
On the comparison between jump processes and
subordinated diffusions

Guanhua Liu∗, Mathav Murugan†

July 25, 2023

Abstract

Given a symmetric diffusion process and a jump process on the same underlying
space, is there a subordinator such that the jump process and the subordinated diffu-
sion process are comparable? We address this question when the diffusion satisfies a
sub-Gaussian heat kernel estimate and the jump process satisfies a polynomial-type
jump kernel bounds. Under these assumptions, we obtain necessary and sufficient
conditions on the jump kernel estimate for such a subordinator to exist. As an
application of our results and the recent stability results of Chen, Kumagai and
Wang, we obtain parabolic Harnack inequality for a large family of jump processes.
In particular, we show that any jump process with polynomial-type jump kernel
bounds on such a space satisfy the parabolic Harnack inequality.

Keywords: subordination, jump processes, diffusions, parabolic Harnack inequality

1 Introduction

Let (X(t)) and (Yα(t)) denote the Brownian motion and symmetric α-stable process on
Rn respectively, where α ∈ (0, 2). These process form the basic examples of symmetric
diffusions and jump processes respectively. The jump kernel of the α-stable process (Yα(t))
on Rn is given by

J(x, y) =
cn,α

d(x, y)n+α
, for all x, y ∈ Rn,

where d denotes the Euclidean distance. The processes (X(t)) and (Yα(t)) are related via
a subordinator. A subordinator is a one-dimensional Lévy process with non-decreasing
paths. The process (Yα(t)) has the same law as (X(S(t))), where (S(t)) is a subordinator
independent of (X(t)) and defined by its Laplace transform E exp(−λS(t)) = exp(−tλα/2)
for all t, λ ≥ 0. Therefore one could study α-stable processes using properties of Brownian
motion and the subordinator. In particular, we have

Px(Yα(t) ∈ A) =

� ∞
0

Px(X(s) ∈ A) ηt(ds), (1.1)
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where ηt is the law of the subordinator S(t) described above.

A well-known important application of (1.1) is that one can obtain heat kernel bounds
and parabolic Harnack inequality for the jump process (Yα) by transferring heat kernel
bounds and parabolic Harnack inequality for the diffusion (X) along with heat kernel
estimates on the subordinator ([CKW3, Section 5.2] and [BKKL2, Section 4.1]). In this
work, we investigate the extent to which subordination can be used to analyze jump
processes. In particular, our work addresses the following questions:

(a) Let X be a µ-symmetric diffusion that satisfies the parabolic Harnack inequality.
Given a µ-symmetric jump process Y , does there exist a subordinator S such that
the subordinated process X ◦ S has jump kernel comparable to that of Y ?

(b) In the setting above, does the jump process Y also inherit the parabolic Harnack
inequality from X? If so, what is the space time scaling of the process Y ?

Under fairly mild conditions on the jump kernel, we obtain a positive answer to both
these questions. Our answer to question (a) seems to be new even on Rn (see Remark
2.4). The motivation for question (a) arises from the beautiful recent results of Chen, Ku-
magai, Wang concerning the stability of parabolic Harnack inequality for jump processes
[CKW20]. Using their results a positive answer from question (b) follows from a positive
answer to question (a).

2 Framework and results

2.1 Dirichlet forms and symmetric Markov processes

Throughout this work, we consider a complete, locally compact, separable, unbounded
metric space (M,d) equipped with a Radon measure µ with full support, i.e., a Borel
measure µ on M that is finite on any compact set and positive on any non-empty open
set. Such a triple (M,d, µ) is called a metric measure space.

Let (E ,F) be a symmetric Dirichlet form on L2(M,µ). That is, the domain F is a
dense linear subspace of L2(M,µ), such that E : F × F → R is a non-negative definite
symmetric bilinear form which is closed (F is a Hilbert space under the inner product
E1(·, ·) := E(·, ·) + 〈·, ·〉L2(M,µ)) and Markovian (the unit contraction operates on F ; û :=
(u ∨ 0) ∧ 1 ∈ F and E(û, û) ≤ E(u, u) for any u ∈ F). Recall that (E ,F) is called regular
if F ∩ Cc(M) is dense both in (F , E1) and in (Cc(M), ‖ · ‖sup). Here Cc(M) is the space of
R-valued continuous functions on M with compact support.

