / (Y, 2)0*(y) (Vyzu)? dy dz
B(z,Qr) J B(xz,Qr)
1
(6.63) 5L ) (95?) (Vi) dy
B(z,Qr) J B(z,Qr)

The above steps follows from integration by parts (6.31) and product rule (6.27).
We use the inequality ab < a?/4 + b* to obtain

[u(2) (V%) (Vyzu)| = (0 (y) + 0(2))u(2) (V=) (Vyzu)

1
(6.64) < S0 W) +¥%(2) (VyzU)2 +20%(2) (Vy10)?.
Since p1(y, z) = p1(z,y) for p x p-almost every (y, z), we have
(6.65) / / p1(y, 2 (Vyzu dydz = / / p1(y, z (Vyzu)2 dy dz
Bl Bl Bl Bl
where B; := B(x,Qr). Combining (6.63), (6.64) and (6.65)
(6.66)

[ ] mi1 @ G vz <1 [ [ i i) (9,007

The inequality (a + b)? < 2(a? + b?) along with product rule (6.27) implies

2 ) )
/31 /B1 P1(Y, 2) (Vye(Yu))” dydz < 2/31 /B1 p1(y, )¢ (y) (Vyu)” dydz

(6.67) +2/ / p1(y, z z) (V yz¢) dydz.
B, /B,

Combining (6.66) and (6.67), we obtain

(6.68)

/ / Py, 2) (Ve ($u)? dy dz < 10/ / P1(y, 2)u*(2) (V=) dy d.
Bl Bl Bl
By (6.62) and (4.10), there exists C; > 0 such that

(Vyzw)Qpl (yv Z) S (3h/)2(Q - 1)727"72171 (yv Z)
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for all y e M, for p-almost every z € M and for all » > 3h'/(Q2 — 1). Combined
with (6.55), we have

2 N2 _1)—2,—2 2
(6.69) /Bl /Blpl Y, 2) (Vy(¥u))” dydz < (3R)*(Q—1)"*r /Blu (z)dz.

for all P-harmonic functions w, for all » > 3h’/(Q2 — 1) and for all x € M. Since
¥ =11in B(x,r + k') the desired inequality (6.60) follows from (6.69). O

The next lemma is a L?-mean value inequality for positive P-subharmonic
functions.

LEMMA 6.15. Let (M,d, 1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and (VD). Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with respect to pu for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). There exists C1 > 0 and r1 > 0 such that
(6.70) ¢(u, 00, B(z,7/6)) < Co(u,2, B(z,r +h'))
for all x € M, for all r > r1 and for all functions u that are mon-negative and
P-subharmonic on B(z,r).

PROOF. Define a sequence of radii iteratively by r(1) = r + A/,
1
. _ . ’ Y
r(i+1)=(r@i) —h') (1— 3”1) h

fori=1,2,...,[logr]. By the above definition, there exists ro > 0 such that

(6.71)  r([logr] +2)—h >r[1- 23_(”1) —4h/(logr +3) > r/2 > 31/
j=1
for all 7 > ro. We define the balls B; = B(x,r(i)) for i € N* and exponents
= (1+2/4)* for i € N>q. By Lemma 6.12 uPi is P-subharmonic for all i € Nx.

By applying Lemma 6.13 to the function wPi-* that is P-subharmonic in B;, we
obtain

(6.72) 6(u,2ps, Bip1) < Co/P' 1370w, 2p;_y, By)
fori=1,2,...,[logr] and r > ry. Combining the estimates in (6.72), there exists
C5 > 0 such that

(673) (b(ua 2pﬂog r]s B[Iog r]+1) < C2¢(ua 2, B(Q?, r+ h/))

for all z € M, for all » > rg and for all non-negative subharmonic v in B(zx,r).
There exists C3,Cy > 0 such that

sup w2Priog r1 < sup P(u2p[1og r])
B(z,r/2) B(z,r/2)

Cs
S sup - 2p]'log r] du
yeB(log r]+1 V(y7 h’ ) B]'log [l +1

C’3 V(ya QT) / 2p
sup oL u?Phesr1 dyy
#(Briogr1+1) <yEB<z,r> V(Y1) ) J B

(6.74) < C’47“6][ u?Phosr1 dyy
B

Mog r1+1

IN
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The first line above follows from Lemma 6.12, the second line follows from (4.10)
and (6.71), the third line follows from (6.71) and the last line from (2.4) and (6.71).
Combining (6.73) and (6.74), we obtain (6.70). O

The next lemma is analogous to Lemma 6.13 and will be used for an iteration
procedure.

LEMMA 6.16. Let (M,d, u) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and (VD). Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with (M,d, ) for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). There exists Co > 0,79 > 0 such that

/ / Y)*[Vye (uP)lp1(y, 2) dy dz
B(z,r/2) J B(z, 7‘/2

(6.75) < Co ( ) / / PNy (y, 2) dy dz
2p—1 B(z,r/2) J B(z, r/2)

for all x € M, for all v > ro, for all p € (0,1]\ {1/2}, for all positive functions u
that are P-harmonic on B(z,r) and for all ¥ > 0 with supp(¢) C B(z,r/2 — h').

PROOF. Let 1 := u?’~14), where ¢ > 0 satisfies supp(v)) C B(x,7/2 — h') and
u > 0 is P-harmonic in B(z,r). By product rule (6.27)

Ve = (Vy=(u®™1) (y)* + u(2)* 7 (Vy:)?) -
By integration by parts (6.31), we obtain

(6.76) / / P1(Y, 2) (Vo) (Ve (02 1)) (y)? dy dz

== [ [ m2) (T e (9, 00) s
where B := B(x,r/2). There exists C; > 0 such that
(6.77) 2p — 1| (V. (Up))2 < pz(vyzu) (Vyz (u?~1))
(6.75) Vyetfu()P 1 < Crp Ve (P,

for all p € (0,1], for all y,z € M with d(y,z) < h’ and for all positive u. The
estimate (6.77) is elementary and is a version of Stroock-Varopoulos inequality.
The proof of (6.77) is essentially contained in [63, Lemma 2.4]. The estimate
(6.78) follows from mean value theorem and the local Harnack inequality given by
Lemma 6.4. Combining (6.76), (6.77) and (6.78), we have

/B (2P| () + (Ve ()] dy

1/2
( / ()22 dy dz)

, 1/2
(6.79) ( [ 10212000 + 0PI, (00) dydz) .
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We use Cauchy-Schwarz inequality and (a + b)? < 2(a? + b?) in the last step. By
the p x p-almost everywhere symmetry of p;, we have

6 80 / /pl Y,z |Vyz up | dde _/ /pl Y,z ‘vyz(upﬂ dydz

Combining (6.79) and (6.80) yields (6.75). O

We do another iteration procedure between the exponents ¢ and 2 using Lemma
6.16.

LEMMA 6.17. Let (M,d, u) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and (VD). Suppose that a Markov operator P has a kernel p that
is (h, h')-compatible to (M, d, ) for some h > b. Further assume that P Sobolev
inequality (5.2). For any fized ¢ > 0, there exists C1 > 0,¢1 € (0,1/2) and 1 >0
such that

(681) ¢(u,2,B(x,clr)) S Cl¢(u,q,B(x,r/2))

for all © € M, for all r > ry and for all functions u that are mon-negative and
P-subharmonic on B(x,r).

PRrOOF. If ¢ > 2, then (6.81) follows from Jensen’s inequality. Hence it suffices
to consider ¢ € (0, 2).

Define 6 := 6/(5 — 2). We slightly decrease ¢ if necessary so that ¢f* # 1/2
for all i € N. Define k € N* as the integer that satisfies ¢f*~! < 2 < ¢#*. Define
c1 := 47" and iteratively define

S; == 28;_1+ 2h

fori=1,...,k, where so := ¢17. Fix rg > 0 such that sy <r/2 — &' for all r > rq
where k and s, are defined as above.

Define ¢; := ¢f/2, B; = B(x,s;_;) for i = 0,1,... k. Define the functions
28 i1 +h —d(z, Z/)))

Sk—i—1

¥;(y) = max (O7 min (1,
for i = 0,1,...,k — 1. Note that ¢y = 1 in B(z,sx_;—1 + h’') and ¢ = 0 in

Bz, sp_; —h')C.
By Sobolev inequality (5.2) there exists Cy > 0 such that

1/9 C
([ @owamio™ o) < 28’“2;6 / / 1 (1, 2) s (st dy

(6.82) 2 /5 / i(y)*u(y)®® dy
foralli=0,1,...,k — 1. By (4.10) and Lemma 6.4 there exists C3 > 0 such that

Pp, (pu)(y) = / u% (2)py (y, z) dz > Cy %ud (y)
B(y,h')
for all y € B;11. Therefore

(6.83) ( / oty dy> " (c / (Po o)) dy)

1/0
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for x € B;y1. There exists Cy, C5,Cg > 0 such that

/ / P15, 2)IV e ()
<2/ / P1(Y, 2)1(Y)?[Vys (ut)*

dydz

dyd +2 / / P, 2V yetfu(2) dy da

2\’ .
<arl(52 ) w1 [ nit 2 efuler dyds
2q; — 1 B; JB;
Cs ( 2q; )2 / 20
< +1 u(2)“? dz
$h_i1 2¢; — 1 B; (2)
(6.84)

< 206 /u(z)qu'dz.
B;

Sk—i—1

In the first step above, we used product rule (6.27) and the inequality (a + b)?

2(a?+b?). In the second step we use Lemma 6.16 and in the third step we use (4.10).

In the last step, we simply bound 2¢;/[2¢; — 1| by maxo<;<k 2p;/2p; — 1] < o0.
Combining (6.82), (6.83), (6.84) along with s_;/s,_;_1 < 4* yields

1/6
C
w(y)2%i+1 d <77/ w(y)2% d
(/BM () y) S LB s, (y)™* dy

for some C7 > 0. Combined with r > ¢ and (2.4), we deduce

(6.85) ¢(u, 2¢i+1, Bit1) < Cso(u, 2gi, B;)

fort=0,1,....,k—1, for all z € M, for all > ry and for all P-harmonic u > 0.
The estimates (6.85) along with Jensen’s inequality implies (6.81) with C; = C¥%
and ¢; = 47k, O

We are now ready to prove elliptic Harnack inequality.

PROOF OF THEOREM 6.3. It suffices to consider the case u > 0 because we
can replace u > 0 by u + € and let € | 0.

Note that we have Sobolev inequality (5.2) by Theorem 5.1. There exists ro > 0
C; > 0,¢; € (0,1) for 1 < i < 5 such that for all x € M and for all » > r¢ and for
all positive functions u that are P-harmonic on B := B(z,r)

¢(u,00,¢1B) < C1é(u, ca, B)
< Cap(u, g, c3B)
< C36(u, —q, ca, B)
< Cyop(u, —00, c5B).
The first line above follows from Lemma 6.15, the second line above follows from
Lemma 6.17 and the third line follows from Proposition 6.11. The last line follows

from applying Lemma 6.15 to the function u~9/2 which is subharmonic by Lemma
6.12(b). Choosing ¢ = min(cy, ¢5) yields the elliptic Harnack inequality. O

The constant ¢ € (0,1) in (6.1) is flexible. More precisely, we can slightly
improve the conclusion of Theorem 6.3 for b-geodesic spaces by an easy chaining.
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COROLLARY 6.18 (Elliptic Harnack inequality). Let (M, d, 1) be a b-geodesic
space satisfying (VD )ioc, (VD)s and Poincaré inequality (P)), at scale h. Suppose
that a Markov operator P has a kernel p that is (h,h')-compatible with (M,d, u)
for some h > b. Then for all ¢ € (0,1), there exists ro > 0,Cg > 0 such that for
allx € M, for all v > 1 and for all non-negative functions u : B(x,r) = R>¢ that
are P-harmonic in B(x,r) the following Harnack inequality holds:

(6.86) sup u<Cpg inf .
x€B(z,cr) z€B(w,cr)
The above corollary is a consequence of Theorem 6.3 applied repeatedly to a

sequence of points in an approximate geodesic. We do not use the above corollary.
The proof of Corollary 6.18 is left to the reader.

6.6. Applications of elliptic Harnack inequality

We present two immediate and well-known applications of elliptic Harnack
inequality.

PROPOSITION 6.19 (Liouville property). Assume that (M,d,n) is a quasi-b-
geodesic metric measure space satisfying (VD)ioe, (VD)o and Poincaré inequal-
ity (P)y at scale h. Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with (M, d, u) for some h > b. Then all non-negative P-harmonic
functions are constant (strong Liouville property). Therefore all bounded harmonic
functions are constant (weak Liouville property).

PROOF. Let u be a non-negative harmonic function. Then v = u — infwu is
a non-negative harmonic function with infv = 0. By elliptic Harnack inequality,
there exists ¢ € (0,1) and C' > 1 such that supg(, ., v < Cinfp(y ¢ v for all large
enough r. Letting r — oo, we have sup,,; v < 0 which implies v = 0. This proves
strong Liouville property. The weak Liouville property follows from the observation
that for any bounded harmonic function h, the function h —inf h is a non-negative
harmonic function. O

The following Hélder regularity-type estimate is a direct consequence of ellip-
tic Harnack inequality. Our argument is an adaptation of Moser’s argument [61,
Section 5] which uses an oscillation inequality.

PROPOSITION 6.20. There exists ¢ € (0,1), « >0, C > 0 and r1 > 0 such that

max(d(y, z), 1)>a

r

sup

(6.87) uly) — (=) < C < e

for all y,z € B(x,cr), for all x € M, for all r > r1 and for all non-negative
functions u : M — R that is P-harmonic on B(x,r) with B(x,r) # M.

PROOF. Let ¢,rg,Cg be constants from from Theorem 6.3. We optionally
decrease the ¢ so that ¢ < 1/4. Let B = B(x,r) be an arbitrary ball with r > r,
B(x,r) # M and y, z € B(z,cr). Define a sequence of balls by

5= c ipy, B; := B(y, s)

for i € N*, where s; := max(ro, d(y, z) + h’). Note that B(y,h’) U B(z,h') C By.
Choose r; := 2max(h/,rg) so that By C B(z,r) for all » > 7 and for all y,z €
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B(z,er). Let r > rq and let k := max{i € N* : By C B}. Since B(z,r) # M
there exists C7 > 0 such that

(6.88) k< Cilog(r/s1)+ 1.

Denote by M; := supp, u and m; := infp, u fori =1,..., k, where u is an arbitrary
non-negative function v : M — R that is P-harmonic on B(z,r). By elliptic
Harnack inequality of Theorem 6.3, we have
(689) Mi — MmM;—1 = Sup (Mi - u) < CE énf (Mz — u) = CE(Ml — Mi—l)a

i—1 i—1

(6.90) M;_1 —m; = sup(u—m;) < Cg inf (u —m;) = Cg(m;—1 —my)

Bi_1 Bi
for i =2,3,..., k. By adding (6.89) and (6.90), we obtain
Cg—1
6.91 My —m;_; < M; —m;
(6.91) Pomi S 5 1 m;)

for i =2,3,..., k. Combining (6.91) along with (6.88), we obtain

CE _ 1 k—1 (CE _ 1)01 log(r/sl)
6.92 M, — < M — < .
(6:92) My —my < (CE i 1) (M =me) <\ 57 Bl "

Since w is P-harmonic in B(z,r), we have

u(y) —u(z) = |P(y) — P(2)| < su u— inf u < My —m;y.
) () = PO) PN s ey
The above inequality along with (6.92) implies (6.87). O

Note that above result does not give Hélder continuity for harmonic functions
which is in contrast to [61, Section 5|. However we will see that Proposition 6.20
is useful. In particular, we use Proposition 6.20 to prove Gaussian lower bounds in
Chapter 8.



CHAPTER 7

Gaussian upper bounds

The goal of this chapter is to prove the following Gaussian upper bounds using
Sobolev inequality. The results of this chapter rely only on (V D)o, (VD)o and
the Sobolev inequality (5.2). We do not assume the Poincaré inequality (P); to
show Gaussian upper bounds. More precisely, we show

PROPOSITION 7.1. Let (M,d,p) be a quasi-b-geodesic metric measure space
satisfying (VD)ioc and (VD). Suppose that a Markov operator P has a kernel
p that is (h, h')-compatible with (M,d, ) for some h > b. Further assume that P
satisfies the Sobolev inequality (5.2). There exists C > 0 such that

C —d(l‘, y)2
(7.1) pu(7,y) < W exp (C’n)

for allz € M and for all n € N>o.
The first step is to obtain the following on-diagonal upper bound.

PROPOSITION 7.2. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (VD)ioe and (VD)s. Suppose that a Markov operator P has a kernel
p that is (h, h')-compatible with (M,d, ) for some h > b. Further assume that P
satisfies the Sobolev inequality (5.2). There exists Cy > 0 such that

(Z‘ x) < L
P V)

forallz € M and for all n € N>o.

(7.2)

A crucial ingredient in the proof of Proposition 7.2 is a L' to L® mean value
inequality for the solutions of a heat equation. We again rely on Moser’s iterative
method and the calculations are similar but more involved than those encountered
in Section 6.5 for harmonic functions. The lazy walk defined in Example 4.5 will
play an important role in this chapter. Recall that for a Markov operator P, the
corresponding ‘lazy’ versions of Markov operator and Laplacian are given by

(7.3) Pr=({I+P)/2and A, =A/2= (- P)/2.
For a,b € N, we denote the integer intervals by
[a,b] :={i eN : a<i<b}.

The following definition is analogous to Definition 6.1. Caloric functions are solu-
tions to heat equation.

DEFINITION 7.3. Let P be a Markov operator on (M,d, i) and let a,b € N. A
function v : N x M — R is P-caloric (respectively Pp-caloric) in [a,b] x B(x,r) if

Ou(y) + Aug(y) =0 (respectively Opu(y) + Apur(y) = 0)

83
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for all k € [Ja,b] and for all y € B(x,r).
Similarly, we say a function u : Nx R — R is P-subcaloric (resp. P-supercaloric)
in [a,b] x B(z,r) if

Oru(y) + Aug(y) <0 (respectively > 0)

for all k € [a,b] and for all y € B(z,r). Analogously, we define Pr-subcaloric and
Pr-supercaloric functions simply by replacing A with Ay in the equation above.

REMARK 7.4.

(a) We can restate the above definitions using dgu + Aup = ug+1 — Pug and
O+ Apuy, = Uk4+1 — Prug.

(b) Consider a Markov operator P that is (h, h’)-compatible with (M, d, p1). Similar
to Remark 6.2(a), the property that u : Nx M — R is P-caloric (or Pp-caloric)
in [a,b] x B(z,r) depends only on the value of u in [a,b + 1] x B(x,r + h').
Therefore it suffices if the function v has a domain that satisfies [a,b + 1] x
B(z,r + k') C Domain(u).

