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1 Introduction

The study of heat kernels and their estimates is at the interface of analysis, geometry and
probability. Let us start with some examples of heat kernel. The fundamental solution of
the heat equation on R™

Opu = %Au, (1.1)

is given by the classical Gauss—Weierstrass kernel

p(@,y) = WGXP (—%) : (1.2)

That is, for any fixed x € R", the function (¢,y) — pi(x,y) solves the heat equation on
(0,0) x R™ and limy o pi(x, ) = 05, where ¢, is the Dirac mass at « in the sense of distribu-
tions. In particular, for any f e C®(R"), the function u(t,z) = {5 pi(z, y) f(y) dy, (t,z) €
(0,00) x R™ solves the Cauchy problem for the heat equation (1.1) with initial condition
u(0,z) = f(x) for all x € R™.

The fundamental solution of the heat equation can alternately be viewed as the tran-
sition probability density of the standard Brownian motion as p;(z,-) is the density of
the multivariate normal random variable with mean x and covariance matrix t1,,.,. Thus
the measure p;(z,y)dy is the law of the Brownian motion B, starting at By = z. By
extension, we use the term heat kernel to refer to the transition kernel of a variety of
Markov processes.

It is known that the behavior heat kernel is closely related to the geometry of the
underlying space. A classical result in this direction is the Varadhan’s asymptotic formula
[Var] (see also [Nor, HR]). It states that the fundamental solution of the heat equation
o = %Au on a Riemannian manifold satisfies

ltifg 2t log pi(w,y) = —d(x,y)?,

where A is the Laplace-Beltrami operator and d denotes the Riemannian distance. Despite
the universal nature of Varadhan’s short time asymptotic mentioned above, the long time
behavior of the heat kernel of a manifold can be significantly different from the Euclidean

case. For instance, the heat kernel of the 3-dimensional hyperbolic space H? is given by
[DM, Theorem 2.1]

1 d(z,y) exp(_f d(m,y)2>‘

27t)3/2 sinh(d(z, y)) 2 2

Pt (.73 ) y) =
(
In the expression (1.2) for the heat kernel, the term |& — y|*/t reflects that time scales
like the square of the distance (Brownian space-time scaling). There are Markov processes
with other space-time scaling behavior. We describe two such examples: jump processes
on R™ and diffusions on fractals.



Let (Y;) be the symmetric a-stable process (where a € (0,2)) on R™; that is, (V;) is a
Lévy process (stationary, independent increments) such that

E[ef Yers=Ya)] — exp(—t|€]*), forallt,s >0 and £ € R™.

Then the law of (Y;) admits a density (heat kernel) p, satisfying the following estimate:
there exists C' € [1,00) such that

t

t
C ! min (t"/o‘, |—n+a) < pi(x,y) < C'min (tn/o‘, W) , forallt>0,z,yeR"
(1.3)

z—y

This formula suggest the space time scaling relation distance® scales like time.

A rich family of heat kernels arise from diffusions on fractals. Barlow and Perkins con-
structed a diffusion process on the standard Sierpinski gasket [BP]. The law of this diffu-
sion process at any time ¢ > 0 admits a density with respect to the d;-Hausdorff measure,
where dy = log, 3 is the Hausdorff dimension of the Sierpinski gasket. Let d,, = log, 5. The
transition density p; admits the following estimates: there exists Cy,Cy, C3,Cy € (0, 00)
such that for any z,y in the Sierpinski gasket and any ¢ € (0,1), we have

o\ Y(dw=1) dy \ 1/(dw=1)
G e [l <pmy) < S exp |~y (YT
tdrde P 4 : S PN Y) S S, P 2 ¢

(1.4)
Bounds of the form (1.4) are called sub-Gaussian heat kernel estimates is now known to
hold on many fractals.

Here is the outline for this course. We will begin by covering fundamental aspects
of the theory of Dirichlet forms, a powerful framework for constructing and analyzing
symmetric Markov processes. We will then survey key results characterizing spaces that
satisfy heat kernel estimates analogous to (1.2), (1.3), and (1.4). We will illustrate these
results by applying them to a number of examples. One important class of examples
is the boundary trace process. Consider the reflected Brownian motion on the n + 1-
dimensional upper half space R™ x [0,00). The boundary trace process is obtained by
removing the path of the reflection Brownian motion in the interior R™ x (0,00) in a
certain sense. A classical result of Spitzer states that the resulting process is a jump
process on the boundary dH"*! = R and coincides with the symmetric 1-stable process
(Cauchy process). By modifying the reflected Brownian motion to a different reflected
diffusion process, Molchanov and Ostrovskii [MO] discovered that any a-stable process
with « € (0,2) can be obtained as trace of a diffusion process on the upper half space.
This was rediscovered in an analytic setting by Caffarelli and Silvestre [CS]. We will study
the behavior of boundary trace process for more general diffusions and domains.



2 Dirichlet forms and symmetric Markov processes

We refer to the standard references [FOT, CF, BH91] for a comprehensive introduction
to the theory of Dirichlet forms.

2.1 Semigroup and resolvent

Definition 2.1 (semigroup of operators). Let H be a Hilbert space over R equipped with
inner product (-, and norm ||-||. We say that a family of linear operators {T}; : H —
H|t > 0} is a semigroup if it satisfies

(1) Each T; is a symmetric operator; that is, (T;(f),g) = {f,Ti(g)) for all t > 0 and
fige™H.

(2) {T; : t > 0} satisfy the semigroup property; T;,, = T;T; for all ¢, s > 0.
(3) Each T, is a contraction operator, |T;(u)|| < |Ju|| for all t > 0,u € H.

(4) (strongly continuous) For all u € H, we have limy g ||T};(u) — u|| = 0.

It is more precise to call it a symmetric, strongly continuous, contraction semigroup.
We will use the abbreviated term semigroup.

A Markov process (Y;);>o on a space X defines an operator

Fif () = Bo[f(YD)] = E[f(Y)[Yo = =],

for all ¢t > 0,2 € X and a suitable class of functions f. By the Markov property, for any
t,s >0,z e X and f: X — R bounded, we have the semigroup property

Prisf(2) = Bo f(Yirs)] = Eo [Eaf (Yiro) [ F]] = Eo [Ey, [f (Yol = Eo[ (P /) (Y)] = P(Po(f)) ().

This estimate implies that the expected distance traveled by the diffusion process (B;)
satsifes the bound E[|B, — Bo|] = /% for all ¢t € (0,1). This should be compared with
the expected distance traveled by the Brownian motion on R” which is comparable to /t.

Example 2.2. (i) The Brownian (or heat) semigroup is given by P, : L*(R") — L?(R")
1s

2
P f(x) = JRR Wexp (— |2 2ty| ) fly)dy, forallt>0,fe L*R").

This corresponds to the standard Brownian motion on R".

(i) Let v, denote the standard Gaussian measure on R™; y,(dz) = (2r)~"/2¢ 1212 dg.
The Ornstein-Uhlenbeck process (X;):=0 on R™ is a Markov process that is associated
with the stochastic differential equation

dXt == _Xt dt + \/§d_Bt7
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where (B;) is the standard Brownian motion on R™. Alternately,
X; = e*th + eitBem,l,

where (B;) is again the standard Brownian motion. Then the Ornstein-Uhlenbeck
semigroup is defined by P; : L?(R",v,) — L*(R™,~,) as

P f(x) = fn f (e_tx +vV1— e_Qty) Yuldy), for all f e L*(R"™ ~,),t > 0.