Given a Dirichlet form (E ,F), there is an associated Markov semigroup (Pt)t≥0 on
L2(M,µ) and a non-positive definite self-adjoint generator L such that Pt = etL. Fur-
thermore, by [FOT, Theorem 1.3.1 and Lemma 1.3.4] the Dirichlet form (E ,F) is given
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in terms of the semigroup by

F =

{
f ∈ L2(M,µ) : lim

t↓0

1

t
〈f − Ptf, f〉 <∞

}
, (2.1)

E(f, f) = lim
t↓0

1

t
〈f − Ptf, f〉, for all f ∈ F , (2.2)

where 〈·, ·〉 denotes the L2(M,µ) inner product. Recall that by the spectral representation,
t 7→ 1

t
〈f − Ptf, f〉 is non-increasing and

lim sup
t↓0

1

t
〈f − Ptf, f〉 = lim

t↓0

1

t
〈f − Ptf, f〉 for any f ∈ L2(M,µ). (2.3)

It is known that the semigroup extends to a contraction on any Lp(M,µ), where p ∈ [1,∞].
The Markov semigroup is said to be conservative if Pt1 = 1 for any t > 0.

Associated with a regular Dirichlet form (E ,F) on L2(M,µ) is a µ-symmetric Hunt
process (Xt, t ≥ 0,Px, x ∈ M \ N ), where N is a properly exceptional set for (E ,F).
Recall that a Hunt process is a strong Markov process that is right continuous and quasi-
left continuous on the one-point compactification M∂ := M ∪ {∂} of M . The heat kernel
associated with the Markov semigroup {Pt} (if it exists) is a family of measurable functions
p(t, ·, ·) : M ×M 7→ [0,∞) for every t > 0, such that

Ptf(x) =

�
p(t, x, y)f(y)µ(dy) for all f ∈ L2(M,µ), t > 0 and x ∈M , (2.4)

p(t, x, y) = p(t, y, x) for all x, y ∈M and t > 0, (2.5)

p(t+ s, x, y) =

�
p(s, x, y)p(t, y, z)µ(dy) for all t, s > 0 and x, y ∈M . (2.6)

We recall the notion of strongly local and pure jump type Dirichlet forms. For a Borel
measurable function f : M → R or an µ-equivalence class f of such functions, suppµ[f ]
denotes the support of the measure |f| dµ, i.e., the smallest closed subset F of M with�
M\F |f| dµ = 0, which exists since M is separable. A Dirichlet form (E ,F) on L2(M,µ)

is said to be strongly local if E(f, g) = 0 for all functions f, g ∈ F with suppµ[f ], suppµ[g]
compact and suppµ[f − a1M ] ∩ suppµ[g] = ∅ for some a ∈ R. We say that a Dirchlet
form (E ,F) on L2(M,µ) is of pure jump type, if there exists a symmetric positive Radon

measure J̃ on M ×M \ diag such that

E(f, f) =

�
M×M\diag

(f(x)− f(y))2 J̃(dx, dy) for all f ∈ F ,

where diag = {(x, x) | x ∈M} denotes the diagonal. The Radon measure J̃ is called
the jumping measure; we refer to the Beurling-Deny decomposition for the reason behind
this terminology [FOT, Theorem 3.2.1 and Lemma 4.5.4]. A symmetric Borel measurable
function J : M ×M \diag→ [0,∞) is said to be a jump kernel of a Dirichlet form (E ,F)

on L2(M,µ) of pure jump type, if J̃(dx, dy) = J(x, y)µ(dx)µ(dy), where J̃ is the jumping
measure.
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Let R+ = [0,∞). We say that a homeomorphism ψ : R+ → R+ is a scale function if
there exist C ≥ 1, 0 < β1 ≤ β2 such that

C−1
(
R

r

)β1
≤ ψ(R)

ψ(r)
≤ C

(
R

r

)β2
for all 0 < r ≤ R. (2.7)