Although our eventual goal is to prove parabolic Harnack inequality for P-
caloric functions, the Moser’s iteration procedure is applied to Pr-caloric functions.
The laziness is introduced to handle certain technical difficulties that arise due to
discreteness of time. Another method to avoid these technical difficulties that arise
due to discreteness of time is to carry out Moser’s iteration method for solutions of
the continuous time heat equation %@L + Au =0 (See [27, Section 2] for this method
on graphs).

ow?) _ o du.
o = 2Ug,;

however for discrete time the analogous formula is 8y (u2) = 2uyduy, + (pu)’. The
‘error term’ (8ku)2 due to discreteness of time is a source of difficulty in the proofs
of Caccioppoli inequality and an integral maximum principle for P-caloric and P-
subcaloric functions. However as we shall see, this ‘error term’ can be handled
using a Cauchy-Schwarz inequality for Pj-caloric and Pp-subcaloric functions (See
Remark 7.9). As a result, we will primarily be concerned with Pp-caloric and Pp-
subcaloric functions for now. The assumption (d) in Definition 4.8 will allow to
compare the random walks driven by P and Pr,.

As mentioned in the beginning of Chapter 5, we rely on a version of Sobolev
inequality that is weaker than the ones assumed in previous works. This causes
new difficulties for Moser’s iteration method which relies on a Sobolev inequality.
The difficulty is even more significant in the parabolic case compared to that of the
elliptic case in Chapter 6. This is because the difference between the strong (5.1)
and weak (5.2) formulations of Sobolev inequalities is not significant for harmonic
functions. To see why this might be true, note that if a function w is P-harmonic
in B = B(z,r) then Pgu = w in B(z,r — h) and therefore the weaker formulation
(5.2) yields an estimate that is close to that of (5.1). However the same cannot be
said about P-caloric functions.

The following lemma and its proof is analogous to that of Lemma 6.12.

In continuous time case the product rule of differentiation implies

LEMMA 7.5. Let P be a Markov operator. Assume that the function u : N x
M — Rxg is P-subcaloric in [a,b] x B(z,r) for some x € M, r > 0 and a,b € N.
Then w? is a P-subcaloric in [a,b] x B(x,r) for all p > 1.
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PrRoOOF. Note that
up 1 (y) = (Opu +ue)? (y) < (=Aug + uk)” = (Pur(y))” < P(up)(y)

for all (k,y) € [a,b] x B(x,r). The first inequality above follows from the fact
that u > 0 is P-subcaloric in [a, b] x B(xz,r) and the second follows from Jensen’s
inequality. O

For a function f : N x M — R and a Markov operator P on M, we denote the
function Pf: Nx M — R

Pf(k,x) = (Pf(k,-))(z) = (Pfi)(x)
for all £ € N and for all x € M. We require the following property of subcaloric
functions.

LEMMA 7.6. Let (M,d,u) be a metric measure space and let P be a Markov
operator that is (h, h')-compatible to (M, d, ). If u: N x M — R is Pp-subcaloric
in [a,b] x B(x,r), then Pu is Pr-subcaloric in [a,b] x B(xz,r —h')) for allx € M
and for all v > h'.

Proor. If (k,y) € [a,b] x B(z,r —h’) and u : N x M — R is Pr-subcaloric in
[a,b] x B(x,r) , then

[(Pu)ktr — Pr(Pu)il(y) = P (uks1 — Prug) (y) < 0.

In the above equality, we used that P and P, commute. The inequality follows
from (4.10) and the fact that any Markov operator is positivity preserving. O

7.1. Mean value inequality for subcaloric functions

We will prove the following mean value inequality in a weak form. The in-
equality bounds from above a weak version of L>° norm on a space-time cylinder
by a weak version of L' norm. Our version of the mean value inequality in Lemma
7.7 is weaker than the one known for graphs [19, Theorem 4.1] mainly because we
rely on a weaker Sobolev-type inequality (5.2). Although the mean value inequality
is weaker, we will obtain on-diagonal upper bounds using Lemma 7.7. Using an
integral maximum principle argument, we will obtain Gaussian upper bounds in
Chapter 7.

LEMMA 7.7. Under the assumptions of Proposition 7.2, there exists constants
Cy > 0,n1 > 0 such that

Cq
(74)  inf sup  Pleevnlt2, o)y < 1 sup /
kGIIO,’fL]] yeB(;c7\/ﬁ/2) V(x7 \/’E) keIIO,TL]] B(x,\/ﬁ—&-h’)
for all n € N* satisfying n > nq, for all x € M, for all non-negative functions
u:Nx M — R that is Pr-subcaloric in [0,n] x B(z,/n).

The proof of Lemma 7.7 relies on Moser’s iteration procedure. Couhlon and
Grigor’yan [19, Section 4] obtained a similar (stronger) mean value inequality in the
graph setting using an iteration procedure. However they relied on a Faber-Krahn
inequality that is equivalent to the Sobolev inequality (5.1) and therefore does not
hold for discrete time Markov chains on continuous spaces.

In this section, we carry out Moser’s iteration procedure for subcaloric functions
relying on the weaker! Sobolev inequality (5.2). To prove the elementary iterative

ug du

Lweaker’ compared to Sobolev inequalities in [69, 70, 76, 25, 27, 45].
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step of iteration, we need the following discrete Caccioppoli inequality. The proof
is an adaptation [19, Proposition 4.5]. The next two Lemmas together may be
regarded as the parabolic version of Lemma 6.13.

LEMMA 7.8 (Caccioppoli inequality). Under the assumptions on Proposition
7.2, we have

(7.5) ak(u2)¢2du+15(uk¢,uw)gl—7 / / Vo=t uf ()P (. 2) dy dz
M 8 8 M JM

for all x € M, for all r > 0, for all non-negative functions ¢ : M — R>q satisfying
supp(¢)) € B(z,r), for all a,b € N, for all k € [a,b] and for all non-negative
functions v : N x M — R>¢ such that u is Pr-subcaloric in [a,b] x B(z,r).

ProOF. Fixx € M, r > h/ and define B := B(z,r+h'). Let u : Nx M — R
be such that u is Pp-subcaloric in [a,b] x B(x,r). We start with the elementary
inequality

(7.6) O (u®)(y) < —ur(y)Aur(y) + i (Auy(y))®
for all (k,y) € [a,b] x B(x,r), as we now show. Since u is Pr-subcaloric in [a, b] x
B(z,r), we have ury1(y) < Prug(y) for all (k,y) € [a,b] x B(z,r). Combined
with the fact that u is non-negative, we have u?_, (y) < (Ppu (y))? for all (k,y) €
[a,b] x B(x,r) which can be rearranged into (7.6).

Let (k,y) € [a,b] x B(z,r). Recall that B = B(z,r+1’). Using (7.6), integra-
tion by parts (6.31) and supp(¢)) C B(z,r), we have

/BwQak(UQ) d/’(' < _% /B /B (Vyzuk) (Vyz(uk¢2)) P1 (y’ Z) dy dz
& +1 [ Gu)ew) dy

The second term in (7.7) can be handled using Cauchy-Schwarz inequality as

@ = (- [ (T dz>2

< ([ mwaras) ([ @unrmis) az)

(7.8) - / (Vo)1 (y, 2) d.
M
For the first term in (7.7), we use product rule (6.27)

(7'9) vyz (de)Q) = Uk(z)vysz + w2(y)vyzuk~
Combining (7.7), (7.8) and (7.9), we have

| o+ [ | (0@ s

(7.10) < f% /B /B ug(2) (Vyij;z) (Vyzur)p1(y, 2) dy dz.
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The right side of (7.10) can be bounded using t;ts < t2/8 + 2t2 as

[—uk(2) (V=) (Vyzur)| < ur(2)0) (Vi) (Vyzup)
+ uk(2)(2) (V) (Vyzur)|

< S 0) + () (Vyeue)?

(7.11) + 4R (2) V.
Using p1(y, z) = p1(z,y) for p x p-almost every (y, z), we obtain
@12) [ [ ) (Vw2 dydz = [ [ 06 (V) 2 dy
Combining (7.10),(7.11) and (7.12), we deduce

/ P2 ()0 (u?) (y) dy + 3 / / V=) 9 (y)p1(y, 2) dy dz
(7.13) < 2/ / u2(2) (Vya0)? p1(y, ) dy dz.
Since supp(14) C B(xo,r — 1), using integration by parts (6.31) we have
(7.14) ewueiw) = 5 [ [ 190w ma(y.2) dy

Using product rule (6.27) and the inequality (t; + t2)? < 2(t? + t2), we obtain

\ (Ukz/))|2 = [ (y)(Vyzur) + uk(z)(vyzw)‘Q

(7.15) <2 (PP (W) (Vyeur)® + ui (2)(Vya9)?) -
Combining (7.13), (7.14), (7.15) and p X u-almost everywhere symmetry of p; yields
(7.5). O

REMARK 7.9. Recall the product rule of differentiation 0y (u?) = 2upOuy +
(8ru)® gives rise to the ‘error term’ (9yu)” which occurs due to discreteness of time.
This error term occurs in (7.7) and is controlled using Cauchy-Schwarz inequality
n (7.8). However the estimate given by (7.8) is sufficient to prove Caccioppoli
inequality only in the presence of some laziness. A similar difficulty arises in the
proof of discrete integral maximum principle and is the reason behind considering
the operator Py, as opposed to P in this section.

Next, we prove the elementary iterative step of Moser’s iteration in parabolic
setting. The proof relies on Caccioppoli inequality (7.5) and Sobolev inequality
(5.2). Let p. denote the counting measure on N and let (M,d,u) be a metric
measure space. We denote the product measure on N x M by fi := pe X p. Similar
0 (6.2), we define

~ 1 1/p
(716 (b(uvp)Q = <~/ u? dﬂ)
) ) Q) Q
for all p > 0, for all @ C N x M and for all functions v : N x M — Rx>o.
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LEMMA 7.10. Under the assumptions of Proposition 7.2, for all K1 > 1, there
exists C1 > 0,71 > 0 (depending on K1) such that

J)(Puv 2+ (4/6)7 H[(l - 02)0'0 + Jz@l}v‘h]} X B(l‘, (1 - J)T - h/))
(717) < Olailqz(qh 27 [a07 al]] X B(J;a r+ h/))

for all o € (0,1/2), for all x € M, for all v > ry, for all ag,a; € N satisfying
Ki'r 2 < gy—ay < K72 and for all non-negative functions v : Nx M — R>q such
that u is Pr-subcaloric in Jag,a1] x B(z,r).

PROOF. Let © € M, o € (0,1/2) and let r > r; > 4h’, where r; will be
determined later. Let u be a non-negative function that is Pr-subcaloric in [ag, a1] x
B(x,r).

We start by defining appropriate cut-off functions in space and time. Define
B:=B(x,r +h') and ¢ : M — Rxq as

by (y) == max <O,min (1, W)) .

Note that supp(¢,) C B(x,r) and ¢ = 1 on B(z, (1 — o)r). Define a, := [(1 —
o%)ag +0%a;] and x : N — R as

1 itk >a,
Xo (k) - O lf k S ao
ak:a;() otherwise.

Since wu is non-negative and Pp-subcaloric in [ag,a1] x B(z,r), by Caccioppoli
inequality (Lemma 7.8) and product rule (6.29), we obtain

| (@) w2 du+ Xo(k+1)
B 8

17
1) <)) [ [ Wt dyde+ ool [t d
BJB B

EB (T/Jguk, T)Z)auk)

for all k € [a,b). Since p; is (h, h')-compatible with (M, d, i), we have
5 (h/)2
(7.19) IV p1(y, 2) < Wpl(yaz)'
We use product rule (6.29), triangle inequality, x, < 1 and a, —ag > o2(a; —ag) >
o? K2 to deduce

2 < 2K,
(ag —ag) ~ o2r?

(720) |akX3'| < (Xd(k + 1) + Xa(k))|8kXU| < 2|8kXU| <

Combining (7.18), (7.19) and (7.20), there exists Cy > 0 such that

xXa(k+1)

(7.21) /w (0 (xo)?) de+ X2

C
S EP (Youp, Pouy) < 2—22/ ug dp
ag°r B

for all k € [ag,a1]. In (7.21), Cy depends only on K; and h'.
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Adding (7.21), from k = ag to k € [ag, a1], yields

Cy & )
22 < —=
@2 L fy s G 3 vk
(7.23) Z E(Youk, Youp) < Z / ug dp.
k=a,

Define wy, := Pg(%)sug). Since ¢ =1 on B(z, (1—o)r), by (4.10) wy, = Pp(¢oui) =
Puy, on B(z, (1 —o)r —h’). Combined with Holder inequality, we have
(7.24)

Do )20+2/9) 2 2/8 25/(5—2) (6-2)/8
(Pug) dp < wy dp wy, du .
B(z,(1—0)r—h') B B

Since Pp is a contraction in L?(B), we have

(7.25) [utin< [ zaza
B B

By Sobolev inequality (5.2), Lemma 4.22(a) and (4.10), we obtain
(7.26)

5-2)/8
/wzé/((ﬁf?) du o= < 05772 E(houp wguk)—i-T_Z/ wQUi du
5k = Vxg,r)?/? ) 5 °

By (7.22), (7.23),(7.24),(7.25), (7.26) and a; — ag < K172, there exists C3 > 0 such
that
(7.27)

! 2(142/8) O a 142/6
(Puy) dp < ———575 | (ro) / uy dp .
k:zaa /B(a:,(lfr)rh') V(x,17)2/? kz;ﬂ k

We choose 71 > 40/ so that a; < a1/ < (ap + a1)/2 for all ag,a; € N so that
a1 —ap > K;'r?. Since r > 4h' and o < 1/2, we have (1 —o)r —h' > (r/2) — h' >
/4. Hence by (2.4), K7 'r? < a; —ag < Kyr? along with (7.27), we have (7.17). O

PRrROOF OF LEMMA 7.7. We carry out Moser’s iteration in two stages. In the
first stage of the iteration, we obtain a L' to L? mean value inequality and in the
second stage we show a L? to L™ mean value inequality. Combining the two stages
yields the desired L' to L> mean value inequality. The proof relies on repeated
application of the elementary iterative step given by Lemma 7.10.

Let 71(0) := v/n+ k', a1(0) := 0, N := [log+/n] and 0 := 1+ (2/5). For the
first stage of iteration, we iteratively define the quantities

(i 1) = (r1(6) — ') (1 _ 3;‘:) Y

472 472
a(i+1) = Kl - 9N+1) (i) + 9N+14
fori=0,1,..., N. We define a non-increasing sequence of space-time cylinders

Q:(3) = [a1(i),n] x B(x,r;), fori=0,1,...,N+1.
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The following estimates are straightforward from definitions of r; and ay: There
exists ng > 0 such that for all n > ng, we have

N+1
r(N+1)>n [1-47) 377 | —2(logv/n + 3+ 1)
Jj=1
(7.28) > (7/8)v/n — 2(log vn + 3 + ') > (6/7)/n,
N+1

n—a(N+1)>n|1-472>"977 | —2(N+1)
j=1

(7.29) > (31/32)n — 2(log v/n + 2) > (15/16)n.

Let v : N x M — R>¢ be an arbitrary non-negative function that is Pr-
subcaloric in [0,n] x B(z,+/n) where n > nj. By Lemma 7.6 P'u is Pp-subcaloric
in [0,n] x B(x,+/n—1ih') and therefore Pr-subcaloric in [aq(2), n] x B(z,r1 (i) —h')
for all i = 0,1,..., N + 1. Hence by applying Lemma 7.10 for the function Piu
which is Pp-subcaloric on [ay(i),n] x B(x,r1(i) — h') with o = 4713~ (N+1=0) " we
have Cy > 0 such that
(730) é(Pi+1u7 207 Qi+1) < 023N+1_iq;(Piu7 27 Q’L)

for all = 0,1,..., N. We may choose K; = 8 in the application of Lemma 7.10
above due to (7.28) and (7.29).

By Hélder inequality along with (7.28), (7.29) and (2.4), there exists C5 > 0
such that

(7.31) G(Pu,2,Q1(i+1)) < Csd(PHu, 1, Q1 (i +1)* (P, 20, Q1 (i + 1))

foralli=1,2,...,N, where a =1— 8 =2/(§ +4). By (4.10), u > 0, (7.28),(7.29)
and (2.4), there exists Cy > 0 such that

for all i = 0,1,...,N 4+ 1. Combining (7.30), (7.31), (7.32), there exists C5 > 0
such that

(7.33)  (P™u,2,Q1(i + 1)) < C53°WVF1=D5(u, 1, Q1(0))*G(Plu, 2, Q1 ())”

for i =1,...,N. By iterating (7.33), we obtain
(7.34)

H(PNHLu,2, Q1 (N +1)) < CZ=0 7 35E08 33,1, Q4 (0)) 2 ) g(Pu, 2, Q1 (1))

Since u > 0, by Hoélder inequality, (4.10) and (2.4), there exists Cg,C7 > 0 such
that

/ (Puz-)2 dp < ( sup Pul>/ Pu; du
B(z,r1(1)) B(z,r1(1)) B(z,r1(1))
2
/ w; dp sup Co
Blap/atht) veB@ym VY, 1)

C 6/2 2

n

(7.35) <" | sup / u; dp
V(x,v/n) \icfo.n] J Bz,ymin)

IN
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for all ¢ € [0,n]. Combining (7.34), (7.35) along with (2.4) yields

B Cq
7.36 APV T, 2, Q1 (N 4+ 1)) € ——— sup /
(7.36) ( i ) V(2 V1) kefon] JBa,vmth)

for some Cg > 0. The inequality (7.36) is a L' to L? mean value inequality and
this concludes the first part of iteration.