(ii) Let X ={1,...,n} and ¢: X x X — [0,0) be such that ¢(z,y) = ¢(y,z) = 0 for all
z,y€ X. Let m: X — [0,0) be

m(z) = Z c(x,y).

zeX

Let us assume that m(xz) > 0 for all x € X. This defines a discrete time Markov
chain (Z,)nenuo; with transition probabilities given by

P(z,y) := mx for all z,y € X.

This defines a linear operator @Q : L*(E,m) — L*(E,m) given by

Qf () = E[f(Z1)|Zo = x] = ), P(z,y) ().

yeX

By the Markov property, we have Q f(x) = E[f(Zy)|Zo = z] for all k € Nu {0} with
Q" = I, where QF denotes the k-fold composition of (). A standard construction of a
continuous time process (Y;) from the discrete time process (Z,)nenogo; is obtained
by waiting at every state x € E for an exponential time Exp(1) before jumping
to a state y with probability Q(z,y). If (N(t)),5, denotes a Poisson process with
rate 1 (independent of (Z,)) that determines the waiting times, we have that the
semigroup corresponding to process Y; := Zy is given by

0

Pif(x) = BL/(V)[Y = o] = 3} BIN() = ELf(Z)|Z0 = o] = 3 e "1 QFf(2).

k=0
Then (P;)s>0 is a semigroup on L*(X,m).

Exercise 2.3. Verify that the examples above are a semigroup (in the sense of Definition
2.1).
Hint: In order to show strong continuity, it might help to look at Lemma 2.35.

As we will see, it is often easier to construct or analyze the Laplace transform of a
semigroup.



Definition 2.4 (resolvent). A resolvent on H is a family of linear operators {G, : H —
H|a > 0} on H such that

(1) Each G, is a symmetric operator; ; that is, (G4 (f), g) = (f, Ga(g)) for all t > 0 and
frgeH.

(2) {G4 : a > 0} satisfy the resolvent equation

Go— G+ (a—p)G.Gz =0, forall o, > 0. (2.1)

(3) (contraction property) For any u € H,« > 0, we have ||aGul| < ||ul|.

(4) (strongly continuous) For any u € H, we have lim, o ||aG4(u) — ul] = 0.

The resolvent can be viewed as the Laplace transform of the semigroup ¢ — T;. To
describe this we need to define integrals of Hilbert space valued function.

Definition 2.5. Let I < R be an interval and (H,<-, -)) be a Hilbert space. We say that a
function f : I — H is weakly measurable if for any v € H, the functions ¢t — (v, f(t)) and
t — || f(t)|| are measurable functions on /. If a weakly measurable function f : I — H
satisfies {, || f()|| dt < oo, we say that f is integrable. If f : I — H is weakly measurable
and integrable, then by the Riesz-Fréchet representation theorem, there exists a unique
x € H such that

(0, 7) = f@, FO)ydt, for all ve . (2.2)
I
We denote z as the integral §, f(t) dt € H.
The following basic properties of this integral are easily verified.

Exercise 2.6. Let I < R be an interval and (H,{-,-)) be a Hilbert space.

1. If f: I — H is continuous, then f is weakly measurable.

2. If f : I — H is weakly measurable and integrable, then we have the triangle
inequality

[ roar] < [ s a
I I
3. Let Hi be a Hilbert space and let T" : H — H; be a bounded linear map. If

f I — H is continuous and integrable, then T o f : I — H; is weakly measurable
and integrable. Furthermore, we have

7 (L () dt) _ L (To F)(t) dt.

Every semigroup defines a resolvent as its Laplace transform.



Exercise 2.7. Consider a strongly continuous contraction semigroup {73 : ¢ > 0} on H.
For any a > 0,u € ‘H consider the integral

Go(ut) = JOOO ¢=OUT, (u) dt.

Show that {G, : H — H|a > 0} defines a resolvent (in the sense of Definition 2.4).
Hint: The standard approach to showing the resolvent identity is to use

t
eat _ 6fﬁt _ (ﬁ . O‘)J\ efoc(tfs)efﬁs ds
0

in the integral for G,(u) — Gz(u) and interchange the order of integration and use semi-
group property.

Here is another probabilistic approach to show the resolvent identity': Assume o > 3
and consider two independent random variables {3 and ,_z with exponential distributions
with rate . Then here is an outline of the probabilistic approach.

1. & = &5 A Eq—p 1s exponentially distributed with rate .
2. BT, (w)] = aGa(u), E[Tg, (u)] = 5G3(u).

3. P(éa=8p) =1 P& < &) = 2.

4. Conditioned on the event {{, < £z}, the distribution on £z — &, is exponential with
parameter 8 (memoryless property).

5. Write

Tey = Liga=goy Tea + Liga<eptTen © Tep—ta = Liga=goy Tea + Liga<enTes—t0 © Tt
and take expectations on both sides to derive the resolvent identity.

Another way to rephrase the probabilistic approach is as follows. Let &, and &g be
independent exponential random variables with rates a and § with a > [ and let Z be
an independent (of &,,&s) Bernoulli random variable with P(Z =1) =1 -P(Z =0) = g
Then verify that the random variable

~

§p = Liz—136a + Lyz—0}(&a + &5)
is also exponentially distributed with parameter 5. Writing

Té; = ]l{Z=1}T£a + ]l{Z:O}Tga o Tfa = ]l{Z=1}T§a + ]l{Z=O}T§ﬁ o Tfa

and taking expectations as above yields the resolvent identity.

!Thanks to Ryoichiro Noda for sharing this argument due to David Croydon.



2.2 Generators and background on self-adjoint operators

The generator provides an infinitesimal description of the semigroup. Let A : D(A) — H
be a denseley defined operator on a Hilbert space H; that is, D(A) is a dense subspace of
H.

Definition 2.8 (Generator of a semigroup). Let {T; : H — H|t > 0} be a semigroup.
Then the generator A of the semigroup {7; : t > 0} is the operator A : D(A) — H is

defined as -
A(u) := lim W, for all uw e D(A),

where the domain D(A) is

Ty(u

B L )—u .
D(A)={ueH: lt%l — exists}.

Often the generator is easier to compute than the semigroup as we illustrate.

Example 2.9. We will slightly generalize Example 2.2-(iii). Let X = {1,...,n} and
¢: X x X — [0,00) be such that ¢(z,y) = c¢(y,z) = 0forall z,y € X. Let m : X — [0, o0)

be
m(zx) := Z oz, y).

yeX

Assume that m(x) > 0 for all z € X. This defines a discrete time Markov chain (Z,,)neno{oy
with transition probabilities given by

c(,y)
m(x)’

P(z,y) = for all x,y € X.

Let A : X — (0,00) be a function determining a continuous time process as follows: at each
state z € X, the process waits (independently of other waiting times and transitions) an
exponential time with parameter \(z)* before jumping to a new state y with probability
P(x,y). Call this process (Y;);=0 on X. If A = 1, the number of transitions (jumps) is a
Poisson process which helped in the computation of semigroup. Since A need note be a
constant function, the computation of semigroup corresponding semigroup P, : R — R¥.
Nevertheless, we can compute the generator by observing that

Pif(a) = E,[f(Y)] = e X f(2) + 3 (1= e XDV P(2,y) f(y) + OF),

yeX
for all f e R ¢te (0,1),z € X. This implies

Y P f(z) — f(z)
Li@) =tm ===

= —\@)f(2) + Az) Y Pla,y)f(y) = Mz)(T — Q) f(x).

yeX

2exponential random variable with paramet A has mean A1, so larger A means smaller wait times



Since P is m-symmetric, it is easy to see that L is m-symmetric with m(z) = A(z) " 'm(x)

as

<Lf7 g>L2(T71) = <([_Q)f7 g>L2(m) = <f? ([_Q)Q>L2(m) = <f7 Lg>L2(T7L)7 for all f?g € L2(X7 77?,)

Using the symmetry of L in L*(X,m), we can conclude that (P;) is also symmetric in
L3(X,m).