Let ψj be a scale function and let J̃ be a jumping measure. We say that the jumping mea-

sure J̃ satisfies J(ψj) if there exists a density J such that J̃(dx, dy) = J(x, y)µ(dx)µ(dy)
and there exists C > 0 such that

C−1

µ(B(x, d(x, y)))ψj(d(x, y))
≤ J(x, y) ≤ C

µ(B(x, d(x, y)))ψj(d(x, y))
, (J(ψj))

for µ-a.e. x, y ∈ M × M \ diag. If the density J satisfies the upper or lower bounds
on J in the above estimate, we say that the jumping measure satisfies J(ψj)≤ or J(ψj)≥
respectively. Jump processes satisfying J(ψj) have been widely studied in the context of
heat kernel estimates and Harnack inequalities [CKW3, BKKL2, BKKL1, MS].

2.2 Parabolic Harnack inequality

We recall the definition of parabolic Harnack inequality and it’s relationship to heat
kernel bounds. Let (E ,F) be a Dirichlet form on L2(M,µ) and let I be an open interval
in R. We say that a function u : I → L2(M,µ) is weakly differentiable at t0 ∈ I if the
function t 7→ 〈u(t), f〉 is differentiable at t0 for all f ∈ L2(M,µ) , where 〈·, ·〉 denotes the
inner product in L2(M,µ). By the uniform boundedness principle, there exists a (unique)
function w ∈ L2(M,µ) such that

lim
t→t0

〈
u(t)− u(t0)

t− t0
, f

〉
= 〈w, f〉, for all f ∈ L2(M,µ).

In this case, we say that the function w above is the weak derivative of u at t0 and
write w = u′(t0). Let Ω be an open subset of M . A function u : I → F is said to be
caloric in I × Ω if u is weakly differentiable in the space L2(Ω) at any t ∈ I, and for any
f ∈ F ∩ Cc(Ω), and for any t ∈ I,

〈u′, f〉+ E(u, f) = 0. (2.8)

Definition 2.1 (Parabolic Harnack inequality). Let (E ,F) be a Dirichlet form on
L2(M,µ) and let ψ be a scale function. We say that a metric measure space (M,d, µ)
equipped with a Dirichlet form (E ,F) satisfies the parabolic Harnack inequality with scale
function ψ (abbreviated as PHI(ψ)), if there exist 0 < C1 < C2 < C3 < C4 <∞, C5 > 1
and δ ∈ (0, 1) such that for all x ∈ M , r > 0 and for any non-negative bounded caloric
function u on the space-time cylinder Q = (a, a+ ψ(C4r))×B(x, r), we have

ess sup
Q−

u ≤ C5 ess inf
Q+

u, PHI(ψ)

where Q− = (a + ψ(C1r), a + ψ(C2r)) × B(x, δr) and Q+ = (a + ψ(C3r), a + ψ(C4r)) ×
B(x, δr).
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We recall the following sub-Gaussian heat kernel estimate that is equivalent to the
above parabolic Harnack inequality.

Let (E ,F) be a strongly local, regular, Dirichlet form on L2(M,µ) and let ψ be a scale
function. We say that the Dirichlet form (E ,F) on L2(M,µ) satisfies HKE(ψ), if there
exist C1, c1, c2, c3, δ ∈ (0,∞) and a heat kernel {pt}t>0 such that for any t > 0,

pt(x, y) ≤ C1

m
(
B(x, ψ−1(t))

) exp
(
−c1Φ(c2d(x, y), t)

)
for µ-a.e. x, y ∈M , (2.9)

pt(x, y) ≥ c3

m
(
B(x, ψ−1(t))

) for µ-a.e. x, y ∈M with d(x, y) ≤ δψ−1(t), (2.10)

where

Φ(R, t) := Φψ(R, t) := sup
r>0

(
R

r
− t

ψ(r)

)
, for all R ≥ 0, t > 0. (2.11)

We recall volume doubling and reverse volume doubling properties of a metric measure
space. We say that a metric measure space (M,d, µ) satisfies the volume doubling property
VD if there exists CD > 1 such that

µ(B(x, 2r)) ≤ CDµ(B(x, r)), for all x ∈M, r > 0. VD

We say that a metric measure space (M,d, µ) satisfies the reverse volume doubling property
RVD, if there exists A,C > 1 such that

µ(B(x,Ar)) ≥ Cµ(B(x, r)), for all x ∈M, r > 0.