For the second part, we define v = PN*lu, ay(0) = a1(N + 1) and r5(0) =
r1(N + 1). As before, we iteratively define

ro(i 4+ 1) := (ra(i) — h') (1 - ;;11) -1,

. 42 . 472
as(i+1) := {(1 - 9Z+1> as (i) + 9Z+1n-‘
fori =1,2,...,N + 1. As before, define a non-increasing sequence of space-time
cylinders by Q2 (i) := [az(i),n] x B(z,r2(7)) for i = 0,1,...,n. Note that Q2(0) =
Q1(N +1).
Similar to (7.28) and (7.29), there exists ny > ng such that for all n > nq,

(7.37) ra(i) > ro(N +1) > /n/2
(7.38) n—ag(i) >n—ax(N+1)>n/2

ug dp

forall i =0,1,..., N 4+ 1. By Jensen’s inequality, we have
(7.39) (P < (P [(P’v)e ])

for all i € N. By Lemma 7.6 and Lemma 7.5, the function (P*v)?" is Pp-subcaloric
in faz(i),n] x B(x,r2(i) —h) for all i = 0,1,..., N 4+ 1. Therefore by Lemma 7.10

for the function (P?v)?" and (7.39), there exists Cy > 0 such that
(7.40) G(P 10,2071 Qa(i + 1)) < CF 30V G(Piu, 26, Qo (i)

for i =0,1,...,N — 1. Iterating the inequalities (7.40), there exists C1o > 0 such
that

(741)  @(PNv,20N,Q2(N)) < Cr06(v,2,Q2(0)) = Crod(v, 2, Q1(N +1)).
There exists Ci1, Ci2, C13 > 0 such that, for all k € N

sup PNty (y) < C’H][ PNudu
yEB(x,r2(N+1)) B(y,h’)

1/(26™)
<Cn ][ (PNUk)QeN dp
B(y,h’)
1/(26™)
< Cyan®/ (40 ][ (PNUk)%N dp
B(z,r2(N))

1/(26™)
(742) S 013 (][ (PNUk)29N d,u)
B(z,r2(N))

The first line above follows from (4.10), the second line follows from Jensen’s in-
equality, the third line follows from (2.4) and the last line follows from the fact that
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n — nd/(49°*") is bounded in [2, 00). By (7.41), (7.42) and v = PNy, we have a
L? to L™ mean value inequality

(7.43) inf sup P2N*2y < C10Chsp(PV T u, 2, Q1 (N + 1)),
ke[0,n] B(xz,ry(N+1))
Combining (7.36) and (7.43), we have the desired inequality (7.4). O

7.2. On-diagonal upper bound
The following lemma provides a useful example of Pp-caloric function.

LEMMA 7.11. Let (M,d, u) be a metric measure space. Let P be Markov oper-
ator equipped with kernel (pg)ren that is (h, h')-compatible with (M,d, 1). Define
for all k € N, the function hy, : M x M — R by

(1
(7.44) b, ) = (PEpa(e, ) () =27 Y <i)pi+2(x,y)
i=0
where P, = (I + P)/2 as before. Then for all x € M, the function

(ka y) = hk(xa y)
is Pr-caloric in N x M.

PROOF. The second equality in (7.44) is a consequence of binomial theorem
and Lemma 4.2(c). Note that

Pr(hi(z,)(y) = PL(PLp2(z,))(y) = PL (p2(,) (9) = hira (@, ).
Therefore (k,y) — hi(x,y) is Pr-caloric in N x M for all € M. O

We are ready to prove Proposition 7.2 using the mean value inequality (7.4).

PROOF OF PROPOSITION 7.2. Let hy(z,y) be defined as (7.44). Choose ny €
N such that
(7.45) 2[logv/n]+4<n

for all n > ny. By Lemma 7.7, Lemma 7.11 and fM hi(z,y)dy = 1, there exists
ng > ny and C7 > 0 such that the Pp-caloric function (k,y) — hg(z,y) satisfies
the mean value inequality

(7.46)
C
inf p2loevnlt2p, (4 2) < inf sup p2llogvnl+2p, (g e
kefo,n] «l )_keﬂo,nﬂyeg(m,ﬁ/z) #l y>_V(1’»\/ﬁ)

for all x € M and for all n € N satisfying n > ns.
By (4.11), we have pa(z,-) —api(z,-) > 0 p-almost everywhere for each 2 € M.
By (4.12) of Lemma 4.10 and Lemma 4.7, we have

(7.47) pr(z, @) < a 'porkye (@,2) < o oy (2,2) > 7 pon () 2)
for all x € M and for all 2 < k < 2n. By (7.47) and (7.45),
(7.48) p2llog \/m”hk(x,x) > a 'pon(z, x)

for all z € M, for all k € [0,n] and for all n > ny. Combining (7.48), (4.12), (7.44)
and (7.46), there exists Co > 0 such that
Cs

(7.49) Pn(2, @) < Vi vn)
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for all n > 2ns. Since P is a contraction in L™ by (4.10), Lemma 4.2(c) and (2.4),
there exists C3,Cy > 0 and § > 2 such that

Cg < C4n5/2

x, b)) ~ V(z,/n)

for all x € M and for all n € N with n > 2. Combining (7.49) and (7.50) gives the
diagonal bound (7.2). O

(750) pn(xax) < V(

7.3. Discrete integral maximum principle

We use Discrete integral maximum principle and diagonal upper bound to
obtain Gaussian upper bounds. This approach is detailed in [20] for graphs. A
crucial assumption in [20] is the laziness assumption for the corresponding Markov
chain (X,)nen given by infyep Po(X1 = @) > 0. As explained in [20, Section
3] this laziness assumption is not too restrictive for graphs because under natural
conditions the iterated operator P2 corresponds to a lazy Markov chain. However
this fails to be true for continuous spaces.

Since the laziness assumption is unavoidable for discrete integral maximum
principle, we consider the Markov operator P, = (I + P)/2 instead of P. Using
discrete integral maximum principle corresponding to P, and diagonal estimate on
pr, we obtain off-diagonal estimates on hy defined in (7.44). We rely on careful
comparison between off-diagonal estimates of hy and the Markov kernel p,. The
comparison arguments are new but elementary and involves Stirling’s approxima-
tion. Our comparison arguments rely crucially on the compatibility assumption
(4.11). Similar comparison arguments for off-diagonal estimates was carried out
in [27, Section 3.2] to compare Markov chains on graphs with its corresponding
continuous time version.

The main technical tool to prove Gaussian upper bounds is the following dis-
crete integral maximum principle. The statement below and its proof is adapted
from [20, Proposition 2.1].

ProprosITION 7.12 (Discrete integral maximum principle). Suppose that P is
a Markov operator that is (h, h')-compatible with a metric measure space (M, d, ).
Let f be a strictly positive continuous function on [0,n] x M such that,

2
4frt1

for allz € M and k € [0,n— 1] where Vpf| is as defined in (6.32). Let u: N x M
bounded function that is Pr-caloric on [0,n—1] x M satisfying supp(ug) C B(w, R)
for some w € M, R € (0,00). Then the function

(7.51) O f(z) +

ks Jp = Ji(u) ::/ ug fr dp
M

is mon-increasing in [0, n].

PROOF. Since supp(ug) € B(w,R), by (4.10) supp(ur) € B(w,R + kh').
Therefore by continuity of fx and boundedness of w all the integrals Jy are finite.
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By product rule (6.29), (6.30) and dxu = —Awuyg /2, we have for all k € [0,n — 1]
O (u / O(u?f)d
= 2/ ukakuka du + / (Gku)2 fk+1 du + / ui@kf d,LL
M M M

(752) = —/ ukkaAuk d,u+/ (ak’u)Z fk+1 d/L+/ u%@kfdu
M

M M
Using integration by parts (6.31) and product rule (6.27), the first term in (7.52) is

- /M wp fos1 Aug, dpt

__! / / (Ve 0) Viry (w1 s 1)1 (2, y) dy

_ ! / / Vay ) Fip1 () + (Vayur)un(y)(Vay fr1)] pr (2, ) dy da
(7.53) — -1 / / Voot fi1 () + (Vg )ur (@) (Vg fisn)] 91 (2, y) dy de

In order to get the last equation we switch x and y and use the fact that py (z,y) =
p1(y,x) for p x p-almost every (z,y). To handle the second term in (7.52), we use
Orpu = —Auy /2 (7.8) to obtain

(754) /M(aku)2fk+1 d/J, < i /M /M(meuk)szJrl(x)pl (‘ruy) dy dx

for all k € [0,n — 1]. Substituting (7.53) and (7.54) in (7.52), we deduce
1
0w <1 [ [ (Vaufhen@ppdyde+ [ w0 ds
4 S M
1
- § /M /M(V:vyuk:)uk(x)(vakarl)pl (.’17, y) dy dx

2
_ 1 ug(x)
= 71 /]V[ /M <vzyuk fk+1(33) + ‘](%H(x)vmyfk_;'_l) pl(gjvy) dy dx

Ve fiiil* ()
+ [ ui(z) | —————=2 + Ok f(z) | do
/M #l )< Afry1(x) k(@)
The given condition (7.51) ensures that OpJ < 0, that is Ji11 < Ji for all k €
[0,n —1]. O

The following lemma essentially follow from [20, Proposition 2.5]. We repeat
the proof for completeness. Lemma 7.13 provides a weight function f that will be
used in the application of discrete integral maximum principle.

LEMMA 7.13. Let (M,d, u) be a metric measure space and let P be a Markov
operator that is (h,h')-compatible with (M,d, ). Let o : M — R be a 1-Lipschitz
function such that inf o > h'. There exists a positive number Dy such that for all
D > D, the weight function

0'2 X
(7.55) fu(@) = fP(x) = exp <D(n+(1)_k)>
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satisfies

Vp il

O f(z) + ——————
e/ (@) 4fre+1

for allz € M, for alln € N* and k € [0,n — 1].

PROOF. Note that

0= (o0 (=) - )f’““”

(7.56) > <exp< ((’;(x)k 1) For (@

(z) <0.

and

Vo fra (@) = /Mpl(%y) <6XP <m> —exp (D((;?%))Q dy

= fip (@) /Mpl(x,y) (eXp (W) - 1>2 dy

for all k£ € [0,n — 1]. By the Lipschitz condition and the hypothesis o(x) > 1, we
have

0% (@) = ()] = lo(2) — o(y)llo(z) + o(y)| < 2h'o(2) + (1)* < 3h o (x)

for all z,y € M such that d(z,y) < h'. Next we use the following elementary
inequality: if ff| < s, then
|et—1‘ <e®—1.

Combining together the previous lines and (4.10), we obtain
2 3h o(x) 2
(7.57) Ve (@) < [ (2) (exp (D(n—k) -1 .
Next let us use another elementary fact: there exists B > 0 such that, for all ¢ > 0,

(el — 1) < 4(eB”° —1).
Setting t = 3h/o(x)/(D(n — k)), we obtain that

1 3 o(x) 2 B(3h')%0%(x)
- 22T ) ) < SWRTOAL) )y,
oo (o) 1) = (Tt Ty
Hence, if D > Dy := 2B [3h/]?, then the right hand side of the above inequality is

bounded from above by
a(CONR N
P oD —k2)

Combining with (7.56) and (7.57), we obtain

|V4§1le((z))|2 < fk'+i(33) (exp (%) ) 1>2

o%(x
< frt1(z) <9XP <2D(n(—)k)2> - 1) < =0k f(z)
for all z € M and for all k € [0,n — 1]. O

Next, we need the following estimate on hy defined in (7.44). The proof uses
the diagonal estimate in Proposition 7.2.
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LEMMA 7.14. Under the assumptions of Proposition 7.1, there exists Cy > 0
such that
Co

7.58 h2 (z,y)dy < —————
(7.5%) ] iy < s
for alln € N and for all x € M where h is as defined in (7.44).

PROOF. By (7.44) of Lemma 7.11, Lemma 4.2(c) and Vandermonde’s convolu-
tion formula, we have

/M(hn(w,y))Qdy =47" /M (f: (?)pwz(x,y))Q dy

=0
2n m
7.59 =47" % )
(7.59 S (7 et
for all x € M. By Proposition 7.2, there exists C; > 0 such that
Ch
x,1) < ————
PED) S e B

for all k¥ > 2 and for all x € M. Combined with (7.59) and (2.4), we obtain
Cy > 0,6 > 2 such that

| (o dy < 42 (Qf) e (Lilm)

O,y & <2n> (2n+4)5/2
7.60 < — = 4"
(7.60) T V(x,v2n+4) ; i i+4

for all n € N and all x € M. By the above inequality, we have

2n 6/2 2n K
2n 2n+4 2n 2n+ 4
4’”5 <4’”E
. <z>(2+4> - ‘ <Z><Z+4)

=0 =0

(761) < 42.‘-{ |Z <2TL + K‘,) (2n+k) < 42){

1+ K

where k := [§/2] € N*. Combining (7.60), (7.61) along with (2.4) implies (7.58).

O

Our next result involves repeated application of the discrete integral maximum
principle.

LEMMA 7.15. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)ioe and (VD)o. Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with (M,d, p) for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). Define

(7.62) Ep(k,z) = /M hi(x,z) exp (W) dz

for all k € N* and x € M, where dy(z, z) := max(d(z, z),h’) and hy is defined by
(7.44). There exists C,D > 0 such that

(7.63) Ep(k,z) < o TD
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for all x € M and for all k € N*.

PROOF. Let x € M be an arbitrary point. The constants below do not depend
on the choice of x. Define

I(R, k) =I(R,k,x) := / hi(z,z)dz
B(z,R)®

for R > 0 and k € N. We start by estimating I (R, k) using iteration. The iterative
step is contained in the following estimate: There exists D7 > 0 such that

(7.64) I(R,n) < exp((h')*/D1) <I(r, k) + exp (M) /M hi(z,2) dz>

for all R,r satisfying R > r > 0, for all n € N* and for all k € [0,n — 1].
To prove (7.64), we define

or(z) == max(R — d(z,2),0) + /.
Note that og is 1-Lipschitz with inf og > h'. Define
2
—oxp (0B
fk?(z) .—exp( Dl(n+1k))

for all z € M and all k € [0,n], where D is the constant from Lemma 7.13. Since
fr > exp(—(h)2/D1) in B(z, R)E, we have

(7.65)  I(R,n) = / B2 (2, 2) d= < exp((W)2/Ds) / B2 (2, 2) fo(2) d.
B(z,R)C M
By Lemma 7.13 and Proposition 7.12, we have

(7.66) /M R2(x, 2) fn(2) dz < /M hi(x, 2) fre(2) dz

for all k € [0,n]. Since og > R —r in B(z,r) and f; < 1, we have

[ peanea= [ reaneds [ e e

B(z,r)
(R—r1)? / 2
<I ——
< I(r k) +exp ( Din i 1-8)) Joen hi(x,2)dz

—r)?
(7.67) < I(r,k) + exp <2](§(n_)k)> /M hi(z,z)dz

for all k € [0,n — 1] and for all R > r > 0. Combining (7.65), (7.66) and (7.67),
we obtain (7.64). Now by Lemma 7.14 and (7.64), there exists C; > 1 such that

(7.68)  I(R,n) <exp((h)?/D;) (I(r, k) + exp (— 21()]?(7_1 7;) k‘)) V(wc,’l\/E))

for all n € N*, for all k € [0,n — 1] and for all R > r > 0.
Next, we show that there exists Cy, C3 > 0 such that

Cs R?

for all R > 10h’ and for all k € N*. By (4.10) and (7.44), we have I(R, k) = 0 if
R > (k+2)h'. Hence it suffices to consider the case (k + 2)h' > R.
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Given any finite decreasing sequence {R; g‘;l of real numbers and any finite
strictly decreasing sequence {kj}go:l such that Ry = R, k1 = k and I(R;,, k;,) =0,
we can iterate (7.65) and obtain

0 Cyexp((W)?) Dy — Rj)?
(7.70) I(Rk) <> CLopURT /O o, (M)’

j=1 V(JZ, V kj-‘rl)

Let R > 10h’ and define
Rj:==R/2+R/(j+1),t; :=k/277 k; := [t;]

so that Ry = R and ky = k. Let jo =min{j : R; > h/(k; +2)} (note that jo > 1
since (k +2)h' > R). By construction one has I(Rj,, k;,) = 0. Also, for all j < jo
we have k; > R; —1 > R/2 — 1. Since R > 10h/, we have

1 (R; 1/ R
tj—tj+1=tj/2z(kj—1)/222(hf—3) 22(%,—3) >1

which means k; > k;11 for all j € [1, jo — 1]. Therefore

(7.71) kj—kj1 <k/271— K/ +1=Fk/27 +1<k/277!
for all j € [1,jo — 1]. Using (7.71) and the identity
R2
(Rj — Rj1)* =

(J+1)20G +2)%
we obtain
(R — Rj1)? _ R?

7.72 — 2 "I > (j4+1),
(7.72) 2D (k; — kj41) GrU D

where ( o 2
D+ 1P +1
C3 = max 52 € (0,00)
Therefore by (7.70) and (7.72), we have
jo—1 .
Cl (j(h/)2 R2 ) )

7.73 I(R, k) < ox B
e < Y g e (PpE - g

By (7.71) and (2.4), there exists Cy > 1 such that
V(x’ \/t?) S 04

V(.%‘, V tj+1)

for all j € [1,jo — 1]. Therefore
Ve, Vi) Ve
Viz,tjy) V(e Viz)
Thus setting L := log(C1Cy), we obtain

Cy 1 .
exp(jL),
Vi(z,/tiv1) ~ V(x,Vk) L)
for all j € [1,jo — 1]. Therefore by (7.73), we have

(7.74)  I(R.k) < Wexp (—é‘i) jflexp (—j (C{Zf - (’;'32)) .

VB V)
(i) Vi) Ot

|4
v

<
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for all R > 10R’ and for all &k € N* satisfying R < (k+2)h’. We consider two cases.
Case 1: Let ) (Y2
R h
LR SR A T
Cok D, - %
In this case, by (7.74) we have
Jo—1

j=1
Case 2: Let

R2 (hl)2
— — L — log 2
Csk D, ~ %
In this case we estimate I(R, k) differently as
Ch
I(R, k g/ h2(z,2)dz < ————
(B0 < [ B <
2C, ( (M) R? ) Cs ( R? >
<——exp| L+ —— )| =————exp|———|.
= V(z,VE) P Dy Csk V(x,Vk) P\ Gk
Combining the two cases we have (7.69).
Finally, we are ready to prove (7.63). Define for j € N,
.AR — {ZGM:dl(LU,Z)SR}, . j=0
! {zeM:27'R<dy(z,2) <2'R}, j>1,
and
= d3(z, 2)
— 2 1\
(7.75) Ep(k,z) = ;AR h2(z) eXp< o ) dz.
For all D > 0 and for all R > A’ the first term admits the estimate
d3(z,z) 4 R?
7.76 h2(z, z) ex (“) dz< —————exp| — .
w0 [ e sen (T o5 (o
Now for the remaining terms we have
d3(z,z) 4) R? .
(7.77) " hi(z, 2) exp < 1Dk ) dz < exp < Dk ) I(27'R k)

for all R > 10h’ and j € N*. By (7.69)

o Csy 4j1R2>
1P 'Rk < —2 ¢ (- :
( )< Ve vk P\ Gk

Combining with (7.77)

& (z, 2) PR\ O Y1 R?
i e (A5) s <ow () s oo (5550
” o(z z)exp( Dk z < exp Dk ) Vi, \/E) ) Gik

(7.78) < Cy ( 4j—1R2>
. ——exp| ——=—

~ Vi(z,VE) P Dk
for all j € N*, provided D > 5C3 and R > 10h’. Define

o (11n/)?
(7.79) D := max (503, g2 )
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Then by (7.75), (7.76) and (7.78) we obtain, for all R > 10h’

& R? Gy 411 R?
(7.80) Ep(k,z) < m €xXp <.Dk) + m ;GXP <_Dk) .