If the discrete time random walk on X is irreducible, then using limiting behavior of
discrete time Markov chains, one can interpret m (normalized to be a probability measure)
as the asymptotic occupation time of a Markov chain; that is

t

1 ~
lim n Liy,—yy ds = (y)
0

Diex M(2)’

Using the contraction property of the semigroup, we see that the generator is a non-
positive definite operator.

P.-a.s. for all z,y e X.

tToo

Lemma 2.10. D(A) defined above a subspace of H, A : D(A) — H is a linear map, and
A is non-positive definite; that is,

(A(u),uy <0, for allue D(A).

Proof. The first two claims are easy consequence of the definition of A. If u € D(A), then
1
(A(u),uy = ltlllgl Z<Tt(u) — U, u).

By Schwarz’s inequality, for any u € H,t > 0, we have (T)(u) —u, u) = (Ti(u), u)— ||u|’® <
1T, (w)]| |Ju] = |lu||* < 0 (since T is a contraction). O

Lemma 2.11. Let {G, : a > 0} be a resolvent on H. Then for each o > 0, G, is injective
and non-negative definite.

Proof. Let B > 0. Since Gy is linear, it suffices to show that G has a trivial kernel. Let
u € H be such that Gg(u) = 0. By the resolvent equation, for any § > 0 we have

Ga(u) = Gp(u) + (B — @)Ga(Gs(u)) = 0.

Hence by strong continuity « = lim,,o @G, (u) = 0. Hence G is injective for each § > 0.

To show that G, is non-negative definite, we need to verify that (u, G,u) = 0 for all
u € ‘H. To this end, fix u € H and define f(a) = (u, Gouy. By the contraction property
of the semigroup

IGa(u) — Gs(u)ll < la = Bla™ 87 [lu]l.

Therefore, limg_,, Gg(u) = Go(u). For a # (3, by the resolvent equation and symmetry
of the resolvent operators, we have

f(B) — fla)

B—a = —(u, Go(Gp(u))) = —(Galu), Gg(u)).

10



Letting  — « and using limg_,, Gg(u) = G,(u), we obtain that a — f(«) is differentiable
and
f(a) = = |Ga(w)|* < 0.

By the strong continuity, we have lima_e of (@) = limg e(u, aGa(uw)) = |lul]* < oo.
Hence lim,—,o f(a) = 0. Since f is non-increasing, we conclude f(«) = {(u, Gou)y = 0 for
all a € (0, 00). O

By Exercise 2.7, every semigroup defines a resolvent as a Laplace transform. So one
might wonder if we can compute the generator of semigroup directly from the resolvent.
This motivates the following definition.

Definition 2.12 (Generator of a resolvent). Let {G,, : @ > 0} be a resolvent on H. The
generator of {G, : a > 0} is defined as the linear operator A : D(A) — H defined by

D(A) = Go(H), A(u) =au— G, (u), forany a > 0,ue D(A),
where G,! : Go(H) — H is the inverse of G,, (recall from Lemma 2.11 that G, is injective).

The fact that the above operator is well-defined is an easy exercise in the use of
resolvent equation that we state below.

Exercise 2.13. Let {G, : a > 0} be a resolvent on H.
(i) For any a, > 0, show that G,(H) = Gs(H).
(ii) For any o, 8 > 0 and any u € Go(H) = Gs(H), show that au — G5 (u) = Bu —
G5t (v).
g

Hint: Use the resolvent equation (2.1).

Let H be a Hilbert space. Let T : D(T') — H be a densely defined operator (D(T) =
H). Then define

D(T*) = {x € H|y — (T'(y), z) is a bounded operator on D(T)}.

If x € H, then by Hahn-Banach theorem, there is a unique extension of the map y —
(x,A(y)) to H. Hence by Riesz-Fréchet representation theorem, there exists (a unique)
T*(z) € H such that

(T(y),x) =y, T*(x)), forall xe D(T*).

It is easy to verify that T* : D(T*) — H is a linear map. For an operator T': D(T') — H,
let G(T') = {(u,T(u)) : we D(T)} c H x H denote the graph of T. We view H x H
is a Hilbert space with inner product {(z1,41), (22, %2) uxn = {(x1,72) + {y1,y2) for all
(x1,11), (T2, y2) € H x H.

Definition 2.14. (i) We say an operator T : D(T) — H is closed if G(T') is a closed
set (in H x H).

11



(ii) We say a densely defined operator T': D(T') — H is symmetric if for all z,y € D(T),

we have
T'(2),y) =<z, T(y))

Equivalently, T%* is an extension of T (D(T*) > D(T) and T*(z) = T(x) for all
x e D(T)).

(iii) We say that an operator T': D(T') — H is self-adjoint if T = T*.

For a subspace M of a Hilbert space H, by M~ we denote the orthogonal complement
defined by
M+ ={ueH :{uym)y=0 forallme M}.

The following lemma expresses the graph of the adjoint 7™ in terms of the graph of T

Lemma 2.15. Let T' : D(T) — H be a densely defined operator and let G(T) =
{(u,T(u)) : w e H} € H x H denote the graph of T. Let V : H x H — H x H be
defined by V(z,y) = (y, —z) for all (z,y) € H x H. Then G(T*) = V(G(T))*.

Proof. (z,y) € G(T™*) if and only if
(T'(u),z) = {u,y)y, forallueD(T).
This can be rewritten as
V{w, T(w), (2, y))mxm = (T(w), =), (2,y))nxn = (T(w), 2)—(u,yy = 0, for all u e D(T).
]

Clearly, every self-adjoint operator is symmetric and closed (by Lemma 2.15).

Corollary 2.16. Let T : D(T') — H be an injective self-adjoint operator with range R(T).
Then T : R(T) — H is a densely defined, self-adjoint operator.

Proof. Let us show that R(T) is dense. This is equivalent to showing that R(T)* = {0}.

Let y € R(T)* as R(T) = (R(T)*)*. Then (y,0) € V(G(T))* = G(T*) = G(T). Since T
is injective, y = 0.

Let V, S : H x H — H x H be defined by V(z,y) = (y, —x) and S(z,y) = (y, z) for all
(x,y) € H x H. Then by Lemma 2.15 and the observation that V' oS = —S oV we have

GUT™)") =V (9(T7))" = V(SG(T)" = S(V(G(T)".

Since S : H x H — H x H is a unitary (inner-product preserving) bijection with S? = Id,
we have S(V(G(T)))* = S(V(G(T))*) and hence by Lemma 2.15, we have

12



Exercise 2.17. Let (2, u) be a measure space and let H = L*(Q, u). Let A : Q — R be
a measurable function (not necessarily bounded). Show that the multiplication operator
My : D(My) — H with domain

D(My) = {f € A9, ) : A € I2(2, )}
defined by M,(f) = f(-)A(:) is a densely defined, self-adjoint operator.