We recall the following well-known equivalence between parabolic Harnack inequality and
heat kernel estimates.

Theorem 2.2. [BGK, Theorem 3.1] Let (M,d, µ) be a metric measure space that satisfies
the VD, RVD and let ψ be a scale function. Let (E ,F) be a strongly, local, regular
Dirichlet form on L2(M,µ). Then for the Dirichlet form (E ,F) on the metric measure
space (M,d, µ) the parabolic Harnack inequality PHI(ψ) is equivalent to the heat kernel
estimate HKE(ψ).

Proof. We first assume that the constant β1 in (2.7) satisfies β1 > 1 and we will later
show that we could always take β1 > 1 under our assumptions. The equivalence mentioned
above is essentially contained in [BGK, Theorem 3.1]. Our formulation of PHI(ψ) is same
the weak parabolic Harnack inequality in [BGK, §3.1] but since our version of HKE(ψ)
is slightly different we provide the details. In order to use [BGK, Theorem 3.1], we first
need to verify that all balls are precompact. This follows from the completeness of d and
the doubling property of µ as we explain below. Since µ is a doubling measure, we obtain
that d is a doubling metric [Hei, Chapter 13] (that is, there exists N ∈ N such that every
ball of radius r can be covered by N balls of radius r/2). This in turn implies that all
metric balls are totally bounded [Hei, Definition 10.15 and Exercise 10.17]. Therefore
all metric balls are totally bounded and hence precompact by the completeness of X.
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By [GT12, Lemma 3.19] our version of HKE(ψ) implies w-HKE(ψ) in [BGK, p. 1102].
Therefore HKE(ψ) implies PHI(ψ) follows from [BGK, Theorem 3.1] along with [GT12,
Lemma 3.19].

For the converse implication we use [BGK, Theorem 3.1] to obtain that PHI(ψ) implies
that the heat kernel exists and there exists c1, C1 such that the heat kernel pt(·, ·) satisfies
the following upper bound

pt(x, y) ≤ C1

µ
(
B(x, ψ−1(t))

) exp

(
−c1

(
ψ(d(x, y))

t

)1/(β2−1)
)

for µ-a.e. x, y ∈M .

(2.12)
Furthermore by [BGK, Theorem 3.1], we have the following local lower estimate for the

corresponding Dirichlet heat kernel p
B(x0,r)
t : there exists c2, ε0 ∈ (0, 1) such that for all

x0 ∈M, r > 0 we have

p
B(x0,r)
t (x, y) ≥ c2

µ(B(x0, ψ−1(t)))
for all 0 < t < ψ(ε0r), µ-a.e x, y ∈ B(x0, ε0r). (2.13)

In order to verify HKE(ψ), by [GHL15, Theorem 1.2] it suffices to verify the elliptic
Harnack inequality and exit time upper and lower bounds. Since the elliptic Harnack
inequality follows from PHI(ψ), it remains to show the following exit time bounds: there
exists ε ∈ (0, 1), C > 1 such that for all x0 ∈M, r > 0,

ess sup
x∈B(x0,r)

Ex(τB(x0,r)) ≤ Cψ(r), ess inf
x∈B(x0,εr)

Ex(τB(x0,r)) ≥ C−1ψ(r), (2.14)

where τB(x0,r) denotes the exit time of B(x0, r). The lower bound for the exit time follows
from (2.13) as

ess inf
x∈B(x0,ε0r)

Ex(τB(x0,r)) ≥ ψ(ε0r)/2 ess inf
x∈B(x0,ε0r)

Px(τB(x0,r) > ε0r)/2

≥ ψ(ε0r)/2

�
B(x0,r)

p
B(x0,r)
ψ(ε0r)/2

(x, y)µ(dy)
(2.13)

& ψ(r).

