MATH 419/545 HW 3

Due February 14, 2020 (at the beginning of the class)

- 1. (a) Assume $\{Y_i : i \in I\}$ is a uniformly integrable collection of nonnegative random variables and Z is a non-negative integrable random variable. If $|X_i| \leq Y_i + Z$ for all *i*, prove that $\{X_i : i \in I\}$ is also uniformly integrable
 - (b) Let $\{X_n\}$ be a uniformly integrable (\mathcal{F}_n) -submartingale and \mathcal{T} be the collection of all \mathcal{F}_n -stopping times. Prove that $\{X_T : T \in \mathcal{T}\}$ is uniformly integrable. (Remark: This shows that the submartigale $\{X_{T_k}\}$ obtained in optional stopping theorem is uniformly integrable).

Hint: We prove this in class if $\{X_n\}$ were a martingale. One approach is to use Doob's decomposition (Theorem 4.3.2).

- 2. Assume $\{X_n : n \leq 0\}$ is a backwards $(\mathcal{F}_n)_{n \leq 0}$ -martingale such that $E(|X_0|^p) < \infty$ for some p > 1. Prove that X_n converges a.s. and in L^p .
- 3. Let $(X_n : n \in \mathbb{N})$ be a non-negative L^1 bounded (\mathcal{F}_n) -submartingale. Let $Y_n = \sup_{k \ge n} E(X_k | \mathcal{F}_n)$. Show that (Y_n) is an (\mathcal{F}_n) -martingale such that:
 - (i) $X_n \leq Y_n$ for all n a.s.
 - (ii) $||Y||_1 = ||X||_1$
 - (iii) If (N_n) is an (\mathcal{F}_n) -martingale such that $X_n \leq N_n$ for all n a.s., then $Y_n \leq N_n$ for all n a.s.
- 4. Exercise 4.6.7
- 5. (a) Prove the following modified weak L^1 inequality: Let $(X_n : n \in \mathbb{N})$ be a non-negative (\mathcal{F}_n) -submartingale. Then for all $\lambda > 0$

$$P(X_n^* \ge 2\lambda) \le \frac{1}{\lambda} \int_{\{X_n \ge \lambda\}} X_n \, dP.$$

Hint: For fixed λ , *n* consider the martiale

$$M_k = E(X_n \mathbb{1}_{\{X_n \ge \lambda\}} | \mathcal{F}_k).$$

(Even if you don't do (a) you can use it in (b) and (c).)

- (b) Let (X_n) be as in (a). Prove that $||X^*||_1 \le \sup_n 2E(X_n \log^+ X_n) + 2$, where $\log^+ x = \log(x) \lor 0, \log(0) = -\infty$.
- (c) Let $\{Y_i\}$ be iid random variables and let $S_n = \sum_{i=1}^n Y_i$. Prove that $E(|Y_1|\log^+|Y_1|) < \infty$ implies $E\left(\sup_n \frac{|S_n|}{n}\right) < \infty$.

Practice Problems (do not hand in)

- 1. Read the statement and proof of Doob's decomposition theorem (Theorem 4.3.2).
- 2. Show that every martingale that converges in L^p is L^p bounded $(1 \le p < \infty)$.
- 3. We used the following fact implicitly in the proof of optional sampling theorem (prove it): Let \mathcal{G} be a sub σ -field of \mathcal{F} . Let X, Y be two integrable random variables such that X is \mathcal{F} -measurable and Y is \mathcal{G} -measurable. Then the following are equivalent
 - (a) $Y \leq E(X|\mathcal{G})$ almost surely.
 - (b) For any $A \in \mathcal{G}$, we have

$$E(Y1_A) \le E(X1_A).$$

- 4. Exercises 4.8.2 to 4.8.10.
- 5. Do other exercises stated in lectures.