Given k € N* choose R so that R?/(Dk) = log 2 which by (7.79) satisfies R > 10/’.
Therefore by (7.80), we conclude

2C, Cy > i1 2C1 + Cq
Ep(k,z) < + < ——F—=
(k. ) V(z,vVk) V(z,Vk) ; V(z, Vk)
which is the desired estimate (7.63). O

We use Lemma 7.15 to prove a Gaussian upper bound for hy.

LEMMA 7.16. Under the assumptions of Proposition 7.1, there exists positive
reals Cy, Doy such that

CO dz(l',y)
(7.81) har(z,y) < mexp ( Dok >

for all z,y € M and for all k € N*.

PROOF. By triangle inequality and the inequality (a + b)? < 2(a? + b?), we
have

(7.82) di(z,y)* < 2(dy(2,2)* + di(y, 2)?)

for all z,y,z € M, where di(z,y) := max(d(z,y),h’) as before. By (4.12), (7.82)
and Cauchy-Schwarz inequality we have

hok(z,y) = ikj (2Z.k> <;>2k Piv2(2,y)

=0

3 o /1) B
Sa § ; 3 pi+a(z,y) =« L hi(, 2)hi(y, 2) dz
i=0

< 072/ hk(z7Z)hk(z7y)edl(m,z)2/2Dk6d1(z,y)2/2Dkefd1(z,y)2/4Dk dz
M

< a_2\/ED(ka-T)ED(k‘,y)e_d?(%y)MDk
(783) S a72\/ED(k',[E)ED(k’y)eid(x*y)z/‘le

for all ,y € M, for all k € N* and for all D > 0, where o > 0 is from (4.11). The
equality in the second line above follows from a calculation analogous to (7.59).

The bound (7.83) and Lemma 7.15 implies that there exists Cy, D1 > 0 such
that

Cy & (z,y)
(7.84) har(@,y) < (V(m,\/E)V(y,\/E))l/Q P <_ D1k )
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for all ,y € M and for all k € N*. However by (2.4), there exists Cy, C3,Cy >
0,6 > 0 such that

<

V(z,VE) _ V(yVE+d(z,y)) d(z,y)\°
V(g /R) R CEE (“ \/E)

. < _ <
(7.85) Cs <1 + i ) Cyexp ( Dok )

for all x,y € M. Combining (7.84) and (7.85) yields the desired Gaussian upper
bound (7.81). O

7.4. Comparison with lazy random walks

We want to convert the Gaussian bounds on hj given by Lemma 7.16 to Gauss-
ian bounds on py. To accomplish this we need the following elementary polynomial
identities.

LEMMA 7.17. For all B > 0 and for alln € N*, we have the following polynomial
identities

(7.86) "= (Z)@”’“(zm“z

ke[1,n].k odd

+ > (";1)&”-1%—@“(%—mz),

ke[l,n—1],k odd
(7.87)

1+2\" 1 n\ (1+8\"F /1\* _
(F) =w = () (@) o
ke[1l,n],k odd

T S ) O

ke[l,n—1],k odd

where (z — 8)° =1 and
_ —(n—1—k) . n\ (t—1\ _._1_4 n—1
spk = (1+0) ! z—;»l<z)< 2 )5 ! Z( % )

PRrROOF. Note that

(7.88) 2t =2z (W) + (2* — 2B2) (z”—l ;(ff g)z)"*)

for all z # . To obtain (7.86), we expand 2", 2" "1 (28— 2)", (26— 2)" ! in (7.88)
using binomial expansion and the substitution

c=f+(z—B) and 28—z = — (= — B).
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To show (7.87), we use binomial expansion on (1 4 z)" and then use (7.86) to
obtain

(1+2)" = 1+§n: (:‘>z
i=1
=1+ i Z (:L) (;) BiF(z — )1z

i=1 ke[1,i],k odd

(7.89) + zn: > (T;) (Z ; 1) Bz = BMER - 282).

i=1 ke[1,i—1],k odd
The coefficient of (z — 8)*~1z in (7.89) is

S0 ()5 (o

1=

Similarly, the coefficient of (z — 8)*~1(22 — 282) in (7.89) is
i n 1 —1 i—1—k n— n—1-k i—1—k
> (0 ) 200
i=k+1 1=k+1
n—=1=Fk\ i 14
)2 (D)
i=k+1

n
1 nlk
k>+5

v
3
>

This gives (7.87) with s, > ("1). O

We are now prepared to prove Gaussian upper bounds for py.

PRrROOF OF PROPOSITION 7.1. By Lemma 4.10 there exists 8 > 0 such that
Uk, Vi : M x M — R satisfy
(7.90) up(z,y) = [(P = B1)*pa(,)] (y) > 0,
(7.91) (@, y) = [(P = BD)* (ps(,.) — 2Bp2(=,-))] (y) > 0
for all ,y € M and for all even non-negative integers k. For instance § = «/2

where « is given by (4.11) would satisfy the above requirements.
Using Lemma 4.2(c) and (7.86) of Lemma 7.17, we have

Prt1(x,y) = [P"pi(z,-)] (y)

= Y (Z) B Fug_1(x,y)

ke[1l,n],k odd

(7.92) + Z (n ; 1> B Ry (2,y)

ke[1,n—1],k odd
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for all n € N* and for all z,y € M. By (7.90), (7.91), Lemma 4.10 and Lemma
7.17, we have

han(,y) = [((+ P)/2)*" ol )] ()

o, 1+5 2n—k 1 k
>« Z <k> (2) B up—1(2,y)
ke[1,2n],k odd

2n—1—k k+1
(793) + Z Son,k (l_gﬂ) (;) Uk—l(x7y)

1<k<2n—1,k odd
for all z,y € M. Define the ratio of coefficients in (7.92) and (7.93) as

n 2n—k k e 2n—1-1 141
) Q) o) @7
(7.94) Afn = - - and b, = — ;
(w)Bm~ ()8
for each k € [1,n] and for each I € [1,1 —1]. If k € [1,n — 1], then
agt1n B 2n—k

akn  1+Bn—k’

Therefore ag+1,n > ag,, if and only if & > n(1 — 8). Thus ay,, reaches minimum
for k = [n(1 — B)]. By Stirling’s approximation there exists constant C; > 0 such
that for all r € N*,

Cl—lrr+(1/2)e—7" <rl < 01TT+(1/2)€_T.
We use the Stirling’s approximation to estimate ag,, at k& = n(l — 8) + € where

e=[n(l—p)] —n(l—pB)€l0,1). There exists ¢; > 0 such that

min a >a _
ke[l,n] kn = Q[n(1-8)].n

01—4(2n)2n+(1/2)672n(ﬁn _ E)Bn+(1/2)feefﬂn+s (1 4 ﬂ)(1+5)n—ﬁ
22nnn+(1/2)e—n(n(1 4 ﬂ) _ 6)n(1+[3)+(1/2)—ee—n(1+,3)+€6,6’n—e

>C1

for all n € N* satisfying n > 2/8. Therefore there exists ca > 0 such that

(7.95) Ak > C2
for all n € N* and for all k € [1,k]. Similarly,

1 1
(7.96) bin = 50+1n > 5€2

for all n € N* and for all [ € [1,n — 1]. Combining (7.90), (7.91), (7.92), (7.93),
(7.94), (7.95) and(7.96), there exists cs > 0 such that

(7.97) hon(z,y) > c3pni1(z,y)
for all n € N*, and for all z,y € M. Combining (7.97) along with Lemma 7.16
yields the Gaussian upper bound (7.1). O

We have shown the following equivalence

THEOREM 7.18. Let (M,d, ) be a quasi-b-geodesic metric measure space sat-
isfying (V. D)oc. Suppose that a Markov operator P has a kernel p that is (h,h')-
compatible with (M,d, ) for some h > b. Then the following are equivalent:
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(i) Sobolev inequality (5.2).
(i) Large scale volume doubling property (VD)o and Gaussian upper bounds

(GUE).
PrOOF. By Corollary 5.11, (ii) implies (i).
Next, we assume the Sobolev inequality (5.2). By Proposition 5.12 we have
(VD). In addition, by Proposition 7.1 we have (GUE). This proves (i) implies
(i). O



CHAPTER 8

Gaussian lower bounds

In this chapter, we use elliptic Harnack inequality and Gaussian upper bounds
to establish Gaussian lower bounds. The proofs in this chapter is adapted from [45].
In [45], Hebisch and Saloff-Coste provide an alternate approach to prove parabolic
Harnack inequality using elliptic Harnack inequality and Gaussian upper bounds.
This method avoids relying on the full strength of Moser’s iteration method in
parabolic setting.

Although [45] concerns diffusions on strictly local Dirichlet spaces, we will
see that their methods can be extended to discrete time Markov chains on quasi-
geodesic spaces. This extension was alluded to in [45] where the authors say “This
route to the parabolic Harnack inequality seems especially valuable in the setting
of analysis on graphs which is not covered by the present strictly local Dirichlet
space framework. In fact, the results above originated from our desire to overcome
some of the difficulties that appear in the case of graphs. This will be developed
elsewhere.”

The main result of this chapter is the following Gaussian lower bound.

PROPOSITION 8.1. Let (M,d,p) be a quasi-b-geodesic metric measure space
satisfying (VD)ioe, (V D)oo, diam(M) = oo and Poincaré inequality at scale h (P)},.
Suppose that a Markov operator P has a kernel p that is (h,h')-compatible with
respect to p for some h > b. Then the corresponding kernel py satisfies Gaussian
lower bounds (GLE).

Note that under the assumptions of Proposition 8.1, we have Gaussian upper
bounds (GUE). This is a direct consequence of Theorem 5.1 and Proposition 7.1.

We focus on the case diam(M) = oo just for simplicity. In fact, we expect
these methods to work when diam(M) < oco. However when the space has finite
diameter, it is important to find optimal constants (or close to optimal) for various
functional inequalities. To compute these optimal constants, one has to exploit the
specific structure of the Markov chain under consideration. We plan to address the
finite diameter case in a sequel.

8.1. On-diagonal lower bounds

The first step is to obtain lower bounds on pg(z,x). It is well-known that
Gaussian upper bounds implies a matching diagonal lower bounds. We repeat the
proof for convenience.

LEMMA 8.2. Under the assumption of Proposition 8.1, there exists ¢y > 0 such
that

> Y
Pol ) 2 70, )
for all x € M and for all n € N satisfying n > 2.

105
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PRrROOF. By Lemma 4.10 it suffices to prove the inequality for even n, since
there exists a > 0 such that

Pok+1(z, ) > apay(z, x)

for all x € M and for all kK € N*.
Let n € N* be even. By Cauchy-Schwarz inequality and Lemma 4.2(c), we have

pn(w,m)z/ pi/z($7y)dy2/ P o (,y) dy
M B(z,VT)

) 2
> m </B(z,\/f) pn/2($7y)dy>

2
1
(81) = m <1 - /B(;I;’\/T)G pn/2(‘r7y)dy>

for all ' > 0 and for all n € 2N*.
By Theorem 5.1 and Proposition 7.1 we have (GUE). By (GUE), there exists
Cl, Cy >0

Cl dQ(x’ y)
(8.2) pr(z,y) < m exp (— Coke )

for all z,y € M and k € N*. There exists C3 > 1 such that for all A >
max(1, (8C20)?), we have

/ mydy—Z/ (@, y) dy
B(a:,\/ATc)G i1/ Ak<d(z,y) <21m

V(z,21VAR) 4iT
=G Z P <_402k>

V(z,Vk)
G . 4°A

< (s Zexp <§1og 2VA) — >
5 (o1 (27) - 42
S : 4°A

<c 2VA- 1)

<c e !

> 4iA A
&) <G e (‘ cz> = Caep (‘ac)

for all kK € N* and for all z € M. We used (8.2) in the second line above and (2.4)
in the third line. By (8.3), there exists A; > 1 such that

i=1

(8.4) pr(r,y)dy < 1/2

~/B(x,\/A1k)G

for all k € N* and for all z € M. We choose T = A;(n/2) in (8.1) and use (8.4)
and (2.4), to obtain

1 ‘1
pnlz,7) 2 2V (x, (A1n/2)1/2) - Viz,v/n)

for all n € 2N* and for all x € M. O
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The following lemma is a discrete time analog of [45, Lemma 3.7], where we
transfer the on-diagonal lower bound given by Lemma 8.2 to on-diagonal lower
bound for the ‘Dirichlet kernel” p? on a ball B defined in (4.27).

LEMMA 8.3. Under the assumptions of Proposition 8.1, there exists ¢ > 0 and
A > max(1,h") such that

c
V(x,/n)
for all x € M, for all n € N* with n > 2 and for all v > A\/n

pg(ﬂw) (z,2) >

PROOF. We abbreviate B(x,r) by B. We denote the exit time from ball B by
T:=min{k : X ¢ B}

where (X%)ren is the Markov chain driven by the kernel pg.
By strong Markov property, the Dirichlet kernel p? can be expressed in terms
of p; as

(85) pf(x,x) = pn(l‘ax) - E; [ n—T(XT7 x)]-[[l,nfl}] (T)}

for all n > 2 and for all x+ € M, where E, denotes that Xqg = x. If we choose
A > k', by (4.10),we can rewrite (8.5) as

(86) pf(l’,:t) = pn(I,.’E) - E’E [ n—T(X'ra‘r)]-[[Q,n—Z]] (T)}

for all n > 2 and for all z € M with B = B(x,r) satisfying » > h/. For the first
term in (8.6), by Lemma 8.2, there exists ¢; > 0 such that

pn(xax) > W

for all x € M and for all n > 2.
We use Gaussian upper bound (GUE) to estimate the second term in (8.6).
There exists C1, Cs, C3, Cy,6 > 0 and such that

(8.7)

Cq —d(z,y)*/(C2l
E, 0P (Xo i) < sup sup Ol edar/can
[ ( ) [1,n 1]]( )] 1€[2,n—2] y¢B(z,r) V(IL’, \/Z)
<  sup Le*(ﬁ”)/(cm
tef2n-2] V(z, V1)
Cs /2 ,—(A%n)/(Cal
<—— sup (n/l /2= (ATm)/(Cal)
V(z,+/n) le[[2,n—2]]( /)
Cy
8.8 = AV (z, V)
(8.8) ~ AV (z,y/n)

for all x € M, for all n > 2, for all A > I/ and for all B = B(z,r) with r > Ay/n >
h’. In the first line above we used (8.2), in the second line we used d(x,y) > r >
Ay/n and in the third line we used (2.4).

Clearly we can choose A > h' large enough such that Cy/A° < ¢;/2. Therefore
by (8.6),(8.7) and (8.8), we obtain the desired bound. O
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8.2. Spectrum of the Dirichlet Laplacian on balls

Our next result is a bound on the spectrum of Pp or alternatively on the
Dirichlet Laplacian Ap,. The following Proposition is a discrete time analog of
[45, Theorem 2.5]. However unlike [45], we cannot apply the stronger Sobolev
inequality (5.1).

PROPOSITION 8.4. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (VD)ioe, (VD)o and Poincaré inequality at scale h (P),. Suppose that
a Markov operator P has a kernel p that is (h, h')-compatible with respect to u for
some h > b. Then there exists positive reals a,eq such that

a
8.9 Pyiar — ~ Poomfll. <1-2
(8.9) ” B(z, )H242 f€L2(B(z5AI)))?Hf”2:1 ” B(z, )f||2 r2

for all x € M and for all r € R satisfying r > h' and r < eg diam(M).

PROOF. We abbreviate the ball B(z,r) by B. Note that Pp is a contraction
in L?*(B), that is | Pg|,_,, < 1. Since Pp is a bounded, self-adjoint operator in
L?(B), by [18, Proposition 2.13] we have

\(f, P f)Bl

(8.10) |Ppllyyy = sup 3
re2)szo |\ fl5

where (-, ) p denotes the inner product in L?(B). Therefore it suffices to show that

there exists positive reals a, ¢y such that

(8.11) —(1—%>§7<f’PB§>B§1—7
r 1£12 r

for all f € L?(B) and for all B = B(x,r) with r > A’ and r < €y diam(M).

We prove (8.10) in two steps. We start with the proof of upper bound in (8.11).
With slight abuse of notation, we consider L?(B) C L?(M) using the map given
by (4.29). By this identification, a function f € L?*(M) with supp(f) C B can be
considered to be in L?(B).

By Lemma 4.22(a), we can rewrite the upper bound in (8.11) as

(8.12) EU ) P S) WMl = U Pofls o

2 2 2
17112 17112 I1£112 r
Since E(If], If]) < E(f, f), in order to show (8.12) it suffices to consider the case
f=>o.
By (5.25) and (5.26) of Proposition 5.5 along with Lemma 4.20(b), there exists
Cn > 0 such that

a

24(4/6) Cyr? - 2 4/5
(13)  IPARTYY < et (600 2 IPAIR) 11

for all z € M, for all » > 0 and for all functions f € L?(M) supported in B(x,7).
By (8.13), we have

2 (1Pf15° Cn Cn(Kr)?
. — <
(8.14) 1211l < Hf||‘11/5 V(x,Kr)2/8 | = V(x, Kr)2/9

(171 = 12511
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for all z € M, for all r > 0, for all K > 1 and for all functions f € L?(M) supported
in B(x,r). If f >0, we have

Hence by Holder inequality, (4.10) and (2.4), there exists Cy > 0 such that

(8.15) £l = I1P£Il < (V(@,r + 1)) 7| Pflly < GV (@, r) 2 | Pfl,

for all f > 0 with f € L?>(M) and supp(f) C B(x,r) and r > h/. Combining (8.11)
and (8.15), we have

1/2‘

- CNV (x,1)*/?
8100 1P (e - e ) < otin? (1715 - 1P1E)

for all K > 1, for all » > 1/, for all # € M and for all f € L?(M) with supp(f) C
B(z,r) and f > 0. By Lemma 2.12, there exists K > 1 such that

ONV(xa 7,)2/6
V(x, Kr)2/9

for all z € M, for all » > h’ and all r < diam(M)/K. Combining (8.16) and (8.17),
there exists g = K~! > 0 ,Cy > 0 such that

(8.18) 1P£I5 < Car (113 - 1PA11)

for all z € M, for all f € L?*(M) with supp(f) C B(z,r) and f > 0, where r
satisfies r > h' and r < ¢y diam(M). By Lemma 4.20(a ) and (8.18), there exists
a > 0 such that

(8.19)
EQLLAD o &AL _ 1 (1_ <P|f>||§) Lo o
> 5 .