For the upper bound, we use reverse volume doubling to choose A > 1 such that
µ(B(x,Ar)) > 2µ(B(x, r)). Then there exists c2 ∈ (0, 1) such that for all x0 ∈ M, r > 0,
for µ-a.e x ∈ B(x0, r) we have

Px(τB(x0,r) ≤ ψ(Ar)/2) ≥
�
B(x0,Ar)\B(x0,r)

pψ(Ar)/2(x, y)µ(dy)

≥
�
B(x0,Ar)\B(x0,r)

p
B(x0,)
ψ(Ar)/2(x, y)µ(dy)

≥
�
B(x0,Ar)\B(x0,r)

p
B(x0,ε

−1
0 Ar)

t (x, y)µ(dy)
(2.13)

≥ c2.

Therefore for all x0 ∈M, r > 0, n ∈ N, we have

ess sup
x∈B(x0,εr)

Px(τB(x0,r) > nψ(Ar)/2) ≤ (1− c2)n.
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Hence there exists C4 ≥ 1, c5 ∈ (0, 1) such that for all x0 ∈M, r > 0, t > 0, we have

ess sup
x∈B(x0,εr)

Px(τB(x0,r) > t) ≤ C4 exp(−c5t/ψ(r)).

This estimate along with ess supx∈B(x0,εr) Ex(τB(x0,r)) = ess supx∈B(x0,εr)

�∞
0

Px(τB(x0,r) >
t) dt yields the desired upper bound in (2.14). We refer the reader to [KM, Theorem 4.5
and Remark 4.6] for further discussion on related results.

Finally, we consider the case β1 ≤ 1 in (2.7). Since replacing the metric d with dα

where α = 3
4
β1 leads to replacing ψ with r 7→ ψ(r1/α) for parabolic Harnack inequality

and heat kernel estimates, by choosing α < β1 we are in the case β1 > 1 (since β1 will
be replaced with β1/α = 4

3
). This follows immediately from the definitions of HKE(ψ)

and PHI(ψ) along with {y : dα(x, y) < r} = {y : d(x, y) < r1/α}. By [GHL15, Theorem
1.2] and the previous case, we obtain the Poincaré inequality and capacity upper bounds
under the new metric dα to apply [Mur, Corollary 1.10]. By [Mur, Corollary 1.10], we
can choose a ‘new’ β′1 > 0 for ψ so that β′1 ≥ 2α = 3

2
β1. We repeat this procedure finitely

many times to conclude that β1 > 1. In fact, we obtain that β1 can be chosen to be 2. �

2.3 Subordinator and Lévy measure

A subordinator (St) is a non-decreasing Lévy process with S0 = 0; that is, (St) has
independent, stationary increments such that t 7→ St is continuous in probability. A
subordinator is characterized by its Laplace exponent φ : [0,∞)→ [0,∞) such that

Ee−λSt = e−tφ(λ), (2.15)

where φ is a Bernstein function determined by its drift a ∈ [0,∞) and Lévy measure ν
of the subordinator St, where ν is a Borel measure on (0,∞) such that�

(0,∞)

(1 ∧ s) ν(ds) <∞, and φ(λ) = aλ+

� ∞
0

(1− e−sλ) ν(ds). (2.16)

Conversely, any drift a ∈ [0,∞) and Borel measure ν on (0,∞) that satisfy (2.16) uniquely
determine the subordinator (St). We refer the reader to [SSV, Chapter 5] or [Sat, Chapter
6] for background on subordinators.
Notation. In the following, we will use the notation A . B for quantities A and B
to indicate the existence of an implicit constant C ≥ 1 depending on some inessential
parameters such that A ≤ CB. We write A � B, if A . B and B . A.

2.4 Statement of the main results

We now state the main results of this work. The following theorem characterizes all poly-
nomial type jump kernels on a metric measure space that admits a diffusion satisfying
parabolic Harnack inequality. Our theorem establishes a one-to-one correspondence be-
tween jump processes with polynomial type jump kernels and processes with jump kernels
comparable to that of subordinated diffusion process.
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Theorem 2.3 (Characterization of jump kernels). Let (M,d, µ) an unbounded, com-
plete, separable, locally compact metric measure space that satisfies VD. Let (Ec,F c) be
a strongly local, regular Dirichlet form on L2(M,µ) that satisfies PHI(ψc), where ψc is
a scale function. Let X be the µ-symmetric Hunt process corresponding to (Ec,F c) on
L2(M,µ). Given a scale function ψj, the following are equivalent.