Theorem 2.18 (Spectral theorem). Let A be a self-adjoint operator on a Hilbert space
H. Then there is a measure space (0, 1) and a unitary map U : L*(Q,u) — H and a
measurable function X\ : 0 — R such that

UTAU = My, D(A) ={U(f) : f e D(M)},

where My : D(My) — L*(Q, u) is as defined in Ezercise 2.17.

Furthermore, if A is non negative definite (respectively, non positive definite); that is,
(A(u),uy = 0 (respectively, (A(u),uy < 0) for all u € D(A), then A(z) = 0 (respectively,
A(x) <0) for p-almost every x € €.

Definition 2.19 (Functional calculus). Let A be a non-positive self-adjoint operator on
a Hilbert space H and let U : L*(Q, ) — H and X : © — R be as given in Theorem 2.18.
Then for any Borel function f : (—o0,0] — R, we define f(A) : D(f(A)) — H denote the
operator defined by

U f(A)U = My, D(f(A) ={U(g) : g€ D(Msrey)}

It is easy to verify that f(A) is a self-adjoint operator on H. Note that if f is bounded,
then f(A) is a bounded operator with D(f(A)) = H. If f is non-negative (respectively,
non-positive), then f(A) is a non-negative definite (respectively, non-positive definite)
operator.

Proposition 2.20. Let {T; : t > 0} be a a strongly continuous contraction semigroup
{T} : t > 0} on H and let us denote the associated resolvent by {G, : a > 0} defined as

Golu) = L e~ Ty(u)dt, for allueH,a > 0. (2.3)

Let Ay amd A, denote the generators of the semigroup {T; : t > 0} and the resolvent
{Go : a > 0} respectively. Then Ay = A, and is a non-positive definite self-adjoint
operator.

Proof. Let ue D(A,). Then u = G,(v) for some v € H and

(e Ty (u) —u) = % (eo‘tTt (LOO e “Ts(u) ds) = LOO e “Ts(u) ds)
1
t

(( L " T () ds) _ JOOO 5T (u) ds)

13
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_ —at _ —at
Ag(u) = lim T(w) —u = lim i) —u + lim L) = ™) (2.4)
0 t t}0 t tl0 t
= —v+au=oau—G ' (u) = A.(u). (2.5)

This show that A, is an restriction of A,.

It remains to show that D(A,) < D(A,). To this end, let u € D(A). Then by the
calculation in (2.4)

. 1 —at . . at . _ at _
ltlfél . (e™'Ty(w) —w) = lt%l — (7T (u) — u) 11%1 — (e T(Ga(v)) — Gu(v))
1 0 0
= —v + lim— (—J e “Ts(v)ds + J e “Ty(v) ds> =—v+v=0.
tl0 1 ¢ 0

Therefore
0 = auw, wh — (Au(uw), w) > adw, w),
and hence w = 0, or equivalently, u = G,(v) € D(4,).

By Corollary 2.16 G! is a self-adjoint operator and hence A, = a—G_ ! is self-adjoint.
By Lemma 2.10, A, = A, is a non-positive definite operator. m

We now state a converse to Proposition 2.20. The resolvent and semigroup corre-
sponding to the generator can be defined using functional calculus (Definition 2.19).

Proposition 2.21. Let H be a Hilbert space and let A : D(A) — H be a non-positive
definite, self-adjoint operator.

(a) Then {T, = exp(tA)|t > 0} and {G, = (a — A)"Ya > 0} are a semigroup and
resolvent respectively. Furthermore, {G, : a > 0} is the resolvent corresponding to
the semigroup {T; = exp(tA)|t > 0}.

(b) The generators of the semigroup {T; > 0|t > 0} and the resolvent {G,|la > 0} in (a)
coincide with A. Furthermore, there is a unique semigroup and a unique resolvent
whose generators are A.
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Proof. (a) Let U : L*(Q, 1) — H be an unitary operator and \ : 2 — (—o0, 0] be as given
in the spectral theorem (Theorem 2.18). Then we have

U 'TU = Mepuney), U 'GoU = Mig_zepy-1, forallt>0,a> 0.

The symmetry of T; follows from symmetry of Meg,y). For all f,g € H,t > 0 we
have

(T(f).g) = f Moy (U () (g) ds = j exp(t\)UL(F)U(g) dp
- f U1 () Mapion (U(9)) dpt = (f. Ty(9)>.

The proof of the semigroup property is similar as for all ¢,s > 0
T, = UMexp(t)\)UilUMexp(s)\)Uil = UMexp(t)\)Mexp(s)\)Uil = UMexp((t—&-s))\)Uil = Tt+s-

To show strong continuity, note that for any f € H and using the fact that A < 0
m-a.e., we have |(exp(t\) — D)U(f)| < UY(f) m-ae. for all ¢ > 0. Hence by
dominated convergence theorem, we have

i I7:7) = 7 = tim | J(exp(th) = DU ()P du =0, for all £ 7,

The proof that {G, = UM,_x.)-1U""|a > 0} defines a resolvent is similar and left
as an exercise.

To verify that {G, : @ > 0} is the resolvent corresponding to the semigroup {T; =
exp(tA)|t > 0}, for any f € H, we have

Q0

[ e mtnyie= [ v e g a) ae =0 ( |

0 0 0

6_atMexp(t)\) (U_l (f)) dt)

=U (JOO exp(—at + X)UL(f) dt) —U (M(Q_A(.))fl(U_l(f))) _au(f).

0

(b) For any f e L*(Q, 1), we have the pointwise limit

lim Mexp(t)\(-)) (f) - f — lim (eXp(t)\() — 1)(f()
) t tl0 t

= Mx(f),
and that since A < 0 m-a.e., we have

exp(tA(-)) — 1‘ _ 1—exp(tA())
t t

T A(-),m-a.e. as t | 0.

So by the dominated convergence theorem,

lim Mexp(t)\(~)) (f) - f — lim (exp(t)\() — 1)(f()
) t tl0 t

= My(f),
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in L?(Q, u) if and only if f € D(M,) = {f € L*(Q, ) : A\f € L*(, u)}. This implies
that the generator of the semigroup {7, = UMepur(pU™" it > 0} is A = UM\U™.
Since the generators of a semigroup and the corresponding resolvent coincide (by
Proposition 2.20), we have that A is the generator of the resolvent {G,, : o > 0}.

By the injectivity of Laplace transform, it suffices to show that the resolvent is
uniquely determined by the generator. Suppose {G, : @ > 0} and {G!, : a > 0}
are two resolvent with generator A, for any f € H,a > 0, w = G,(f) — GL(f)
satisfies

(0 = A)(w) = (@ = A)(Ga(f) = Go(f)) = f = f = 0.

Since — A is non-negative definite, we have
0= {(a—A)(w),w) = olw,w)y =0,

and hence w = 0. Since f € H is arbitrary, G, = G.,. m

«

Exercise 2.22. Show that {G, = UM_x.)-1U"'a > 0} defined in the proof above is
a resolvent.

In the next exercise, we outline a direct proof of the uniqueness of the semigroup
with a given generator (without relying on the injectivity of Laplace transform and the
corresponding uniqueness result for the resolvent).

Exercise 2.23. Let H be a Hilbert space and let A : D(A) — H be a non-positive
definite, self-adjoint operator. Let {7} : t > 0} be a semigroup with generator A.

(i) Show that for any x € D(A),t > 0, we have T;(x) € D(A) and

d
2 (L)) = A(Ty(x)) = T(A(x)).