EULD) 1 )
[F T T 1111 TiE 15 Cor?) =~

for all x € M, for all f € L?(M) with supp(f) C B(xz,r), where r satisfies r > h’
and r < ¢g diam(M). Therefore by (8.12) and (8.19), there exists ¢y > 0 and a > 0
such that

1 __
(8.17) —opte

P,
<.f7 B£>B <1-— =

[1£1l2 r
for all f € L?(B) and for all B = B(x,r) with » > k' and r < ¢y diam(M). By
integration by parts (6.31) and symmetry of p; we have

U L)+ NI = //py Va2 + (Vayf)?] dyda

(8.20)

(3.21) //p ) (@) + [ (y)) dyde = 2] 1|1
for all f € L?(M). Combining (8.19) and (8.21), there exists a, ¢y > 0 such that
522) ELS) , S, o

I1£15 1115 r

for all x € M, for all f € L?(M) with supp(f) C B(z,r), where r satisfies r > h’
and r < ¢y diam(M). Therefore by (8.22) and Lemma 4.22(a), there exists g > 0
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and a > 0 such that
P

(8.23) % o (1 _ %)
1115 r

for all f € L?(B) and for all B = B(x,r) with » > A’ and r < ¢y diam(M).
Combining (8.20) and (8.23) yields (8.11), which along with (8.10) implies (8.9). O

REMARK 8.5.
(a) A simple consequence of Proposition 8.4 is that there exists a, eg > 0 such that

Spectrum(Pp) C [— (1 - ar_Z) ,1— ar_Q] ,  Spectrum(Ap,) C [ar‘z, 2 — aT_Q]

for all x € M and for all r satisfying r» > h’ and r < ¢y diam(M).
(b) If diam(M) = oo, then for all balls B = B(x,r) with r € (0,00), we have

1Bl < 1.

The case r > h' is clear from Proposition 8.4. The case r < h’ follows from
||PB||2—>2 < ||PB(m,h’)} 252"

(¢) Note that if diam(M) < oo, then the conclusion Proposition 8.4 is vacuously
true as one can choose ey = h’/(2diam(M)). However if A’ < diam(M) and if
we have good control of the constants in various functional inequalities, we can
prove useful estimates which in turn yields applications to estimates on mixing
times. We will extend the techniques developed here to finite diameter spaces
elsewhere.

(d) Note that the condition r < €y diam (M) is necessary. Too see this consider the
case when diam(M) < oo and B(z,r) = M. It is clear that (8.9) fails to be
true because Pp(; 1 = 1.

8.3. Near diagonal lower bound

As in [45, Proposition 3.5], the following near diagonal estimate is an important
step in obtaining Gaussian lower bounds.

PROPOSITION 8.6 (Near diagonal lower bound). Under the same assumptions
as in Proposition 8.1, there exists positive reals €1, c1 such that py satisfies the lower
bound

. C1
(8.24) inf pa(zy) > —2
yEB(z,e1VE) V(z, Vk)
for all x € M and for oll k € N* satisfying k > 2.

From the above near diagonal lower bound, we will see that the Gaussian lower
bound follows by a well-established ‘chaining argument’.

The idea behind the proof of Proposition 8.6 is to convert the elliptic Holder-
like regularity estimate (Proposition 6.20) into a parabolic Holder-like regularity
estimate for the function (k,y) — pP(z,y) as follows:

LEMMA 8.7. Under the assumptions of Proposition 8.1, for all ¢ > 0 and all
A > 1, there exists three positive reals Cy 4, €0 < A and Ny > 2 such that

825)  pPw) pfeo) < [r 0 (10D } . (; v

for all z € M, k € N* with k > Ny and for all y € B(x,egVk), where B =
B(z, AVk) and a is the exponent in (6.87).
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The proof of Lemma 8.7 is long and involves many technical estimates. We will
need some upper bounds on pkB (y, z) and its ‘time derivative’

87€pB(y7 Z) = pk-i-l(y? Z) - pk(ya Z)
for all y,z € B.

LEMMA 8.8. Under the assumptions of Proposition 8.1, the following estimates
hold:

(i) There exists C1, D1 > 0 such that

x, \/E) Ol d(y72)2
(8.26) ! v.2) V(y,v7) Dyj

for all x € M, for all k € N*, for all j > 2, for all A > 1 and for all
Y,z € B(x,A\/E).
(ii) There exists Ca,0 > 0 such that

Oy AS
8.27 RpB@AVE) (y ) < 22

forallz € M, for all k € N>q, for all A > 1 and for all y, z € B(x,A\/E).
(iii) For all A > 1V k', there exists €,a; > 0, such that for all 8 € (0,1), there
exists Cy such that,

CyA?® a1 \J
9 B(w,A\/E) < 2] 1— 1

for all x € M, for all k € N*, for all j € N satisfying j > max(2,0k) and for
all y,z € B(z, AVE).

PROOF. The first inequality (8.26) follows from Proposition 7.1 and the in-
equality pf(x’A\/E) < p; forall j > 2.

For k > 20, we decompose k = ki + ko + k3 + k4 such that ki, k3 € 2N*,
k; € N* and k; > k/5 for i = 1,2, 3,4. Note that, we require ki, k3 to be even. We
abbreviate B(z, AVk) by B. By Cauchy-Schwarz inequality and Lemma 4.22 and
Lemma 4.20(b) there exists Cy > 0 such that

0ep” (y, 2)] = (I = PB)P 11y, (U ). PRk, (7)) B
= [T = P) 2 41 (), (I = P3) 20, 1, (2 ) )
1/2
< [gB(pEH»kg (yv ')7pkBl+k2 (yv ))7 gB(pEg+k4 (Zv ')7p1§3+k4 (Zv ))]

1/2
(829) S C4 [g*B(pkBl—i-kQ (ya .)3pfl+k2 (y7 ))7 5»{3(p11c33+k4 (Z, ')aplli;+k4 (Z, ))] .
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Since kj is even and ki > k/5, by spectral decomposition and Proposition 7.1 there
exists C5, Cg,d > 0 such that

2
EP(F iy (U )P4 (0:) = || (1 = PR PEDE (0 )|

21\1/2 pk1 2 2
< |[@ =PRIy I3

2
< | sup (1= NY2A10) sup pog, (, )
A€[0,1] yEB

1
< Csk7t sup _—
yEB(z,AVk) V(y7 \/E)

c O gy VwA+DVE
TRV (2, VE) yepeave V. VE)
Cs
(8.30) Sm

for all k > 20, for all x € M, for all A > 1 and for ally € B = B(x,A\/E). In the
last line above we used (2.4). By (8.30) and (8.29), we obtain the desired bound
(8.27) for k > 20.

If 2 < k <20, we use (8.26) and triangle inequality |8kpB| < pkBH + pP to
obtain (8.27).

For the proof of (8.28), we use Proposition 8.4. As before we denote B(z, Avk)
by B.

We first consider the case where j € N* is even. By Proposition 8.4, for each
A > (1VR), there exists a > 0,e > 0 such that
2

2 s
sup pf(y,z) = sup pr}z(% ~)H2 = prs/ H

y,2€EB zeB 2—00

. 2 2
P(]/Q)*Jl H
B 2—2
a \J—2h
(8.31) < (1 - T%) Sup paia (4:4)
for all x € M, for all 1 < j; < (j/2), for all k¥ € N*. We choose j; := [6k/4] in
(8.31) and use (2.4) to obtain positive reals § > 0 and C7 = C7(0)

(8.32) sup  paj (y,y) < ot
. i (Y, y) < —
yEB(z,AVE) " V(SU, \/E)
forallz € M, for all @ € (0,1), for all A > 1 and for all k € N* where j; = [(0k/4)].
For all 6 € (0,1), there exists Cs = Cs(f) > 0 such that

a \ —2[(0k/4)] _ an —(0k/2)
(8.33) (1 - ATk) <(1-a)2 (1 - %) < Cy

for all k € N*, for all A > 1V h/. Combining (8.31), (8.32) and (8.33), we obtain

the bound (8.28) for all even j > 2N*.
For all odd j € N* satisfying j > 3, we use the even case and the bound

sup, .ep Py (y,2) <sup, .cp Pl 1(y, z) to obtain (8.28). O

le

S B

2—00
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REMARK 8.9. The constants C'y, Cy, Cs, Cy and ay in Lemma 8.8 do not depend
on A, x and k.

Proor oF LEMMA 8.7. One of the consequences of Proposition 8.4 as noted
in Remark 8.5(b) is that HPB(I’T)HQ_>2 < 1 for all x € M and for all r € (0, c0).
Therefore Ap, : L?(B) — L*(B) is invertible with inverse

(8.34) Apl =(I-Pp)” Z P},

Further the inverse AIS; is bounded with ||Ap, |, o < (1 — ||PB||2_>2)71. Moti-
vated by this remark, we define ‘Green’s function on a ball’

(8.35) Gy, ) = Zp? (v, )

for all balls B with ||Pgl|,_,, <1 and for all y € B. By (8.34) and (8.35)
pe(y,2) = [A_lﬁpof(yw)] (2) = [Ap, 00" (y,)] (2)
(3.36) = 00" (02)+ [ 6P ()0 () du

for all z € M, for all A > 1V I/, for all y,z € B = B(z, AVk) and for all k > 2.
By (8.36) and triangle inequality, we obtain

Ip? (2, y) — pi (2, 2)| < [op” (@, )| + [O0p” (2, 7))
(8.37) + /B ’GB(J), w) — GB(y, w)| ‘(’9kpB(x, w)| dw
for all x € M, for all A > 1, and for all y € B = B(m,A\/E). We write the right
side in (8.37) by splitting it into four parts as
= ’81@193(56, y)’ + ‘8kp3(33,:c)‘
L+1,+J= /B ‘GB(x,w) — G’B(y,w)| |8kpB(x,w)| dw.
where I, I3, J are terms corresponding to the integration over the sets
Wi={weB : dw,w) <k}, Wo={weB : dy,w) <k}
for I, Iy and
W = {w € B : d(z,w) > nVk and d(y,w) > 77\/%}

for J, where n > 0 will be chosen later.
As before, we will abbreviate B(x, AVE) by B. By Lemma 8.8(b), there exists
Cy > 0, 6 > 0 such that

202146 T
8.38 K <2 sup [0ppP(y,2)| < <
(8.38) = y,z&} k(2] < KV (2, Vk) — V(w VE)

for all 7 > 0, for all A > 1, for all x € M and for all ¥ € N* satisfying k£ > 2 and
k> (20,A%) /7.
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Next, we bound Iy and Is. We treat I in detail but the same estimate applies
to I;. By Lemma 8.8(b), we have

( sup 8kpB(zl,zz)> /W2(GB(x,w)+GB(y,w))dw

z1,22€B

I

IN

< M/ (GB (2, w) + G (y, w)) dw

= Wi, \/E) ", ) Y,

for all k > 2. By Lemma 8.8(c), there exists Cp > 0, a; > 0 such that
LOk)

GB(z,w) dw < ij (z,w) dw+/ Z p}g(z,w)dw
Wa

Wy Wa j=1 j=|0k]+1

< Ok + Z /p]zw

j=lok)+1
CyA? ( o )9k A2k
A%k

(8.39)

§9k+m

09A5+2k

8.40 <Ok + ——F=V(y.Vk
(8.40) Ve (y,nVk)
for all x € M, for all A > 1V R, for all § € (0,1), for all £ € N* with k& > 2/0 and
for all y,z € B = B(x, AVk). For all y € B(z, AV/k), by Lemma 2.12 and (2.4)
there exists C3 > 1,7 > 0 such that
Viy.nVk) _ Vy.nvk) V(z,24vk)
VR - Vg vE) Vi vE)
for all z € M, for all A > 1, for all y € B(z, AVk), for all n € (0,1) and for all
k € N* with k > (b/n)?.

For all 7 > 0, we choose 6 € (0,1) and n € (0,1) such that

T 205 C3 A20+27 T

8.42 0 < < .
( ) - 4021467 ay - 4CQA5
Given the above choice of 8,7, for all 7 > 0, for all A > 1V R/, by (8.39), (8.40),
(8.41) there exists N; > 2 such that

w(W2)

aj

(8.41) < C3A%yY

V(z,Vk)

for all z € M and for all ¥k € N* with &k > N;. By (8.38) and (8.43), for all
o >0,A>1VAH there exists N2 > 2 and n € (0,1) such that

(8.43) max(Iy, ) <

o
8.44 K+hLH+L< —
(S T V@ VR
for all x € M and for all k € N* with k& > Ns.

It remains to handle J. For the rest of the proof, we fix the choice of n € (0,1)
from (8.42). Since p? (x, ) is only defined up to p-almost everywhere, so is GP(x, -).
However since pf (z,-) is a genuine function for all j > 2, by (4.10) we can redefine

GP in (8.35) as

(8.45) GPly.2) =) pP(y.2)
j=2
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for all y,z € B with d(y,z) > h’. In other words G®(y,-) can be defined as a
genuine function in B\ B(y, k') with GB(y,z) = GP(z,y) for all y,2 € B with
d(y, z) > h'. Further the function

2z GB(w,2) = GB(z,w)
is P-harmonic in B(y,d(y, z) — 3h’), whenever y € B, B(y,d(z,w) —2h') C B and
d(y,w) > 3h'. Therefore for all z € M, for all A > 1 and for all £ € N* with
k > (61 /n)2, for all w € B(z, AVE)\ B(z,nvVk), the function z — GB@AVE) (5 )
is P-harmonic in B(z,7v/k/2). By the Hélder-type regularity estimate for harmonic

functions (Proposition 6.20), there exists Cy > 0, N3 > 2V (6h'/n)?,a > 0,¢q €
(0,m/2) such that

1 (e
(8.46) ’GB(aaw) - GB(y,w)’ < Cy (d(m,y)V) sup GB(z,w)
77\/% 2€B(z,nVk/2)

for all z € M, for all y € B(x,eqVk), for all A > 1, w € B(z, AVk) \ B(z,nVk)
and for all k € N* with k£ > Nj.

Following (8.46), we need to estimate SUp,,c g\ p(s.yvE), € BrnvE/2) GP(z,w).
For all z,w € B such that d(z,w) > h’, we have

k oo
GB(z,w) = pr(z,w) + Z B (z,w).
=2 j=k+1

For the first term, by Lemma 8.8(a) and (2.4) there exists Cy, D1,C5,Cg > 1 and
6 > 0 such that

oo d(y, 2)?\ V(z,2vk)
Bz w — =  _exp| — !
2w S Y s p( Dij )vu,m

=2 =2
k 6/2 2
SO OREIC )
S ———= — ) exp |-
_V(x,\/%); J P\ 4Dy
Csk
8.47 < —
o = VB

for all z € B(x,Vk), for all w € B such that d(z,w) > nvk/2 > h’. To obtain
(8.47) above, we used that the function t — /2 exp(—n?t/(4D;)) is bounded in
(0,00).

Next, we bound p; for large values of j. By Lemma 8.8(c) there exists C7 > 0
such that

> A5 > aiy J C7A5+2k
(8.43) PPy <GS (o Ay CrATER
j:zk-:i-l V(z,Vk) j:zk;_l ( AQk) aV(x,Vk)
forall k e N*, A>1, for all z € M and for all z,w € B = B(@A\/E).
Combining (8.46), (8.47), (8.48) along with Lemma 8.8(b) and (2.4), for each
A > 1 and any choice of n € (0,1), there exists Cg > 1, Ny > 2, ¢ € (0,1)
(depending on A,7n) and « > 0 such that

1
k)

d(z,y) vV 1\*
(.49) »GB<x,w>GB(y7w>|scs( 2 ) -



116 8. GAUSSIAN LOWER BOUNDS

for all z € M, for all y € B(z,eVk) and for all k € N* satisfying k > Ny, where
B = B(z, AVE) and « is as in (6.87). Combining (8.44) and (8.49), we obtain the
desired estimate (8.25). O

Now, we are ready to prove the near diagonal lower bound using Lemma 8.7
and Lemma 8.3.

PROOF OF PROPOSITION 8.6. By Lemma 8.3, there exists A > 1Vh' and ¢ > 0
such that

B(z,AVk) c
8.50 T,T) > —————

(8.50) P (z,2) V)

for all x € M and for all £k € N* with & > 2. By Lemma 8.7, there exists C; >
1,N1 > 2, e€(0,1),a > 0 such that

851 pPey) - pPlea) < [; Lo <d(m,% v 1” V(;m

for all z € M, for all k € N* with k > Ng, for all y € B(:E,E\/E) where B =
B(z, AVk). Next, we choose ¢; € (0,¢) and Ny > Ny such that for all k > Ny, we

have
Cl (61\/E V1

Vk

By the above choice of €1, N7 along with (8.50),(8.51) and the triangle inequality,
we have

«
) < €y max(e*, Ny /%) <

inf pB(w”q\/E)(:zz7 y) > ¢

yEB(z,e1Vk) k 3V (x, \/@)
for all z € M and for all k € N* with k& > Nj. Since p? < py, the above equation
yields the desired near diagonal lower bound (8.24) for all k£ > Nj.
If k € [2,N1], then we reduce e if necessary so that ¢ < h/y/N;. Hence
d(z,y) < ek and k < N, implies d(x,y) < h. Therefore by (4.12) of Lemma 4.10
and (4.10), we obtain (8.24) for all k € [2, N1]. O

8.4. Off-diagonal lower bounds

The near diagonal lower bound of Proposition 8.6 can be easily upgraded to
full Gaussian lower bounds (GLE) by a well-known chaining argument (See [44,
Theorem 5.1], [27, Theorem 3.8]). For general quasi-geodesic spaces, we rely on
the chain lemma (Lemma 2.6). We now prove the main result of this chapter, i.e.
Gaussian lower bound.

PROOF OF PROPOSITION 8.1. By Lemma 2.6 there exists C; > 1 such that
for all by > b and for all xz,y € M, there exists a bi-chain x = xg,x1,...,Zm = ¥y
with

(8.52)

by
By Proposition 8.6, there exists € > 0,c¢; > 0 such that

. C1
8.53 inf  prz,y) > —————
( ) yEB(z,eVk) ( ) V(QE7 \/E)

m < [Cld(x’y)w .
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for all z € M and for all k > 2. If

C162k
8.54 == ,
( ) C2d<.'1,‘,y) N
then there exists a s-chain © = xg,x1,..., %, = y between z and y with
C2d(xa y)2
8.55 = | —.
(5.55) mi= | 2%

However (8.54) holds whenever d(z,y) < csk and c3 < C1€2/Cab. If C3 > 1 and
d(x,y) > eVk, we have

(8.56) 2 2

_ "C2d(‘r7y)2-‘ < 202d(.’13,]j>2
If d(z,y) < csk and c3 < €/4/(2C2), we have

k €2k? €
— > >
m — Cad(z,y)? — Cacs

(8.57) > 2.