(a) There exists a regular Dirichlet form (E j,F j) on L2(M,µ) of pure jump type whose
jump kernel satisfies J(ψj).

(b) There exists a subordinator S such that the subordinated process X ◦S corresponds to
a regular Dirichlet form (E j,F j) on L2(M,µ) of pure jump type and satisfies J(ψj).

(c) The scale function ψj satisfies

� 1

0

ψc(s)

sψj(s)
ds <∞. (2.17)

Remark 2.4. By [Mur, Corollary 1.10], we have ψc(s) . s2 for all s ∈ [0, 1]. Therefore
the condition � 1

0

s

ψj(s)
ds <∞ (2.18)

implies (2.17). The above sufficient condition (2.18) for (2.17) was assumed in the context
of jump processes on d-regular sets in the Euclidean space [CK, eq. (1.3)]. Furthermore,
the Brownian motion on Euclidean space satisfies PHI(ψc) with ψc(r) = r2 in which case
(2.17) is same as (2.18). The integrability condition (2.17) was recently used to obtain heat
kernel estimates in [BKKL2, eq. (2.19)]. Theorem 2.3 can be viewed as a justification for
the assumptions in these previous works. Although these versions of (2.18) were used in
earlier works to obtain heat kernel bounds and parabolic Harnack inequality, the necessity
of (2.17) is new and is the key contribution of our work.

Corollary 2.5 (Parabolic Harnack inequality via subordination). Let (M,d, µ) an un-
bounded, complete, separable, locally compact metric measure space that satisfies VD. Let
(Ec,F c) be a regular, strongly local Dirichlet form on L2(M,µ) that satisfies PHI(ψc),
where ψc is a scale function. Let (E j,F j) be a regular Dirichlet form L2(M,µ) of pure
jump type that satisfies J(ψj) for some scale function ψj.

(a) Then jump type Dirichlet form (E j,F j) satisfies PHI(ψ̂j), where ψ̂j is a scale function
satisfying the following estimate: there exists C ≥ 1 such that

C−1
ψc(r)� r

0
ψc(s)
sψj(s)

ds
≤ ψ̂j(r) ≤ C

ψc(r)� r
0

ψc(s)
sψj(s)

ds
for all r > 0.
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(b) The scale functions ψc, ψj, ψ̂j satisfy the following estimates:

ψ̂j(r) . ψj(r) for all r > 0, (2.19)

ψc(r) . ψj(r) for all r ≤ 1, (2.20)

ψ̂j(R)

ψ̂j(r)
.
ψc(R)

ψc(r)
for all 0 < r ≤ R, (2.21)

ψ̂j(r) . ψc(r) for all r ≥ 1, and ψc(r) . ψ̂j(r) for all r ≤ 1. (2.22)

We provide a probabilistic interpretation of the Corollary 2.5(b). Let (Xt)t≥0, (Yt)t≥0
denote the diffusion and jump processes corresponding to the Dirichlet forms (Ec,F c) and
(E j,F j) in Corollary 2.5 respectively. Then by the results of [GHL15, GT12, CKW20], the

function ψc and ψ̂j govern the exit times from balls of the processes X and Y respectively.
In particular, the following two sided bounds for exit times hold:

Ex[τXB(x,r)] � ψc(r), Ex[τYB(x,r)] � ψ̂j(r)

for all x ∈ M, r > 0, where Ex denote the expectation when the process starts at x and
τXB(x,r), τ

Y
B(x,r) corresponds to the exit time of B(x, r) for the process X and Y respectively.

By the last estimate in Corollary 2.5(b), the diffusion process exits smaller balls (say balls
of radii less than 1) faster than the jump process. On the other hand, the jump process
exits larger balls faster than the diffusion process. A similar assumption can be found in
[CKW3, (1.13)]. This work grew from an attempt to understand and justify the above
mentioned assumptions in [CKW3, BKKL2, CK].