(i) Using (i), show that if {T} : ¢ > 0} and {7} : ¢ > 0} are two semigroups with generator
A, then for any x € D(A) the function E, : (0,00) — [0, 0) defined by

~ 2
E.(t) = ’Tt(x) —Tt(:p)H , forallt>0

satisfies
CELt) = XTi(a) — Tia), ATw) - Ty <0, for all 1> 0
and limy o E,(t) = 0.
(iii) Conclude from (i) that Tj(z) = Ty(x) for all z € H and ¢ > 0.

The following exercise can be viewed as an inverse Laplace transform formula for the
semigroup corresponding to a resolvent.
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Exercise 2.24. Let {G,, : a > 0} be a resolvent on H. Show that for all t > 0, f € H

n

1) = tim 3 Y aay(p) (2.6

a—00 n

defines a semigroup and that {G, : @ > 0} is the resolvent corresponding to the semigroup
{T; : t > 0}. Hint: Use the proof of Proposition 2.21 to express G, = UM a1 U™
and show that T; = UMeXp(t)\(.))U’l.

2.3 Closed quadratic forms

Definition 2.25. Let H be a Hilbert space with the inner product {:,-). A quadratic
form £ : F x F — R is a dense subspace of F (called the domain of the quadratic form)
of H such that it satsfies the following properties:

(i) (bi-linearity) For all aj,as € R and fi, fo,g € F, we have E(a1fi + asfe,g9) =
a1&(f1,9) + a€(f2, 9)-

(ii) (symmetry) E(f,g) = E(g, f) for all f,ge H.
(iii) (non-negative definite) E(f, f) = 0 for all f € F.

We say that a quadratic form is said to closed if F is a Hilbert space equipped with the
inner product & : F x F - R

&i(f,9) = E(f,g9) +{f,g), forall f,geF.

Familiar properties of inner product such as Schwarz inequality and triangle inequality
hold for (non-negative definite) quadratic forms with identical proofs.

Exercise 2.26. Let £ : F x F — R be a quadratic form on a Hilbert space H. Show
that for all f, g € F, we have the Schwarz inequality

1€ (u,v)| < E(u, u)2E (v, v)"/?
and the triangle inequality

Ef+a.f+9) P <Ef N +E(g,9)"

There is a one-to-one correspondence between closed quadratic forms and non-positive
definite self-adjoint operators A.

Theorem 2.27. Let A be a non-positive definite, self-adjoint operator on H. Then (€, F)
1s a closed quadratic form, where

E(f.9) = (V=A(f),V-Al9)), [.geF:=D(/-A). (2.7)

Conversely, any closed quadratic form on H arises from a non-positive definite, self-
adjoint operator on H as given in (2.7).
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Proof. Since (F, &) is an inner product space, we need to verify completeness. Note that
v/—A is a non-negative definite, self-adjoint operator. Let (fn)nen be a Cauchy sequence in
(F,&). This implies that (f,, v/—A(fs))nen is a Cauchy sequence in H x H that belongs
to the graph G(v/—A). Since the graph of every self-adjoint operator is closed (by Lemma
2.15), we conclude that there exists f € F such that lim,, o & (f — fn, f — fn) = 0. Hence
(F, &) is Hilbert space.

Define &,(f,q) := E(f,g) + alf,g) for all f,ge F. Let {Gy = (a — A)7' : a > 0}
denote the resolvent generated by A. Using the spectral theorem, it is easy to verify that

Go(H) c F, E.(Gu(f),9) ={f,g), forall feH,ge F. (2.8)

Conversely, let (£, F) be a closed quadratic form. Since (F,&,) is a Hilbert space for
each a > 0 and for any u € H, the function v — (u,v) where v € F is a bounded linear
functional in the Hilbert space (F,&,). Hence by Riesz-Fréchet representation theorem,
there exists (a unique) G, (u) in F such that

Eu(Go(u),v) =(u,vy, forallueH,veF and a > 0. (2.9)

We claim that {G,, : @ > 0} is a resolvent. For the symmetry of G, note that for each
u,v € H, we have

29) (2.9)

(Galu),v) =" Ea(Galu), Galv)) =" (u, Ga(v)).
To obtain the resolvent equation, note that for any u € H,v € F, we have
Ea(Gp(u) — (a = F)GaGp(u),v) = Ea(Gp(u), v) — (= B)Ea(Ga(Gps(u)), v)
2 Ea(Gsu),v) — (o = B)Ga(u), v) = E(Gpa(u), v)

(2.9) (2.9)

=" (u,v) =" Ey(Golu),v).
Since (F,&,) is a Hilbert space, we obtain the resolvent equation
Go(u) = Ga(u) — (v — B)GaGp(u), for all ue H.
For each a > 0, a(G, is a contraction since

[(aGa) ()| |Ga(w)]| = aGa(u), Galu)) < Ea(Ga(u), Ga(u) = (u, Galu)) < [lull |Ga(w)]]

for all uw € H. For strong continuity, we use the contraction property to obtain

o ||aGy (1) — ul|* < Ea(aGa(u) — u, aGy(u )—u> = a2<G (u), uy + E(u,u) — alu, uy
< allaGq(uw)]| ||l —a||u|| + E(u,u) < E(u,u), forallue F.

Hence

lim ||aGa(u) —u|| =0, forall ue F.
a—>0
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Since F is dense in H, for any u € H, there exists a sequence (up)nen in F such that
lim,, e ||, — u|| = 0. Now since aG, is a contraction, we have

laGa(w) = ul| < [(aGa)(u = un)|[+]aGa(un) = unll+[lun = ull < 2[lu = un[|+]|aGa(un) = | -

Let o« — o0 and then n — oo to obtain

lim sup [|aGy(u) — ul] < 2 [Ju — u,|| === 0.
a—0

This concludes the proof of strong continuity and hence {G, : @ > 0} is a resolvent.

Let A be the generator of the resolvent (&', F') closed quadratic form corresponding to
the non-positive self-adjoint operator A as defined in (2.7). By (2.8), we have G,(H) < F'
and hence

EN(Ga(u), Ga()) B (Gu(u), v) E) €0(Gu(u), Ga(v)), for all u,v e H.

Hence & and & coincide on G,(H) x Go(H). By (2.9), G,(H) is dense in the Hilbert
space (F,&,). Similarly, by (2.8), Go(H) is dense in the Hilbert space (F', ). Since
both (£, F) and (£, F') are closed quadratic forms that coincide on a dense set, they
are equal. Hence the correspondence given in (2.7) is a bijection between non-positive
definite, self-adjoint operators and closed quadratic forms. n

The quadratic form corresponding to the generator of a semigroup and resolvent can
be described directly as outlined below.

Exercise 2.28. Let A be a non-positive definite, self-adjoint operator on H that is the
generator of a semigroup {F; = exp(tA) : t > 0} and resolvent {G,, = (a — A)~: a > 0}.
Let (€,F) denote the closed quadratic form corresponding to A as given by Theorem
2.27. Using the spectral theorem, show the following

(a) For any f € H, the function
1
teo 2= PO D)

is non-increasing and non-negative function on (0,0). Furthermore the quadratic
form (&, F) is given by

F={ e utim < - gy <0}

and

EU.1) =lim (T~ P).J), forall fe F.
(b) For any f € H, the function

a— (I —aGa)f, f)
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is non-decreasing and non-negative function on (0,00). Furthermore the quadratic
form (£, F) is given by

F= {f e H| liTrgloOé«I —aGo)f, ) < 00}7

and

E(f, f) = liTrgloa<(I— aGo)f, [, forall feF.