We fix ¢3 = min (e/\/(202), 0162/02b), so that (8.54),(8.55) and (8.57) are satis-
fied. We will fix Cy > 1 later.
We will require

0162k e €
. d iy g <s§= —7F+—— - -
(8 58) (x x +1) S o (x, y) 3 A /

for all i = 0,1,...,m — 1 and for all & > m. We fix Cy := 36C? > 1, so that by
(8.56) we deduce

(8.59) Gk (o NP fE < |k
‘ 5T Cod(z,y) — 3 \4Csd(z, y)? =3

for all 2,y € M and k € N* such that d(z,y) > eVk and k/m > 2, where s,m is as
defined in (8.54) and (8.55). Define ko, ..., k,—1 such that

e [2] 2]

satisfying Z?Z)l k; = k. Consider the s-chain x = xzg,...,z,, = y between =z
and y where s, m are given by (8.54),(8.55). By (8.59) and definition of k;, for all
w; € B(x;,(e/3)\/|k/m]), for i =0,1,...,m — 1 we have

d(wi,wiﬂ) S €/ Lk/mJ S 6\/](71'.
Therefore by (8.53), (8.57) and (2.5), there exists ¢4, ¢5 € (0, 1) such that for all for
i=0,1,...,m—1, w; € B(x;, (e/3)\/|k/m]), we have

(8.60) a € &

Pr; (Wi Wi1) > >
Vi(wi, VEi) — V(wi, /[k/m J) V(zi, /Lk/m])
for all 2,y € M, k > 2 satisfying d(x,y) > eVk and d(z,y) < c3k.
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Define B; = B(x;,(¢/3)+/|k/m]). By Chapman-Kolmogorov equation and
(8.60), for all x,y € M, k > 2 satisfying d(z,y) > vk and d(z,y) < c3k, we obtain

pkiﬂy

/ / p(xo, w1)p(wy, w2) ... P(Wm—2, Wy—1)D(Wm—1,y) dwy ... dwy,_1

/ / p(xo, w1)p(wi, w2) ... p(Wm—2, Wyn—1)p(Wm—1,y) dw: . .. dwy_1
Bm—1 B:
(8.61)
LT Vi@ (¢/3)V/TR/m])
v, Vk) i Vi /[k/m])
By ( ) (8.56), (8.57) and (8.61), there exists cg, ¢y € (0,1) such that

e 2C5d(z,y)? log 06) 1
>_—°% >
Prly) 2 o 2 eXp( & V(z, VE)

1 d(x7y)2>
8.62 > ———exp | —
(5.62) > e p( -
for all z,y € M, k > 2 satisfying d(z,y) > eVk and d(z,y) < csk. This yields
(GLE) for the case d(z,y) > eVk.

The case d(z,y) < eVk follows from (8.53). This completes the proof of (GLE).
O




CHAPTER 9

Parabolic Harnack inequality

In this chapter, we use the two sided Gaussian estimates on the heat kernel to
prove parabolic Harnack inequality. Moreover, we show the necessity of Poincaré
inequality and large scale volume doubling using parabolic Harnack inequality.

Based on ideas of Nash [64], Fabes and Stroock [31] gave a proof of parabolic
Harnack inequality using Gaussian bounds on the heat kernel for uniformly elliptic
operators on R™. This idea of using Gaussian estimates on the heat kernel to prove
parabolic Harnack inequality was extended in various settings [74, 68, 27, 10].
Delmotte [27] introduced a discrete version of balayage formula to prove parabolic
Harnack inequality on graphs. We use a direct adaptation of Delmotte’s method
to prove parabolic Harnack inequality.

Recall that we defined caloric function as solutions to the discrete time heat
equation Oru + Au, = 0 in Definition 7.3. We introduce the parabolic Harnack
inequality for non-negative caloric functions.

DEFINITION 9.1. Let (M, d, i) be a metric measure space and let P be a Markov
operator on (M,d,p). Let 0 < ( < 1and 0 < ) < 02 < 03 < 64. We that a u-
symmetric Markov operator P (or equivalently its heat kernel py) on (M,d, )
satisfies the discrete-time parabolic Harnack inequality

H(C7 01) 927 93794)

if there exists positive reals C, R such that for all z € M,r € R,a € N with r > R
and every non-negative P-caloric function v : N x M — R on

Q = [a,a + [047%]] x B(x,7),

we have
supu < C'infu,
Qe QGD
where
Qs =[a+ (917“21&4— L92T2JH x B(z,(r),
Q® = [[a, =+ ’—937"21,@ + |_04TQJH X B(J?, CT)
REMARK 9.2.

(i) The exact values of the constants ¢ € (0,1) and 01, 0o, 62, 6, are unimportant.
For example, for graphs and length spaces if the parabolic Harnack inequality
is satisfied for one set of constants, then it is satisfied for every other set
of constants. The argument in [10, Proposition 5.2(iv)] can be adapted for
graphs and length spaces in the above discrete-time setting.

(ii) It suffices to consider the case a = 0 in the definition above by simply by
shifting the function in the time component.

119
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(iii) Analogous to Remark 7.4(b), if P is (h, h')-compatible with (M, d, 1) we may
only require the function u to be defined on a smaller domain.

9.1. Gaussian estimates implies parabolic Harnack inequality

In this section, we prove the following parabolic Harnack inequality using two
sided Gaussian bounds.

PROPOSITION 9.3. Let (M,d,p) be a quasi-b-geodesic metric measure space
satisfying (VD)oe. Suppose that a Markov operator P has a kernel py that is
weakly (h, h')-compatible with respect to p for some h > b. Moreover, suppose that
pr satisfies two sided Gaussian estimate (GE). Then there exists n € (0,1) such
that P satisfies the parabolic Harnack inequality H(n/2,1%/2,n2, 202, 4n?).

First we start by verifying that Gaussian lower bound implies large scale volume
doubling property.

LEMMA 9.4. Let (M,d, p) be a quasi-b-geodesic metric measure space satisfying
(VD)oc. Suppose that a Markov operator P has a kernel py that satisfies (GLE).
Then (M, d, p) satisfies (VD).

ProoOF. By (GLE) there exists c1, ca,c3 > 0 such that

exp (—d(z,y)*/c2n)

pn(% ZJ) > W

for all x,y € M satisfying d(x,y) < czn and for all n € N*. Therefore there exists
N7 > 1 such that 4y/n < c3n for all n > N;. By the Gaussian lower bound above

_ V@, 4Vn) oo age
1= [ mayz [ ey z petie ea(-a/e)

for all x € M and for all n > N;. Therefore there exists R := N such that for all
x € M and for all »r > R, we have
V(z,r) > V(z,|r]) > crexp(—4/ca)V (z,4|r]) > c1 exp(—4/c2)V (x, 2r).
|

We show the following near diagonal lower bounds as a consequence of two
sided Gaussian bound (GE).

LEMMA 9.5. Under the assumptions of Proposition 9.3, there exists ¢; > 0,
n € (0,1) and Ry > 0 such that for all x € M, for allT > Ry, for ally,z € B(z,nr),
for all k € N* satisfying (nr)? < k < (2nr)?, we have
_a
V(z,VE)

PROOF. We abbreviate B(z,r) by B. We denote the exit time from ball B by
7:=min{n : X, ¢ B}

(9.1) pr ) (y, 2) >

where (X, )nen is the Markov chain on M corresponding to the kernel py.
By strong Markov property and p-symmetry, the Dirichlet kernel pZ can be
expressed in terms of py as

(92) pkB (y’ Z) = Pk (ya Z) - Ey [Pk—r(Z, X‘r)]-[[l,k'—l]] (T)]
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for all n > 2 and for all x € M, where E, denotes that the Markov chain starts at
Xy =y. We choose Ry > (1 —n)~th/, so that by (4.10)

E, [pk—r(zvxﬂ—)l[l,kfl]] (7—)] =E, [pk—T(Z?XT)]‘lIQ,k}fQ]] (7-)}

for all y,z € B(z,nr), for all k > 2, for all z € M and for all r € R with r > Ry.
Combining this with (9.2) and X, ¢ B, we have

(9-3) Pe(Y,2) = prly,2) — sup  sup  pi(z,w)
le[2,k] w¢B(z,r)
for all y,z € B(xz,nr), for all k > 2, for all x € M and for all r € R with r >
(L=,
Note that by Lemma 9.4 we have (VD). Therefore by (GLE), (2.4) and
k > (nr)?, there exists co,c3 > 0 and Ry > 0 such that

— 2 _ exp|- (2r)” -
(9.4) pr(y,2) 2 V(y, VE) p( 02(777')2) = V(z,Vk)

for all x € M, for all r > Ry, for all n € (0,1), for all y,z € B(x,nr) and for all
k € N* satisfying (nr)? < k.
For the second term in (9.3) by (GUFE), there exists C; > 0 such that

%! d(z,w)* 1 (1 —n)%r?
Pl = e o ( ail ) Ve T (clz)

for all I € N* with [ > 2, for all x € M, for all » > 0, for all n € (0,1), for all
z € B(z,nr) and for all w ¢ B(z,r). Combined this with (2.4) and k < (2nr)?,
there exists Co,C3,Cy,d > 0 such that for all n € (0,1/2), for all x € M, for all
z € B(x,nr), for all k € N* satisfying (nr)? < k < (2nr)?, for all [ € [2,k] and for
all w ¢ B(x,r), we have

< 7037726 ﬁ 6 exp | — r
- V(_’L‘7 \/E) l P 4011
C 26
<=0
V(x,Vk)
The second line above follows from 1 < 1/2 and (2.4) and the last line follows from

the fact the function ¢ + ¢ exp(—t/4Cy) is bounded in (0,00). Combining (9.3),
(9.4) and (9.5), there exists ¢; > 0 and Ry > 0 such that p? satisfies (9.1). O

A

(9.5)

The following lemma provides a discrete time version of Balayage decomposition
for the heat equation.

LEMMA 9.6. Let (M,d, u) be a quasi-b-geodesic metric measure space satisfying
(VD)ioc. Suppose that a Markov operator P has a kernel py, that is weakly (h,h')-
compatible with respect to u for some h > b. Then for all x € M, for all v > b/,
for all r1 such that 0 < ry <11+ h < r, for all a,b € N, for all non-negative
function u : N x M — Rsq that is P-caloric in [a,b] x B(z,r), there exists a
non-negative function v : N x M — R (depending on wu) such that supp(v) C
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la+1,b] x (B(xz,r1 + h') \ B(z,r1)) and for ally € B(x,r1) and for all k € [a,b+1],

we have

(9.6)

k-1

Z / pr_y(y, wv(l,w) dw,
B(z,r1+h")

u(k, ) = / PP (4. 2Jula, 2)dz +
B(xz,r1+h’) l=a+1

where B = B(x,r).
PROOF. Denote by By = B(z,r1 + /') and B = B(x,r). Define

vi(k,y) = u(k,y) — / Pr-a(y, 2)u(a, 2) dz
B(z,r1+h’)

for all (k,y) € J[a+ 1,b+ 1] x B(z,r1 + h’). Note that

(k,y) — ; Pi-a(ys 2)ula, 2) dz
1

is P-caloric in [a + 1,b] x B(z,71). Since u > 0, by (4.10) we have v1(a + 1,y) =0
for all y € B(z,71) and by maximum principle v; > 0 in [a + 1,b 4 1] x B(x,r1).

Next, we construct v : N x M — R iteratively. We assume that supp(v) C
[a+1,0] x (B(z,r1 + ')\ B(z,r1)). Define v(a + 1,y) = vi(a + 1,y) for all y €
B(z,m1 + 1)\ B(z,7).

Since vy is a difference of two P-caloric functions, we have vy is P-caloric in
[a+1,b] x B(xz,r1). We repeat this construction iteratively by defining

07)  wvinalky) = vilk,y) — / By, 2ui(a+ i, 2) dz
B(z,r1+h’)

for all (k,y) € [a+i+1,b+ 1] x B(xz,r1 +h') and
via+i+1L,w)=vi(a+i+1,w)

for all w € B(x,r1 + 1)\ B(z,r1) and ¢ = 0,1,...,b — a — 1. By the same
argument as above, v; is non-negative and caloric in [a + 4,b] x B(z,r1) for all
i=0,1,...,b—a+ 1. Further

(9.8) ui(a+1i,2) =0
forall zin B(z,r1) andi = 1,2,...,b—a. Combining (9.7),(9.8) and gives (9.6). O
We are now ready to prove the parabolic Harnack inequality.

PROOF OF PROPOSITION 9.3. Let n € (0,1) be as given by Lemma 9.5. Note
that for all r > 124’ /n, we have nr—h' > 2nr/3 > n/2. Moreover for all r > 124/ /7,
for all y € B(x,nr/2) and for all z € B(z,nr)\ B(x,nr —h') we have d(y, z) > 2h/.
Let Ry := 1+ max(Ry,12h'/n,10/n) where Ry is the constant from Lemma 9.5.
By the above remarks, (4.10) and Lemma 9.6, for all € M, for all » > Ry, for all
non-negative function u that is P-caloric in [0, |4n?r?]] x B where B = B(x,r),
there exists a non-negative function v supported in B(z,nr) \ B(z,nr — h’) such
that
k—2
S [ s wwt)d

B(z,nr)

(9.9) u(k,y) = / pkB(y7 2)u(a, z) dz +
B(J;,T]T') =1

for all (k,y) € [1, [4n?r?| + 1] x B(x,nr/2).
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For some fixed x € M and r > R, we define
(9.10)

Qo = [[n*r?/2], [n*r?]] x B(z,17/2), Qg = [[20°7°], [4n*r?]] x B(z,7r/2)
and Q := [0, [4n?r?]] x B(z,nr).

By Lemma 9.4 we have (VD). Therefore by Lemma 9.5 and (2.4) there exists
c1,c2 > 0 such that for all z € M, for all r > Ry, for all y € B(z,nr/2), for all
z € B(x,nr), we have

. . C1 C1 C2
9.11 inf B ,Z) > inf > > .
(6-11) (hayeq F (®:2) kelr2n2r2], 4221 V (2, VE) — V(z,2nr) — V(z,nr)
Similarly by Lemma 9.5 for all z € M, for all » > Ry, for all y € B(z,nr/2), for all
z € B(x,nr) \ B(x,nr — h'), for all | € [1, |n*r?] — 2] we have
C1 C2

X

9.12 inf  pp(y,2) > inf > :
©12) o P2 2 e B e Ve, /(k—-1) ~ V(z,mr)

For upper bounds in Qg we simply use (GUE) as follows. By (GUE) and
(2.5), there exists Cq,Co > 0 such that for all z € M, for all » > Ry, for all
y € B(z,nr/2), for all z € B(x,nr) we have

Ch Cy
(9.13) sup  pp(y,2) < sup  pi(y,2) < sup < :
(k)€Qe (k)€Qo (kw)eqo Vy, VE) — V()
Similarly by (GUFE) and (2.4), there exists C3, C4, C5,9 > 0 such that for all x € M,
for all r > Ry, for all y € B(z,nr/2), for all z € B(xz,nr) \ B(z,nr — k'), for all
(k,y) € Qg and for all [ € [1,k — 2] we have

C d(y, 2)?
(Y, 2) < prily, z) < meXP <_(;3(k_l)>
Cy n°r? oz 7&
= Vg, <<k = Z>> o ( 36Cs (I - l>)
(9.14) < V(Ssm’)

The last line follows from the fact that the function ¢ +— /2 exp(—t/(36C3)) is
bounded in (0, c0) along with (2.5).

Combining the inequalities (9.11),(9.12),(9.13) and (9.14) along with the bal-
ayage formula (9.9) for all x € M, for all » > R;, for all non-negative function u
that is P-caloric in [0, [4n?72]] x B(x,r), we have

sup  u(k,y) <yt max(Co, Cs) inf  wu(k,y)

(k,y)€Qeo (ky)€Qe
where Qc, Qg are as defined in (9.10). Note that by Remark 9.2(ii), we have the
desired Harnack inequality. [

9.2. Necessity of Poincaré inequality and large scale volume doubling

In the previous sections, we have obtain two-sided Gaussian bounds on the heat
kernel and parabolic Harnack inequality assuming large scale volume doubling and
a Poincaré inequality. Now we show that large scale volume doubling and Poincaré
inequality are necessary to have two-sided Gaussian bounds on the heat kernel and
parabolic Harnack inequality. The was first proved by Saloff-Coste in [69, Theorem
3.1] using an argument due to Kusuoka and Stroock [55].Delmotte [27] followed the
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same strategy in discrete-time setting for random walk on graphs. The following is
an adaptation of the argument in [69, 27].

PROPOSITION 9.7. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (V D)ioe. Suppose that a Markov operator P has a kernel py, that is weakly
(h, h')-compatible with respect to p for some h > b and there exists n € (0,1) such
that P satisfies the parabolic Harnack inequality H(n/2,n?/2,n%,2n?, 4n?). Then
(M, d, ) satisfies (VD)o and (P)p.

Proor. Let x € M and r > 0. Define u = u, , as

1 it 1 € [0, [n*r?] — 1]
u(l,y) = lB(aL‘J')(y) 5 if I = L7727’2J
fB(m,rg(k)) pl_(f,}gznﬂ (y,w)dw ifl> |_772T2J :

Note that w is non-negative and u-caloric in N x B(z,r). For k € N*, we choose r
such that n?r? = k. By applying H(n/2,1%/2,1%, 2n?,4n%) to the function u, there
exists Cg, N1 > 1 such that

(9.15) 1=u(k,z) < Chyu(2k,z) = C’H/ pkB(w"/E/n)(az, z)dz
B(z,Vk/n)

for all x € M, for all k € N* with k > N;. Squaring (9.15) and applying Cauchy-
Schwarz inequality we obtain

2
< ([ e
B(z,Vk/n)

2
< C{V(a, \/E/U)/ (p;f(w’\/g/n)(z,z)) dz
B(z,Vk/n)

= CV (@, Vi (@, 2)
for all x € M and for all £ € N* satisfying k > N;. Therefore
z,Vk/n) -2 1
(9.16) P! (x,2) > Cfff ——————
o "V (2, VE/n)

for all € M and for all k € N* satisfying k£ > Nj.

Next we apply H(1/2,1%/2,1m%,21?,4n?) to the non-negative, P-caloric function
(I,y) — prie(z,y) on [0, |4n?r? |, x]B(x,r) where r is chosen such that n?r? =
k —2 > k/2. Then there exists No > max (4, N1) such that for all £ > N7, we have

(9.17) pr(z, ) < Cupak(,y)

for all z € M, for all k > Ny and for all y € B(x,Vk/2). Integrating (9.17) over
y € B(z,+/(k/2)), we obtain

1
Vi, v/ (k/2))
for all z € M, for all k > Nj. Iterating (9.17) with y = x, we obtain

(9.19) pak (@, x) < Clporin(w, )

(9.18) pr(z,2) < Cqg
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for all x € M, for all kK > Ny and for all I € N. Combining (9.16), (9.18), (9.19)
along with pfk < pak, we obtain

1 Cl+3
< o
V(z,n~WE) ~ V(z,2V/2Vk)

for all I € N, for all z € M and for all k¥ € N satisfying k > Na. Next we choose [
such that 2//2 > 49~ so that there exists C; > 1 such that

V(x, 4~ WVE) < C1V (z, " WEk)

for all z € M and for all k € N satisfying & > N5. Therefore there exists Ry > 0
such that for all »r > Ry and for all z € M we have

V(z,r) > V(e,n ' [n?r2]) > Cf1V(x,4n_1\/ [n2r2]) > CfIV(x,Qr).