3 Subordinator with comparable jump kernel

We recall the following result from [BKKL2]. We emphasize that the following result of
does not require ψc and ψj to satisfy condition (2.17). In the notation of [BKKL2], we
only need that Jψ is defined by the equation that is four lines above the statement of
[BKKL2]. In [BKKL2], the assumption β1 > 1 was included but as explained in the proof
of Theorem 2.2, this assumption is not needed.

Lemma 3.1. [BKKL2, Lemma 4.2] Let ψc, ψj be scale functions and let (t, x, y) 7→ pct(x, y)
be a heat kernel that satisfies the estimate PHI(ψc). Then

� ∞
0

pct(x, y)

tψj ◦ ψ−1c (t)
dt � 1

µ(B(x, d(x, y)))ψj(d(x, y))
for all x, y ∈M . (3.1)

The following Poincaré inequality follows from the parabolic Harnack inequality and
is a crucial ingredient in our proof.

Lemma 3.2 (Poincaré inequality). [GHL15, Theorem 1.2] Let (M,d, µ) an unbounded,
complete, separable metric measure space. Let (Ec,F c) be a regular, strongly local Dirichlet
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form on L2(M,µ) that satisfies PHI(ψc), where ψc is a scale function. Then we have the
following Poincaré inequality: there exist CP , A > 1 such that for any ball B(x, r) and for
any function f ∈ F c,�

B(x,r)

(f(y)− fB(x,r))
2 µ(dy) ≤ CP

�
B(x,Ar)

�
B(x,Ar)

dΓ(f, f), (PI(ψc))

where Γ(f, f) denotes the energy measure, and fB(x,r) denotes the µ-average of f in B(x, r)
defined by fB(x,r) = 1

µ(B(x,r))

�
B(x,r)

f dµ.

Proof. This is an immediate consequence of [GHL15, Theorem 1.2] and Theorem 2.2. �

The following lemma is classical and is a special case of [Oku, Theorem 2.1]

Lemma 3.3. [Oku, Theorem 2.1] Let X be a µ-symmetric process with a conservative
semigroup whose heat kernel is pct(·, ·), and (St) be a subordinator with Lévy measure ν.
Then the Dirichlet form corresponding to the µ-symmetric subordinated process Yt = XSt

is a pure jump process with jump kernel

J(x, y) =
1

2

� ∞
0

pct(x, y) ν(dt).

The following elementary estimate along with Lemma 3.3 provides the desired bounds
on the jump kernel of subordinated process.

Proposition 3.4. Let (M,d, µ) an unbounded, complete, separable metric measure space.
Let (Ec,F c) be a regular, strongly local Dirichlet form on L2(M,µ) that satisfies PHI(ψc),
where ψc is a scale function. Let (E j,F j) be a pure jump type Dirichlet form such that
the corresponding jumping measure satisfies J(ψj)≥, where ψj is a scale function. Then

� 1

0

1

ψj ◦ ψ−1c (t)
dt <∞.

Proof. Assume to the contrary that
� 1

0

1

ψj ◦ ψ−1c (t)
dt =∞. (3.2)

Since t 7→ ψj ◦ ψ−1c (t) is a continuous positive function on (0,∞), we have
� t0

0

1

ψj ◦ ψ−1c (t)
dt =∞, (3.3)

for any t0 > 0. Let (P c
t )t>0 denote the Markov semigroup corresponding to the Dirichlet

form (Ec,F c) on L2(M,µ) and let pct(·, ·) denote the corresponding heat kernel (which
exists by Theorem 2.2). Note that

1

t
〈f − P c

t f, f〉 =
1

2t

�
M

�
M

pct(x, y)(f(x)− f(y))2 µ(dx)µ(dy). (3.4)
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Therefore by (3.1) of Lemma 3.1 and (3.4), there exists C1 > 0 such that

C−11 E j(f, f) ≤
� ∞
0

1

tψj ◦ ψ−1c (t)
〈f − P c

t f, f〉 dt ≤ C1E j(f, f) for all f ∈ F j. (3.5)

Let f ∈ F j. Choose N, ε ∈ (0,∞). We define Ec(f, f) for any f ∈ L2(M,µ) by setting
Ec(f, f) = ∞ whenever f ∈ L2(M,µ) \ F c. Let (P c

t )t>0 denote the Markov semigroup
corresponding to the Dirichlet form (Ec,F c) on L2(M,µ). By (2.3), there exists t0 ∈ (0, 1)
(depending on f,N, ε) such that for any t ∈ (0, t0),