To summarize, there is a one-to-one correspondence between

(a) Closed non-negative definite quadratic forms (Definition 2.25)

(b) Non-positive definite self-adjoint operators (Definition 2.14)

(¢) Semigroups (Definition 2.1)
)

(d) Resolvents (Definition 2.4).

2.4 Beurling-Deny criterion and Markov operators

We introduce the definition of Dirichlet form.

Definition 2.29. Let (X, M, m) be a o-finite measure space. A Dirichlet form on
L?(X,m) is a quadratic form (in the sense of Definition 2.25; that is, bi-linear, sym-
metric, non-negative definite, closed, densely defined) £ : F x F — R on L*(X, m) such
that it satisfies the Markov property: for all uw € F, we have @ := (0 v u) A 1 € F and
E(u, 1) < E(u,u).

At this point the terminology Markov property might seem strange. As we will later
justify (see Theorem 2.34), the Markov property of quadratic form is equivalent to the
Markovian property of the corresponding semigroup (or resolvent).

Definition 2.30. We say that a bounded linear map T : L*(X,m) — L*(X,m) is
Markovian if for any f € L?*(X,m) such that 0 < f < 1 m-almost everywhere, we
have 0 < T'(f) < 1 m-a.e.

Exercise 2.31. Let T : L?(X, m) — L?(X, m) be a bounded linear operator. Then show
that the following are equivalent.

(a) For any f € L*(X,m) such that 0 < f < 1 m-almost everywhere, we have 0 < T'(f) <
1 m-a.e.

(b) For any f € L*(X,m) such that f < 1 m-almost everywhere, we have T'(f) < 1 m-a.e.

The following exercise gives a description of all Dirichlet forms on a finite set. This
special case of the Beurling-Deny decomposition of regular Dirichlet forms admits an
elementary proof as outlined below. We use 14 to denote the indicator of a set A.
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Exercise 2.32. Let X = {1,...,m}, where n € N and let m be a measure on X with
m({i}) > 0 for all i € X. Let £ : F x F — R be a Dirichlet form on L*(X,m).

(i) Prove that F = L?(X,m).
(ii) Show that for any 4, j € X with ¢ # j, we have
E(Myy, 1) <0.
Hint: Consider f = 1; — el for e = 0.

(ili) Show that for any ¢ € X, we have £(1;,1x) > 0. Hint: Consider f = 1x + el
for e > 0.

(iv) Using (ii) and (iii), show that there exists ¢;; = 0, for all 1 <4 < j <n and k(i) = 0
for all ¢ € X such that

n

EF N = Y ci(fG) = f(G))? + DI k() f(D)%,  forall f e F =R,

1<i<j<n i=1

Lemma 2.33. Let P : L*(X,m) — L*(X,m) be a bounded, linear, m-symmetric, Marko-
vian operator and let F : R — R be a 1-Lipschitz function (that is, |F(a) — F(b)| < |a — b|
for all a,b e R) such that F(0) = 0.

(i) Then for any n € N, for all pairwise disjoint sets Ay, ..., A, such that m(A;) < oo

foralli=1,...,n, and for all ay,...,a, € R, writing f =" | a;14,, we have
- 1
(I =P)f Porapem = ) mia; + 5 D aigla—a), (2.10)
i=1 1<i<j<n
where

aiji=Da, Pla)roxm =0, g =m(4;) — Z a =0, foralll<i,j<n.
k=1
(2.11)

(ii) For any g € L*(X,m), then § := F(g) satisfies
<(I - P)§7 §>L2(X,m) < <(I - P)gag>L2(X,m)~ (212>

Proof. (i) Note that by the m-symmetry of P, we have a;; = {14, P14, )r2(x,m) =
(Pla;, 1a;)r2(x;m) = j,; for all 1 < 4,5 < n. By linearity of P and the symmetry
o, ; = «;;, we have

n n

(I =P)f, Pracemy = Y, D aia (I = PYla, Ta ) p2(xm)

i=1j=1
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1=1 1=175=1
n n
_ 2 2
= Zﬂzaz’ + Z Z (az N aza]a”)
i=1 i=1j=1
1 n n
_ a2 4 = 2. 2, . _ Vs
= Zmai + 5 Z (ai a;j + aja; QaZajaw)
i=1 i=1j=1
n
_ 2 + 1 ( )2
= > ia; 5 a;(a; —aj
i=1 1<i<j<n

Since 0 < Pl,4; < 1 m-ae. by the Markovian property of P, we have «;; =
(La;, PLa,)r2x,my = 0. Since Ay, ..., A, are pairwise disjoint, by the Markovian
property of P, we have

n

k=1

P(ly)=P (Z ]lAk> <1, m-ae.
k=1

Hence
S onp = (14, Y P (1) < f Lo dm = m(A;), forall1<i<n,
k=1 k=1 X

or equivalently p; = 0 for all 1 <7 < n.

If ¢ is a simple function as given in (i), then the desired estimate (2.12) follows from
(2.10) and (2.11). In general, for any g € L?(X,m), there exists a sequence of simple
function (g, )nen such that g, 2%, ¢ pointwise, lgn| T |g| pointwise, and g, n=e,
g in L*(X,m). Since |F(a)| < |a| for all @ € R, by the dominated convergence
theorem gy, := F(g,) =2 § := F(g) in L*>(X,m). Hence by the continuity of P,
P(g,) =% Pgin L*(X,m) hence by using (2.12) for simple functions (since g, are
also simple functions) we obtain

<([ - P)E? §>L2(X7m) = nh_r){.lo<([ - P)gvnvg’\?/l>L2(X,m)

(2.10),(2.11) -
< hm<(I - P)gn7gn>L2(X,m) = 7}1_1}010<(] - P)g7g>L2(X,m)'

n—oo

[]

Let (X, B, m) be a o-finite measure space.

Theorem 2.34. Let £ : F x F — R be a closed quadratic form on L*(X,m). Let
{T, : t > 0}, {Go : @ > 0} and A : D(A) — L*(X,m) denote the associated semigroup,
resolvent and generator associated with € respectively. Then the following are equivalent:

(a) T} is a Markovian operator for each t > 0.
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(b) aG, is a Markovian operator for each t > 0.
(¢) For all f € D(A), we have (A(f),(f —1)") <0.
(d) For allue F, we have U := (0 v u) Ale F and £(u,0) < E(u,u).

Proof. The implications (a) = (b) and (b) = (a) follow easily from (2.3) and (2.6).
Next, let us show that (d) = (b). Let u € F such that 0 < u < 1 m-a.e. and a > 0.
We consider the function ¥, : 7 — R defined by

U(w) := E(w,w) + alw — o™ u, w — o~ ).

For all w € F, we have

U(w) — U(Gyo(u) = Exlw, w) — 2w, u) + a (u, u)

— E(Go(u), Go(u) + 20Go(u), u) — o~ u, u)

Ea(w,w) — 22w, uy + E(Golu), Go(u))

Ea(w,w) — 28, (Go(u), w) + E4(Gol(u), Go(u))
(

Ea(Go(u) —w, Go(u) — w),

and hence
U(w) < U(Gu(u)) if and only if w = Gu(u). (2.13)

lj:ow,ddeﬁne v=a"1(0v (aGs(u)) A1) = (0 v Ga(u)) A a~t. So by (d), we have
E(v,v) < a 2E8(aG (1), aGy(u)) = E(Galu), Go(u)). (2.14)

Since u(z) € [0, 1] for m-a.e., we have for m-a.e. x € X,

lv(z) — o u(z)| = [((0 v Galu)(2)) A a™) — o u()] < |Galu)(z) — o u(z)|.
(2.15)
By (2.14), (2.15), we have ¥(v) < U(G,(u)) and hence by (2.15), we conclude that
v=(0v Guu)) ra ! =G,(u). Thus aG, is a Markovian operator.