This completes the proof of (VD).
It remains to prove the Poincaré inequality (P). We start by showing a near

diagonal lower bound for the ‘Dirichlet kernel’ pB@n~ " VF),
By H(n/2,1m%/2,1°,2n?%,4n%) applied to the function (I,y) pkBS"n vE) (z,9)
that is P-caloric on [0, 4k] x B(z,n~'Vk), we have

(9.20) pBEnT YR G y <o it pBETT YR (g )
y€B(x,Vk/2)

for all K > N, and for all x € M. Similarly by H(n/2,1%/2,1%, 2n?,4n*) applied to

the function (I,z) — pf]ﬁ}nilﬂ)(zay) that is P-caloric on [0,4k] x B(z,n~"Vk),
we have

1 .
(9.21) PR YR @y <0 b pBETT YR ()

zeB(z,Vk/2)
for all k > No, for all z € M and for all y € B(z, vk/2). Combining (9.16), (9.20),

(9.21) and (2.4) there exists ¢; > 0 such that for all € M and for all k¥ € N*
satisfying k > Ny, we have

. z,n"'VE)
9.22 inf pB( i’ Y,z) > —————.
( ) y,2€B(x,Vk/2) 4k ( ) V(J), \/E)

For a ball B = B(z,n~'Vk), we define a Markov operator

Qpf(y) == Pof(y) + (1 / pF<y,z>dz) )

for all y € B and for all functions f on B. Note that unlike Pg, the operator @p
is conservative, that is

®plp =15.
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For the rest of the this proof we abbreviate B(z,'vk) by B. By (9.22) for all
B = B(z,n~"Vk) satisfying k > Ny and for all y € B(z,Vk/2), we have

I —Q¥fy)] (v) > P [f — Q¥ f(y)] (v)
2) — Ok 2 4k Nz
> /B e )= QW) 02

C1

S — 2)— QW > dz
= V(z,Vk) /B(z,\/E/z) (£e) Q1) d
C1 2
(9.23) > m /B(z,\/E/z) (f(z) - fB(m,\/E/2)) dz.

The first line above follows from @Qpg > Ppg for all g > 0, the third line above
follows from (9.22) and the last line above follows from the fact that mean minimizes
square error (3.2). By (9.23) along with (2.4) there exists ¢o > 0 such that for all
x € M and for all £k € N*, we have

[atir-atrwlmaz [ Q¥ [r- Qi way
B B(z,Vk/2)
2
(9.24) > ¢ /B(z,\/E/2) (f(Z) - fB(xﬁ/z)> dz
where B = B(z,n~'Vk).
By linearity of the operator Q%k, we have
Q¥ [f - Q¥ W) ) = (@F) ) - (@)

Therefore by the symmetry of the operator Qg and Qplg = 15, we have

/BQgﬂ [f - leek (y)]Q (y)dy = <1B,Qj§kf2>L2(B) - ||Q%kf}|iz(3)
= Q¥ 15, )2 — Q]2

= 11132~ QB2
4k—1

2 2
(9.25) = > (b Alam — 195 Fla() -
1=0
The identity ||f||iz(3) — ||QBf||iQ(B) = ||(I- QQB)UQH;(B) along with the fact

that Qp is a contraction in L? yields
(9.26)

1Q5 1~ 1@ 1 ) = | @1 — QB2

e~ @5
L%B)f L(B) L(B)

for all [ € N. Combining (9.25) and (9.26), we obtain

020 [ Q¥ [F - Q)" Wy < 4k (111w ~ 10 1riey)
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Using the inequality a? — b < 2a(a — b), we have
10 = 1@ ) = [ (G0 = Qo s ) dy
<2 /B F(9) (F(9) — Quf(y)) dy
— [ [ (4) = 1)? paty. ) dy s
BJB

2 (1 [ Pwa) G

B
(9.28) < /B /B (F(0) — £(2)) Py, ) dy d.

Combining (9.24), (9.27) and (9.28), for all z € M, for all k € N* with k£ > N3 and
for all f € L?(M), we have

2
L U Tnain) a4 [ (700 = 1) 0t )y oz

where B = B(x, n_lx/E). Therefore there exists R > 0,C7,C5 > 0 such that for all
x € M, for all r > R and for all f € L?(M), we have

/B(:I:,r) (F(2) = fon)” dz < /B(x,r) () - fB(z,\/W/m)Q

2
= / () = Fp e dz
B(z,\/T4r71/2) ( B(: Mﬁ/z))

(9.20) < O\R? /B o /B o, O = TPl 2) dy

By (4.10) and (9.29), we have the desired Poincaré inequality (P)p,. O

We now have all the ingredients to prove our main result in a slightly weaker
form.

PROPOSITION 9.8. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (VD)joe and diam(M) = +oo. Suppose that a Markov operator P has a
kernel p that is (h, h')-compatible with (M, d, u) with either h =h' >b or b’ > h >
5b . Then the following are equivalent:

(i) Parabolic Harnack inequality: there exists n € (0,1) such that P satisfies
H(n/2,7%/2,0°,2n% 40%).
(i) Gaussian bounds on the heat kernel: the heat kernel py satisfies (GE).
(iii) The conjunction of large scale volume doubling property (V D)~ and Poincaré
inequality (P)p.
PROOF. The implication “(iii) implies (ii)” follows from Theorem 5.1, Propo-
sition 7.1 and Proposition 8.1. (ii) implies (i) follows from Proposition 9.3. (i)
implies (iii) follows from Proposition 9.7 and Corollary 3.17. O

Next, we answer the question raised in Remark 3.6.

PROPOSITION 9.9. Let (M,d,u) be a quasi-b-geodesic metric measure space
satisfying (VD)ioe, (VD)oo, (P)p for some h' > b and diam(M) = +oco. Then
(M, d, ) satisfies (P)y, for all h > b.
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PROOF. By Lemma 3.5 it suffices to consider the case b < h < h’. Consider
the Markov chain with density
15(.n)(Y)
Qx)Qy) vV (x, h)V(y,h)
that is symmetric with respect to the measure u/'(dx) = Q(z)u(dx), where

Q(J}) _ ]-B(a:,h) (y)
M A/ V(xz,h)V(y,h)

By (V D)o, there exists C; > 0 such that
(9.30) Ot <Qx) <0y

for all x € M. Therefore the space (M,d, u') satisfies (VD)ioc, (VD)oo, (P)p for
some h' > b. Moreover by (9.30), p is weakly (h,h)-compatible with (M,d, p').
By the same argument as Lemma 4.11, there exists [ € N* such that p; is (h/,1h)
compatible with (M,d,u"). Therefore by Proposition 9.8 and Lemma 4.16 the
kernel py satisfies (GE). The Poincaré inequality (P), for (M,d, n’) then follows
from Propositions 9.3 and 9.7. An easy comparison argument using (9.30) gives
(P)y, for (M, d, p). O

p(z,y) =

u(dy).

The following is the main result of our work.

THEOREM 9.10. Let (M, d, i) be a quasi-b-geodesic metric measure space satis-
fying (V D)ioe and diam(M) = +oo. Suppose that a Markov operator P has a kernel
p that is (h, h')-compatible with (M,d, ), where b’ > h > b. Then the following
are equivalent:

(i) Parabolic Harnack inequality: there exists n € (0,1) such that P satisfies
H(n/2,m%/2,12,2n%,4n?%).
(i) Gaussian bounds on the heat kernel: the heat kernel py satisfies (GE).
(iii) The conjunction of large scale volume doubling property (VD) and Poincaré
inequality (P)p,.

PRrOOF. Combining Propositions 9.8, 9.7 and 9.9 yields the desired result. O

As announced in the introduction, we will show Theorem 1.4 and Theorem 1.3
are covered by our results. Theorem 1.3 is clearly a special case of Theorem 9.10.
So it remains to verify Theorem 1.4.

PROOF OF THEOREM 1.4. We need only to check the implication (c) implies
(b) as the other implications follow as in Theorem 9.10. Although p; is only weakly
(h, h')-compatible to (M, d, 1), by Lemma 4.11, Theorem 9.10 and Lemma 4.16, we
have that py satisfies (GE). O



CHAPTER 10

Applications

Perhaps the most important application of the characterization of parabolic
Harnack inequality and Gaussian bounds on the heat kernel is the stability under
quasi-isometries.

THEOREM 10.1. Let (M;,d;, u;) be a quasi-b;-geodesic metric measure spaces
satisfying (VD)o and diam(M;) = +oo, for i = 1,2. Moreover we assume that
(My,dy, 1 and (Ma,ds, pu2) are quasi-isometric metric measure spaces. Suppose
that a Markov operator P; has a kernel that is (h;, h')-compatible with (M;,d;, ;)
with b > h; > b; fori=1,2. Then

(i) The kernel corresponding to Py satisfies (GE) if and only if the kernel corre-
sponding to Py satisfies (GE).

(ii) The operator Py satisfies the Harnack inequality H(n/2,1°/2,n?,2n?,4n?) for
some 1 € (0,1) if and only if Py satisfies H(C/2,(?%/2,(?%,2¢%, 4¢?) for some
¢e(0,1).

PROOF. The is a direct consequence of Theorem 9.10 along with stability of
(VD) given by Proposition 2.20, stability of (P), given by Proposition 3.16,
Proposition 9.9 and Lemma 3.5. O

As mentioned in the introduction, it is a long standing open problem to prove
such a stability result for elliptic Harnack inequality. A partial result in this direc-
tion is obtained by Bass. In [12], Bass proves stability of elliptic Harnack inequality
for weighted graphs under bounded perturbation of the conductances. However the
weighted graphs were assumed to be transient and they satisfy certain regularity
hypotheses. In [6], Barlow introduced the dumbbell condition that is stable un-
der bounded perturbation of weights of a weighted graph and asks if the dumbbell
condition is equivalent to elliptic Harnack inequality.

Recall that we proved an elliptic Holder regularity estimate for P-harmonic
functions in Proposition 6.20 and we used the regularity in the proof of Gaussian
lower bounds (Lemma 8.7). There is an analogous parabolic Holder regularity
estimate which follows from parabolic Harnack inequality. The proof is similar,
for example the proof given in [72, Theorem 5.4.7] can be adapted for the present
setting. Such parabolic Holder continuity estimates were first obtained by Nash
[64].

PROPOSITION 10.2. Let (M,d, ) be a quasi-b-geodesic metric measure space
satisfying (V D)oe and diam(M) = 4o00. Suppose that a Markov operator P has
a kernel p that is weakly (h,h')-compatible with (M,d, ) and satisfies parabolic
Harnack inequality H(n/2,1m%/2,1m%, 2n?,4n%) for some n € (0,1). Then there exists
C >0, R>0 and o > 0 such that for all x € M, for all v > R and for any non-
negative function u : N x M — R that is P-caloric in [0, [4n?r?|] x B(x,7) = Q,

129
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we have the reqularity estimate
k —u(k
sup ulky, z1) = ulks, o2) 7 < —supu.
(kv 21),(ka,2) E[[20202], [ 4n2r2 | ] x B(z,r) (MAX(L, k1 — ko| 4+ d(z1,22))" 7 r* g

Note that we do not obtain continuity, because we do not have Hoélder continu-
ity estimate at arbitrarily small distances. Another application of elliptic Harnack
inequality is Liouville property for harmonic functions that was shown in Proposi-
tion 6.19.

Next, we turn attention to application of two sides Gaussian estimates (GE). Of
course, the estimates given by (GFE) has enough information to determine whether
or not the the random walk is transient. The estimate given by [27, Proposition
4.3] can be easily generalized to metric measure spaces in which case we obtain

PROPOSITION 10.3. Let (M,d, ) be a quasi-b-geodesic metric measure space
satisfying (VD)o and diam(M) = +o0. Consider a p-symmetric Markov operator
P that is (h,h')-compatible with (M,d,u) for some h > b and whose kernel py,
satisfies (GE). Then the random walk corresponding to P is transient if and only

if

(10.1) 3 V(Z 5 <+

for some x € M.

It is easy to see that the convergence of the series in (10.1) does not depend on
the choice of z € M. Unless the space is discrete, we do not have a ‘Green’s function’
as the Green operator A~! = 5> ' P* does not have a kernel as there is ‘delta mass’
singularity at the starting point. However, we may consider the off-diagonal part of
the Green operator given by the “Green’s function” G(z,y) = > .=, pi(z,y). The
estimate given by [27, Proposition 4.3] can be again generalized as follows.

PRrOPOSITION 10.4. Under the assumptions of Proposition 10.3, there exists
C > 0 such that

10.2 < = i 5 S
(102)  C > T < C@) 2ply<C Y V)
n={d(z.y)] i=1 n={d(z.y)]

for some x € M and for all y € M with d(x,y) > h'.

As noted in [44, Theorem 9.1], the Gaussian estimate is sufficient to prove law
of iterated logarithm in a weak form. The proof in [44] can be generalized for
metric measure spaces.

ProproSITION 10.5. Under the assumptions of Proposition 10.3, there exist
C > 0 such that for all starting points Xg € M
d(XO7 Xn)

C~! <limsup )1/2

<C
(nloglogn
almost surely, where (Xi)ken is the Markov chain corresponding to P.

We refer the reader to [44, Section 9] for other probabilistic applications in
similar spirit.

We sketch a possible application to mixing times of Markov chains that will
be developed elsewhere. If the space has finite diameter the techniques developed
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here can be used to prove upper and lower bounds on mizing times. In this case p
is a finite measure on M and can be normalized if necessary to be the stationary
probability measure. Roughly speaking, in this case for (h, h)-compatible Markov
operator on a space with diameter D, it takes (D/h)? steps of the Markov chain to
get close to the stationary distribution u. The Poincaré inequality and Gaussian
upper bounds can be used to obtain upper bounds on mixing time as outlined in
[30, Lemma 2.1 and Remark 1 after Lemma 2.2]. For lower bounds on the mixing
time one would need Gaussian lower bounds. We plan to address these questions
in a sequel and obtain results complementary to those in [56]. We refer the reader
to [28, 29] for other recent works in this direction.

10.1. Harmonic functions with polynomial volume growth

In [17], Colding and Minicozzi proved that the space of harmonic functions with
polynomial volume growth with fixed rate on a manifold satisfying volume doubling
and Poincaré inequality is finite dimensional. As a corollary, they prove a conjecture
of S. T. Yau on manifolds that asserts the above property for Riemannian manifolds
with non-negative Ricci curvature. A recent surprising application of this result is
an alternate proof of Gromov’s theorem on groups of polynomial volume growth
due to Kleiner [53]. This new proof avoids the solution to Hilbert’s fifth problem
(Montgomery-Zippin-Yamabe structure theory). To precisely state a theorem we
need the following definition.

DEFINITION 10.6. For a metric measure space (M,d, ) and a p-symmetric
Markov operator P on M, we define the space of P-harmonic functions with growth
rate d as the vector space Hq(M, P) consisting of all P-harmonic functions u such
that there exists C > 0,p € M (depending on ) such that [u(z)| < C(1 +d(z,p)7)
for all x € M.

We have the following theorem that extends the result of Colding and Minicozzi
to random walks on metric measure spaces.

THEOREM 10.7. Let (M,d, 1) be a quasi-geodesic metric measure spaces satis-
fying diam(M) = 400, volume doubling hypotheses (VD )ioc, (VD)o and Poincaré
inequality (P)n. Let P be a Markov operator that is (h, h')-compatible with (M, d, ).
Then the space of P-harmonic functions Hq(M, P) with a fixed growth rate d is fi-
nite dimensional for any d > 0.

The proof of Colding and Minicozzi’s theorem in [17] relies on three ingredients:
volume doubling hypotheses (V' D), a Poincaré inequality 1.7 and a reverse Poincaré
inequality for harmonic functions. We have all the three ingredients as we showed
the reverse Poincaré inequality in Lemma 6.14. A caveat is that we have to rely
on weaker versions of all the three ingredients but nevertheless we will see that
Theorem 10.7 can be proved using the techniques introduced of [17]. T. Delmotte
adapted an alternate approach due to P. Li [57] to prove a similar statement for
random walks on graphs satisfying doubling and Poincaré inequality [26].

The next proposition below is a slightly weaker version of [17, Proposition 2.5].

PROPOSITION 10.8. Let (M,d, ) be a quasi-geodesic metric measure spaces
satisfying diam(M) = +oo, wvolume doubling hypotheses (VD)ioe, (VD)o and
Poincaré inequality (P), and let P be a Markov operator that is (h, h')-compatible



132 10. APPLICATIONS

with (M,d, ). There exists ¢ € (0,1) such that for all p € M, for all k > 1
satisfying r > k/e and for all functions fi, fo, ..., fn € LS. (M) satisfying

loc
(10.3) / f2du=V(p.r)
B(p,r)

foralli=1,2,...,n;

Vip,r
(10.4) [ g < H2D
B(p,r)
foralll1 <i<j<n;and
(10,5 [ (4 @PRef) dn < Vi)
B(p,2r)

foralli=1,2,...,n, we have n <N, where N depends on k but does not depend
onr>kj/eorpe M.