1

t
〈f − P c

t f, f〉 ≥ (N ∧ Ec(f, f))− ε. (3.6)

Combining (3.5) and (3.6),

∞ > E j(f, f) (3.7)

≥ C−11

� t0

0

1

tψj ◦ ψ−1c (t)
〈f − P c

t f, f〉 dt (3.8)

≥ [(N ∧ Ec(f, f))− ε]
� t0

0

1

ψj ◦ ψ−1c (t)
dt (3.9)

Combining (3.3) and (3.9), we obtain that N ∧ Ec(f, f) ≤ ε. By letting ε→ 0, and using
(2.1), (2.2), we obtain that

Ec(f, f) = 0 for all f ∈ F j. (3.10)

By the Poincaré inequality (Lemma 3.2), this implies that any f ∈ F j is constant µ-
almost everywhere on every ball B(x, r). In particular, every function in F j is constant
µ-almost everywhere. This implies that F j is not dense in L2(M,µ), contradicting the
assumption that (E j,F j) is a Dirichlet form. �

The following result is an elementary consequence of change of variables formula.

Lemma 3.5. Let ψc, ψj be scale functions. Then
� 1

0
ψc(s)
sψj(s)

ds < ∞ is equivalent to� 1

0
1

ψj◦ψ−1
c (t)

dt <∞.

Proof. It is easy to verify using (2.7) that ψc(t) is comparable to the function

t 7→
� t

0

ψc(r)

r
dr.

Therefore, we assume without loss of generality that ψc is continuously differentiable and

ψ′c(r) �
ψc(r)

r
(3.11)

for all r > 0. Using (3.11) and substituting t = ψc(s) in the integral
� 1

0
1

ψj◦ψ−1
c (t)

dt, we

obtain the desired equivalence. �
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3.1 Proof of the main results

Proof of Theorem 2.3. The parabolic Harnack inequality implies that (M,d) is connected
[GH, Proposition 5.6], [BCM, Theorem 5.4]. By [Hei, Exercise 13.1], (M,d) satisfies RVD.

That (b) implies (a) is obvious.

Next, we show that (c) implies (b). By Lemma 3.5, the measure ν(t) := 1
tψj◦ψ−1

c (t)
dt is

a Lévy measure of subordinator. Let S denote the subordinator corresponding to the Lévy
measure ν. By [GHL15, Theorems 1.2 and 1.3] and Theorem 2.2, the Markov semigroup
corresponding to (Ec,F c) is conservative. By Lemmas 3.3 and 3.1, the subordinated
diffusion process X ◦ S is a µ-symmetric pure jump process whose jump J(ψj).

Finally, (a) implies (c), following from Proposition 3.4 and Lemma 3.5. �

Proof of Corollary 2.5.

(a) By Theorem 2.3, we obtain (2.17). Therefore, by [BKKL2, Theorem 2.19 and Lemma
4.5], Lemma 3.5, along with the characterization of parabolic Harnack inequality in
[CKW20, Theorem 1.20], we obtain (a).

(b) The estimate (2.19) follows from

� r

0

ψc(s)

sψj(s)
ds ≥

� r

r/2

ψc(s)

sψj(s)
ds ≥ ψc(r/2)

2ψj(r)
&
ψc(r)

ψj(r)
.

Using the above estimate

ψc(r)

ψj(r)
.

� r

r/2

ψc(s)

sψj(s)
ds ≤

� 1

0

ψc(s)

sψj(s)
ds

for any r ≤ 1. This along with (2.17) in Theorem 2.3 yields (2.20). By part (a), for
any 0 < r ≤ R, we obtain

ψ̂j(R)

ψ̂j(r)

ψc(r)

ψc(R)
.

� r
0

ψc(s)
sψj(s)

ds� R
0

ψc(s)
sψj(s)

ds
. 1.

This implies (2.21). The estimates in (2.22) follow from (2.21) by substituting r = 1
and R = 1 respectively.

�
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