The implications (a) = (d) and (b) = (d) follows from Lemma 2.33 (by setting
F(t) = (0 vt) Alin Lemma 2.33-(ii)) and Exercise 2.28.

Next, let us show (b) = (¢). By using Lemma 2.33 (by setting F'(t) =t A 1) and
Exercise 2.28(b), we obtain that for all fe F, fale Fand E(f AL, fAl)<Ef, [
In particular for f € D(A), we have f A1l = f —(f—1), and hence E(f — (f — 1), f —
(f=1),) <E(f, f) or equivalently,

20A(), (f = D) = =26(f,(f = Dy) < =€((f = D+, (f = 1)) <0

It remains to show (¢) = (b). By Exercise 2.31, it suffices to show that if f € L*(X, m)
satisfies f < 1 m-a.e., then aG,(f) <1 for all @ > 0. Fix @ > 0 and f as above and set
g 1= aG,(f) so that g € D(A) and

ag — A(g) = af. (2.16)
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By (2.16) and (c) (A(g),(9 — 1)*) < 0, we obtain {g,(9 — 1)) < {f,(g = 1)), or
equivalently,

| w-ne-no<o-] w-nu-vo=o
{g=1} X
Since f < 1 m-a.e., the above inequality implies that g = aG,(f) < 1 m-a.e. O

In order to show the existence of heat kernel, it is useful to consider the Markovian
semigroup as an operator on LP(X,m) for all 1 < p < o. By the Markovian prop-
erty, for any f € L*(X,m) n L*(X,m), we have P(f) € L*(X,m) n L®(X,m) with
NPl < IIflly- Since (X, M,m) is a o-finite space, there exists an increasing se-
quence of measurable sets (A, )nen With m(A,) < oo such that X = [,y An. So for any
f € L®(X,m) with f = 0 m-a.e., we have fl4, € L*(X,m) n L*(X,m) for all n € N.
Hence by the Markovian property of P;, we have

1P (L)l < Il B(fla,) < P(fla,,,) m-ae., forallneN.
Hence lim,, o P;(f14,)(x) exists for m-a.e. z € X. We set the pointwise limit as

P f :=1lim P,(f1,4,), forall fe L*(X,m) with f >0 m-a.e.,
n—a0

and P(f) = P(fy) — P(f-) for all f € L*(X,m). This defines an operator P; :
L*(X,m) — L*®(X,m) as a contraction operator; that is ||[P:(f)||, < [fl|, for all
f € L®(X,m). By the dominated convergence theorem and the symmetry of P, in
L*(X,m), for any t > 0,9 € L'(X,m) n L*(X,m) and for any f e L*(X,m), we have

JX gP(f) dm = L fP(g)dm.

Hence [[P(9)ll; = Supgers(xmy, sy, -1 Sx [P(g)dm < g, for all g € L'(X,m) n
L*®(X,m). Since L'(X,m) n L®(X,m) is dense in L'(X,m), by continuous extension
we obtain a linear contraction P, : L*(X,m) — L'(X,m). For any p € [1,00), by Holder
inequality we have

12O, < W fll,. forall fe LY(X,m) A L®(X,m). (2.17)
Since L'(X,m) n L*(X,m) is dense in LP(X,m), we obtain a linear contraction P; :
LP(X,m) — LP(X,m) for all 1 <p < .

The following lemma provides a convenient sufficient condition for the strong conti-
nuity property of a semigroup.

Lemma 2.35. Let H = L*(X,m) be a Hilbert space over R, where m is a measure on X .
Consider a family of linear operators {T; : L*(X,m) — L*(X,m)|t > 0} such that each
T, is a Markovian, contraction operator. Furthermore if £L < L'(X,m) n L*(X,m) is a
dense subspace of L*(X,m) such that for any f € L, we have

ltllrglﬂ(f)(:v) = f(x) for m-a.e. x € X. (2.18)
Then for any uwe L*(X,m), we have limy o || T(u) — ull, = 0.
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Proof. Since T is a contraction, we have

ITi(F) = FI5 = ITD I+ 5=2F T ) < 211l =2, To(f)), forall fe L2()<(7 m))-
2.19

If f e L, by (2.18) and the dominated convergence theorem (dominating function is
1/l f € L'(X, m) by the Markovian property of T;; by Exercise 2.31 we have ||T;(f)]|,, <
[f1lo0) we have

limd f, Ti(f)) = 1£1l5 - (2.20)

Hence by (2.19) and (2.20) we have limy o | T3(f) — fll, = 0 for all f € £. By the density
of £ in L?(X,m) and the contraction property of T}, we have limyq ||7:(f) — f||, = 0 for
all fe L3(X,m) 0

2.5 Regular Dirichlet forms and Fukushima’s theorem

Definition 2.36. Let (X, M,m) be a o-finite metric measure space, and let (£, F) be
a Dirichlet form on L?(X,m). We say the Dirichlet form (€, F) be a Dirichlet form on
L*(X,m) is regular, if it satisfies the following properties:

(a) X is a locally compact separable metrizable topological space X, with M the associ-
ated Borel o-field, a Radon measure m on X with full support ( a Borel measure m on
X which is finite on any compact subset of X and strictly positive on any non-empty
open subset of X).

(b) The vector space F n Co(X) is dense both in (F, &) and in (Co(X), ||]|,)-

A fundamental theorem of Fukushima the assumption of the regularity of the Dirich-
let form allows us to construct a m-symmetric Markov process on X whose semigroup
coincides with the semigroup of the Dirichlet form. Assume for the moment that the semi-
group corresponding to a Dirichlet form is defined over a space of pointwise well-defined
functions. Then the Markov property along with Riesz—Markov-Kakutani representation
theorem would then imply the existence of a sub-probability measure on X which can be
made into a transition probability on X U A, where A is an absorbing cemetery state.
Fukushima observed that the assumption of regularity ensures that every function in the
domain of the form can be modified to continuous outside a small set (quasi-continuous).
This allows us to overcome the difficulty of functions in L? being not pointwise well-
defined.

Theorem 2.37 (Fukushima’s theorem). [FOT, Theorem 7.2.1] Let (€, F) be a regqular
Dirichlet form on L*(X,m). Let B denote the Borel o-field on X. Let X U {A} de-
note the one-point compactification of X and let Bn = B u {B u A|B € B}. For each
x € X U{A}, there is a Xan := X U {A}-valued stochastic process (2, (Fy)i=0,{Y: : t €
[0, 0]}, {Ps}aexugay) that satisfies the following properties:

1. (F)iso0 is a right continuous filtration on 0 and (Y;) is (F;)i=0-adapted; that is Y :
(Q, Ft) = (X U A, Ba) is measurable for each t = 0.
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2. For each E € Ba andt > 0, the function x — P,(Y; € E) is measurable on (X OA, Ba).

3. (Markov property) For each v € X,t,s > 0 and E € B we have

P,(Yiss € E|F) = Py, (Y, € E).