PrOOF. By Lemma 2.11 there exists Cp > 0 such that

(10.6) V(z,2r) < V(z,r)
for all 71 > 1 and for all x € M. Moreover if we set § := log, Cp, we have
V(l’7’l"2) T2 0
10.7 <Cpl|—=
( ) V(z,r1) — b 71

for all z € M and for all 1 < r; < ro. By Lemma 3.7 and (4.10), there exists
constants C4 > 0 and A > 1 such that for all x € M, for all ry > 1, for all
functions f € L{<, (M), we have

loc
2
(10.) [ tsenllanscat [ Wi
B(x,r1) B(z,Arq)
Let pe M, r >0,k >1and k < er. Define
(10.9) ro == % > 1,

where € € (0,1) will be determined later.
Let z1,x9,...,2, be a 2ro-net of B(p,r). We set

1 1
(10.10) €:=min | —, .
247 20CY/?CH*(4A + 1)9/2
Since € < 1/2 and r > 19 > 1, by (10.6), (10.7), we have
(10.11)

1 V(zyr) _ Vi) _ Viwg,re) Viz,r) £\’ V(x;,m0)
Cp = Viep2r) = Vipr) = Vipr) Viegro) = < ) Vip.r)

€
for all j =1,2,...,v and for all » > 1. Since ry < r by Proposition 2.22(a), (10.11)
and (10.6), we have

(10.12) > Vi(aj,ro) < V(p,r+19) < V(p,2r) < CpV(p, 7).

j=1
By (10.11) and (10.12), we have
(10.13) v < C3(k/e)°.
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Next we bound the overlap of the balls (B(z;,24ro)), ;.- Define n(y) as

the cardinality of the set {j : y € B(z;,24rg)}. If y € ﬁ”(y) 1B(z;,. ,2Arg), then
B(y, (2A + 1)rg) contains the disjoint balls B(z;,,, 7o) and hence

=

(y
(10.14) V(aj,.ro) < V(y, (24 + Do)
1

m=

3

However by (10.6), (10.7), for all y € M, for all j,, such that y € B(z;,,,2Ar), we
have

(10.15)  V(y, (2A+ D)rg) < V(xj,,, (4A+1)rg) < Cp(4A+1)°V (z,,,70).
By (10.14) and (10.15), we have

(10.16) C = sup n(y) < Cp(4A +1)°.
yeM

By Proposition 2.22 the balls B(z;,2rq) covers B(p,r). We now partition B(p,r)
into v disjoint subsets S1, S, ..., Sy, where B(z;,79) N B(p,r) C S; C B(x;,2ro).
Let P = {z; : 1 < j < v} denote the finite set of points in B(p, r). For any function
feLs.(M), we set

1
(10.17) A ;:][ fodu = 7/ fidp.
! B(zj,2r0) V($j727a0) B(zj,2r0)

By Cauchy-Schwarz inequality, (10.11), (10.5), we have

1
2 2 2
< fidp < 7/ fidp
][;(zj,Qro) V((Ej,?"()) B(zj,2r0)
1 1
< C%(k/e)® / ffdug(ﬂke‘si/ fdu
D( /) V(pﬂn) B(zj,2r¢) D( /) V(p,T) B(p,2r)

(10.18) < C2k2%(k/e)®

WA j

)

foralli=1,...,n and for all j =1,.

Let A := {10 ts€Z,d < 1OCDk k/ )%/2}. Next, we define a map f; —
M(f;), where M(f;) : P — A is a function from a finite set P to another finite set
A. With a slight abuse of notation, we intepret the function M(f;) as a piecewise
constant function on B(p,r) that takes the value M(f;)(x;) on S;, where j =
1,...,v. Foralli=1,...,n and for all j =1,...,v, we define M(f;)(z;) € A as
any closest point of A to A; ;. By definition of A and (10.18), for all ¢, j we have

(10.19) iy = MU < g

Combining the Poincaré inequality (10.8), (10.19) and S; C B(z;,2Ar), we obtain

/ i = M) ()P dp

<2 / i — Au P dp+2 / Ay — M) () dp
B(xj,2r0) S;

1(55)

ssrch/ Vi du+ —=1
0 (z5,2A7r0) ‘ ‘ 200
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foralli=1,...,n and for all j = 1,...,v. Hence by (10.16), (10.5) and (10.10),
we have

[ - M dissend [ meffder
B(p,r) ) j=1

B(p,2r

£(5;)
200

Vip,r) _ Vip,r)

10.2 < 2r2C4Ck2*r—2
(10.20) < 2r5CACK r—=V(p,7) + 500" = 100

By the triangle inequality along with (10.20), we obtain
(10.21)

1/2 1/2
( / i — £ du) - ( / M(f) — M(f;) du)
B(p,r) B(p,r)

1/2 2
- MU M) VVer)
- </B(p,r) i = M) dﬂ) + </B(p7r) lfj — M)l d#) < E

for all ¢ # j. By (10.4) and (10.3), we have for ¢ # j

1/2
(10.22) (/B( )|fi—fj|2d,u> >/V(p,r).

Combining (10.21) and (10.22), for all i # j we obtain

1/2
(/ M(f;) = M(f;) du) > 0.
B(p,r)

Hence the map M is injective. Therefore by (10.13)
C3(k/e)®
n< AP =AY <N = (QOCDk(k/e)5/2 + 1) P
Note that the value of N does not depend on the value of p € M or r but only on k
and the constants associated with doubling properties and Poincaré inequality. [

Next, we recall the a result due to Colding and Minicozzi [17, Proposition 4.16].
We omit the proof as it is identical to that of [17, Proposition 4.16].

PROPOSITION 10.9. Consider a metric measure space (M,d, i) satisfying the
hypotheses (VD)ioe, (VD)o and diam(M) = +oo. Let P be a Markov opera-
tor that is (h,h')-compatible with (M,d,u) for some 0 < h < h'. Suppose that
Up, Uy ..., Usp € Ha(M, P) are linearly independent. There exists § > 0, p € M
such that for alld > 0, Q > 1 and mg > 0, there exists m > mg, | > gQ*‘ld"s, and

functions vy, ..., v in the linear span of u; such that
(10.23) 204+ (p M) = 2044+ / v? dp > / v? dp
B(p,aQm) B(p,Qm+1)
and
(1024) / VU4 d,u = 5i,jV(p, Qm)
B(p,2™)

In Proposition 10.9, we may choose ¢ as the constant in (10.7). We are now
ready to prove Theorem 10.7.
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PROOF OF THEOREM 10.7. Fix > max(4,3h'), d > 0 and p € M. Let
Cr be as given by Lemma 6.14 and set k2 = (8Cg + 2)Q%*2°. Let ¢ € (0,1)
be given by Proposition 10.8. We choose mg € N* such that Q™0 > k/e. Let
dim Hq(M, P) > Ny := 4Q4+20 A where N is given by Proposition 10.8 where k is
as defined above.

Suppose that uy,ug,...,un, € Hqa(M,P) be linearly independent. Then by
Proposition 10.9 and reverse Poincaré inequality (Lemma 6.14) there exists Cr >
0 and m > myg such that for all f € L (M, p), we have harmonic functions
V1, Vo, ..., v satisfying

1
(10.25) 1> ZJ\/OQ*‘W*""S =N,
(10.26) / V;Vj du = V(p, Qm)dw»,
B(p,2m™)
(10.27) / v? dp < 20RQYT2V (p, Q™),
B(p,Qam+1)
and

(10.28) / Vpod du < CRQ_Q"’/ v? dp < 2Q44F272my (p M),
B(p,2Q™) B(p,4Q™)

Note that (10.26), (10.27), (10.28) and Q > 4 implies that vy, ve,...,v; satisfy
(10.3), (10.3)

(10.29) / et (0™ 2V poil? dp < (8C + 244257 (p 1)
B(p,2Qm

for all i = 1,...,l. Note that (10.25), (10.26), (10.29) along with Proposition 10.8
implies the desired contradiction. Therefore dim Hq(M, P) < Ny < co. O

REMARK 10.10. Similar to [53], we can replace the volume doubling hypotheses
(VD)ioc, (VD)s of Theorem 10.7 by a weakly polynomial growth assumption on
the volume growth.

10.2. Directions for future work

We end with a few directions for future work. Omne of the features of our
work is that it provides an unified approach to Gaussian estimates for discrete
time Markov chains on both discrete and continuous spaces. Recently, there has
been considerable interest in analysis and probability on fractals and fractal-like
manifolds and graphs. For many natural family of fractals the heat kernel satisfies
sub-Gaussian estimates of the form

/(B=1)
C d(z,y)? !
Po9) = g7 7my O (‘02( ¢ ) >

for all ¢ > 0 and for all z,y € M and 8 > 1 is a parameter (See [11, Theorem 1.5(e)]
for an early example). Here =< means that both inequalities < and > hold with
different values of constants C7,C>. Similar to the characterizations of Gaussian
estimates in [32, 69, 76, 27, 42] there exists various characterizations for sub-
Gaussian estimates both in the setting of diffusions on local Dirichlet spaces [8] and
for discrete time Markov chains on graphs [7, 9, 37, 38]. As in the case of Gaussian
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estimates, it is desirable to obtain characterizations of sub-Gaussian estimates that
are stable under quasi-isometries. This was achieved using a condition called cutoft-
Sobolev inequality first introduced by Barlow and Bass [7] (See also [8]). Our work
naturally raises an analogous question for sub-Gaussian estimates on Markov chains.

PROBLEM 10.11. Characterize sub-Gaussian estimates for discrete time Markov
chains on quasi-geodesic metric measure spaces using geometric conditions that are
stable with respect to quasi-isometries.

Another direction for future work is to clarify the applications to mixing times
in the finite diameter case as mentioned in Remark 8.5(b).

As mentioned in the introduction, we state the problem concerning the stability
of the elliptic Harnack inequality.

PrOBLEM 10.12. Is elliptic Harnack inequality stable under quasi-isometries?
If so, characterize the elliptic-Harnack inequality by geometric properties that are
stable under quasi-isometries.

We refer the reader to [12, 6] for partial progress and conjectures aimed at
solving the above problem.



APPENDIX A

Interpolation Theorems

In this appendix, we state Riesz-Thorin and Marcinkiewicz interpolations the-
orems and refer the reader to the literature for a proof.

Let T : (X,|I'llx) = (Y,|Illy) be a linear operator between normed linear
spaces. We denote the operator norm by

Tx
Telly —
cexzz0 |1Zlx  zexz=1

||THX%Y =

If |T||x_y < oo, we say the operator T is bounded. It is well known that T is

bounded if and only if T" is continuous. We abbreviate ||T'[|,_, . as [[T]],_,,-

THEOREM A.l (Riesz-Thorin interpolation theorem). Assume that (X, %, )
is a o-finite measure space. Suppose 1 < pgo,p1 < o0, 1 < qo,q1 < o0. Let
T : LPo + [Pr — [9% + L9 be a linear operator such that T : LP° — L% and
LPr — L% gre bounded. Then

1-6 0
< [T 17|

HTHPG*HIG Po—qo P1—q1
for all 6 € (0,1) where 1/pg :== (1 —0)/po+0/p1 and 1/q9 := (1 —0)/q0 + 0/aq1.

We refer the reader to [75] for a proof of Stein’s interpolation theorem which
in turn implies Theorem A.1.

Consider a o-finite measure space (X, X, u). The distribution function of f is
defined by

(D) =ploe X 5 @) > 1)
We denote weak LP space by LP'" For a measurable function f and 1 < p < oo,
we define its LP"" norm by

1/p
th=GwﬁM@> .
t>0

We say a measurable function f € LP* if | f||,,, < co. Note that LP* is not
a true norm, since [|-[|, , does not satisfy triangle inequality. If f € LP, then
I £ll, < [Ifl,,,- Therefore LP C LP. It is easy to check that LP # LP* in general.

THEOREM A.2 (Marcinkiewicz interpolation theorem). Let 1 < pg < gp < 00,
1 <p1 <q1 < oo with gqo # q1. Let T be a linear operator from LY + LY to the
space of measurable functions. If T satisfies

ITfll, 0 < Bi Ifl,, forall f € L7, i=0,1

then
-0 0
1T g0 < Croroaonar,0Bo ' BY

for all 0 € (0,1), where 1/pg := (1 —0)/po+ 6/p1, 1/q0 := (1 —0)/qo + 0/¢q1 and
Cpo.p1.g0.q1,0 < 00 depends only on po, p1, 4o, q1,0-
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We refer the reader to [2, Theorem 2.58] for a proof of Theorem A.2.



APPENDIX B

Examples

Here we collect various examples discussed earlier and supplement them with
more examples, comments and pictures.

ExaMPLE B.1 (Euclidean space with radial weights). We expand upon the ball
walk described in Example 4.4 for specific metric measure spaces. If a weighted
Riemannian manifold satisfies two-sided Gaussian estimates for its canonical diffu-
sion, one might naively expect the same to hold for the ball walk. However this is
not true in general because the measure p’ of Example 4.4 is not necessarily compa-
rable to p. The measure p’ might fail to satisfy either (VD) or (P)s. Recall the
example (M, d, 1) = (R, |||y , fta) from Example 3.21, where j1, = (1 + |o])*/? da.

Note that if a@ > 0 there is a drift away from the origin and if o < 0 there is
a drift towards the origin. If u = p, one can verify that p/ = u/, is comparable to
toq. Therefore the ballwalk accentuates the drift towards or away from the origin
(See Figure 1). In light of the above observation along with Table 1, Theorem 1.4

Density of symmetric measures
Density of symmetric measures

FIGURE 1. Density of p, and u!, for the case a = 0.6 (left) and
a = —0.6 (right) in R. Here p, is normalized to have density 1 at
origin.

and Proposition 3.20, if n > 2 and « € (—n, —n/2], then the canonical diffusion on
(R™, [|]l5 » pta) satisfies Gaussian estimates but the ball walk fails to satisfy Gaussian
estimates because (R™,|-||,, u,) does not satisfy (VD). In the case n = 1 and
a € [1/2,1), the canonical diffusion on (R, ||-||5, i) satisfies Gaussian estimates
but the ball walk fails to satisfy Gaussian estimates because (R, |||, , 1) does not
satisfy (P)co-

Even when both diffusion and ball walk satisfy Gaussian estimates for the
transition kernels with respect to the invariant measures, the long term behavior
might be different. For example, if n > 3 and if 2 —n < a < (2 — n)/2 then both
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diffusion and ball walk on (R™,d, 1) satisfy Gaussian estimates for the transition
kernels with respect to the invariant measures. However in this case the ball walk
is recurrent but the diffusion is transient.

For n € N*, the the ball walk on (R",d, j1s) is positive recurrent chain « <
—n/2, null recurrent for —n/2 < a < (2 —n)/2 and transient if & > (2 —n)/2 (See
[59, Proposition 10.1.1] and Proposition 10.3). However the canonical diffusion on
(R™,d, o) is positive recurrent chain o < —n, null recurrent for —-n < a <2 —n
and transient if & > 2 —n.

ExAMPLE B.2 (Complexes). Consider the Euclidean 2-complex in R? formed
by the hyperplanes H; ,, = {(z1,22,%3) : 2; =n} wherei=1,2,3 and n € Z. The
metric is described by the intrinsic metric and the measure is the two dimensional
surface measure. Dirichlet forms on such Riemannian complexes have been studied
in [66]. This example satisfies both Poincaré inequality (P);, for all h > 0 and
Volume doubling (VD). The geometry of the balls depend on the center (See
Figure 2).

The above example can also be viewed as a Cayley complex [43, p. 77 corre-
sponding to the presentation

3 -1 _-1 -1 -1 -1 _-1
Z :<CL1,CL2,CL3 ‘ ajazay Gy ,a20a309 A5 ,A30103 Gy >

More generally, consider a finitely generated and finitely presented group G =
(S | R). Note that the 1-skeleton of the Cayley complex is the Cayley graph of
(S | R) and the 2-cells (faces) are in bijection with G x R. We equipp each 2-cell
with the the usual Euclidean metric on the regular n-gon with edges of length 1 and
we endow the space with the measure obtained by equiping each two-cell with its
Lebesgue measure. It is easy to verify that the Cayley complex is quasi-isometric
to the Cayley graph of G with the quasi-isometry given by the natural embedding
of the Cayley graph in the Cayley complex. By the stability of (VD). and (P),
under quasi-isometries, we have that ball walk on Cayley complexes of nilpotent
groups (such groups are finitely generated and finitely presented) satisfy two sided
Gaussian bounds.

FIGURE 2. Two balls (in intrinsic metric) with same radius but
different centers in the Cayley complex of Z3.

In Figure 3 we consider the 1-complex {(x, y)ER?2 : x€Zoryc Z} equipped
with intrinsic metric. Note that the geometry of the balls depend both on the
location of the center and the radius.
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T

&

FIGURE 3. The blue lines shows the balls (in intrinsic metric) of
various sizes while the red squares correspond to the L' balls.

Next, we consider an example from [35, Example 3.14].

ExaMPLE B.3 (Model manifolds/Surfaces of revolution). Given a smooth func-
tion ¢ : (0,00) — (0,00), denote by My a model manifold. Here by model man-
ifold, we mean R equipped with the Riemannian metric in polar coordinates
(r,0) € (0,+00) x S¥=1 by

ds? =dr?+1(r)*d 6>,

where d 62 is the standard metric on SV ~! and v is a smooth positive function on
(0,+00). The necessary and sufficent conditions under which d s? can be smoothly
extended to a metric on the entire space RY is given by

$(0)=0, ¢'(0)=1, and®"(0)=0
(see [35, equation (4.12)]). Therefore we may choose ¥ (r) = r* where « € R for
all » > 1 and extend it smoothly satisfying the above conditions.

It is known that that My with ¢(r) = r for r > 1 satisfies parabolic Harnack
inequality if and only if —1/(N — 1) < a < 1. The Riemannian measure (in polar
coordinates) is given by d u = 1 (r)¥~! dr df. One can check that the reversible
measure g for the ball walk satisfies dy’ = V(x,1)du ~ ¢(r)>N =1 dr df for the
case o < 0 and dy’ = V(x,1)dp ~ dp for the case a > 0 (see [35, p. 856]).
Therefore the ball walk on the model manifold My with ¢(r) = r* for r > 1
satisfies the parabolic Harnack inequality and two-sided Gaussian estimates if and
only if —1/2(N —1) < a < 1. Using Lemma 2.12, it is easy to verify that M,
with ¢(r) = r* for r > 1 equipped with the measure p’ fails to satisfy (VD). if
a < —=1/2(N—1). Therefore for the case —1/(N—1) < a < —1/2(N —1), the model
manifold My, defined above satisfies two sided Gaussian estimates for diffusion but
fails to satisfy two sided Gaussian estimates for the ball walk.

These model manifolds can also be considered as surfaces of revolution formed
by the graph of the function 1 (see [34, Section 5.1]). Similar to Example B.1, the
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ball walk and diffusions may exhibit different behaviors in terms of null recurrence,
positive recurrence and transience depending on o and N.

ExAMPLE B.4 (Bodies of revolution). Another related class of examples given
in [34, Section 5.2] are bodies of revolution. Let f : [0,00) — [0,00) be a concave
function with f(0) = 0. Then the body of revolution in R" (with n > 1) defined by

M :={(u,t) eR" : we R*" "t >0,lull, < f(t)}

where |-||, above denotes the Euclidean norm in R"~* (See figure 4). Note that

A

X

X

FIGURE 4. The body of revolution corresponding to f in R3. This
figure shows two balls of the same radius.

since f is concave, M is a convex subset of R”. By the results of [58], we have
that M satisfies two-sided Gaussian estimates for the heat kernel corresponding to
the Neumann Laplacian. Hence by Theorem 1.1 the Neumann Laplacian satisfies
Poincaré inequality in M and satisfies volume doubling. If we set f(z) = z® for
some « € (0,1) and by Proposition 3.20 and Theorem 1.4 the ball walk on M
satisfies two-sided Gaussian bounds. Hence by Proposition 10.3 the corresponding
ball walk on M C R™ with f(z) = 2% is transient if and only if a(n — 1) > 1.
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