4. (cemetery is absorbing) Yoo (w) = A for allwe Q, PA(Y; = A) =1 for allt = 0. More
generally, P.(Y,(w) = A) =1 for all t = {(w), where ((w) denotes the lifetime of the

process
((w):=1inf{t = 0: Y, (w) = A}.

5. (normal process) For each x € X, we have P, (Y, = x) = 1.
6. (cadlag paths) t — Yi(w) is right continuous on [0,00) and has left limits on (0, c0).

7. (time shift operators) For each t = 0, there exists a time shift operator 6, : QO — Q
such that Yy 00; = Yi,,.

8. (strong Markov property) For any probability measure u on (X U {A}, Ba) and for any
(Fr)-stopping time T, and for all s = 0, we have

P, (Yrss € E|Fp) =Py, (Yo € E), for all E € Ba.

9. The process is quasi-left continuous on (0,00): for any sequence of (F;)i=0 Stopping
times T, 1 T and any probability measure p on (X U {A}, Ba), we have

P, (lim Y, = Y, T < o) = P,(T < ).

n—ao

The semigroup (P)") corresponding to the process (Y;) defined by P) f(x) = E,[f(Yi)1g<cy]
coincides with the semigroup corresponding to the Dirichlet form (€, F) on L*(X,m) (the
term Ly<¢y is usually dropped with the convention that every function f on X is extended
to X U {A} by setting f(A) =0).

The Markov process in Fukushima’s theorem is not quite unique because the semigroup
associated to a Dirichlet form is not well-defined pointwise. However, it is essentially
unique outside a very small set as shown in [FOT, Theorem 4.2.8]. We describe the
uniqueness below.

Let X U {A}-valued stochastic process (€2, (F)i=0,{Y: : t € [0, 0]}, {Ps}zexoga}) be a
stochastic process as above. We say that subset N of X is properly exceptional for the
Markov process {Y; : ¢ € [0, 0]} if A is a Borel set with m(N') = 0 and

P, ({w e QYi(w) € XA\W, Yi_(w) € Xa\WN},for all t > 0) =1, for all x € X\N.

The process constructed in Fukushima’s theorem is unique in the following sense. Suppose
{Y; : t = 0} and {Y; : t = 0} be two Markov processes that satisfy the conclusion of
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Theorem 2.37, then there is a common properly exceptional set N for both {Y; : ¢t > 0}
and {Y; : t = 0} such that for all z € X\N, for all ¢t = 0 and E € B, we have

P,(Y, € E) = B, (Y, € E).

Let us recall some basic facts about regular Dirichlet forms. First, we define the
1-capacity Cap,(A) of A = X with respect to (X, m, &, F) by

Capy(A) :=inf{&(f, f) | f € F, f =1 m-a.e. on a neighborhood of A}, (2.21)

where & 1= £ + (-, )r2(x,m) as defined before. A subset N of X is said to be E-polar if
Cap;(N) = 0. For A c X and a statement S(z) on x € A, we say that S holds &-quasi-

everywhere on A (€-g.e. on A for short), or S(z) holds for E-quasi-every x € A (E-q.e.
x € A for short), if S(z) holds for any x € AAN for some E-polar N < X.

Polar sets and properly exceptional are defined using the Dirichlet form (£, F) and the
corresponding Markov process (Y;):=o respectively. These two notions are closely related
as follows: any properly exceptional set N' < X for (V})=0 is E-polar, ¢ any E-polar subset
of X is included in some properly exceptional set N for (Y});>o-

Definition 2.38 (Quasi-continuous function). Let (€, F) is a regular Dirichlet form on
L*(X,m). Let f e L*(X,m). A quasi-continuous version of f is a (pointwise defined)

function f: X — R, f = f m-a.e. and for € > 0 there exists an open set G of X such
that Cap,(G) < e and J| .
at Cap, (G) < cand f|

A crucial ingredient in the proof of Theorem 2.37 is the existence of quasicontinuous
modification of functions in F [FOT, Theorem 2.1.3].

Theorem 2.39. Let (€, F) be a reqular Dirichlet form on L*(X,m). Then every function
f € F admits a quasi-continuous modification.

Remark 2.40. The assumption of local compactness in the definition of regular Dirichlet
forms does not allow for some infinite dimensional examples. There is a fruitful generaliza-
tion of regular Dirichlet form that allows for such examples called quasi-regular Dirichlet
forms. We refer to [AM, CF] for more on this theory.

2.6 Irreducibility, recurrence and transience

Familiar probabilistic notions such as irreducibility, recurrence and transience can be
defined at the level of Dirichlet forms.

Let (€, F) be a Dirichlet form on L?(X,m) and let (P;);~¢ denote the corresponding
semigroup.

Definition 2.41. We say that a measurable set A < X is E-invariant, if it satisfies

P,(1of) =14P(f), me-a.e. on X for any f € L*(X,m) and any ¢ € (0, c0).
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Equivalently, 1 4u € F for any u € F and
E(u,u) = E(Lgu, 1 gu) + E(Lgeu, 1 4eu).

We say that a Dirichlet form (&, F) is irreducible if m(A)m(X\A) = 0 for any E-invariant
set A.

In order to define recurrence and transience, we recall the definition of extended Dirich-
let space.

Definition 2.42 (Extended Dirichlet space). We define the extended Dirichlet space F.
of a Dirichlet form (€, F) on L?*(X,m) as the space of m-equivalence classes of func-
tions f: X — R such that lim, . f, = f m-a.e. on X for some {f,},en < F with
limg e E(fe — fi, fr — fi) = 0. Then the limit E(f, f) := lim, o E(fn, fn) € R exists
and is independent of a choice (why?) of such {f,},en for each f € F., so that & is
canonically extended to F, x F..

We say that a Markovian semigroup (B;)io is transient if for any f € L*(X,m) n
L*(X,m) with f = 0-m-a.c., we have
T

Gf:= lim P,(f)dm <o, m-a.e.

T—o0 0

We say that a Dirichlet form (€, F) on L*(X,m) is transient if there exists a f €
LY(X,m) n L®(X,m) such that f is strictly positive m-a.e., and satisfying

J lul f dm < A/E(u,u), forall ue F.
b'e

The following theorem gives equivalent definitions of transience.

Theorem 2.43. Let (€, F) be a Dirichlet form on L*(X,m) and let (P;)¢~o denote the
corresponding semigroup. The following are equivalent:

1. The semigroup (P,)i=o is transient.
2. The Dirichlet form (€, F) is transient.
3. (Fe, &) is a Hilbert space.

We say that a m-symmetric Markov semigroup (F;);=o is recurrent, if for all non-
negative f € L'(X,m), we have

T
im | Pfdte{0,0} m-a.e. on X.

=1
T—wo 0

Gf

We say that a Dirichlet form (£, F) on L*(X,m) is recurrent if 1x € F, and E(1x,1x) =
0. Analogous to Theorem 2.43, we have the following result.
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Theorem 2.44. Let (€, F) be a Dirichlet form on L*(X,m) and let (P;)¢~o denote the
corresponding semigroup. The following are equivalent:

1. The semigroup (P;)i=o is recurrent.
2. The Dirichlet form (€, F) is recurrent.

The following exercise concerns the Dirichlet form for n-dimensional Bessel process.

Exercise 2.45. Let n € (0,00). Consider the measure m(dz) = 2" ' dx on X = (0, 0).
Let F denote the set of all functions f : X — R such that f is absolutely continuous on
X and satisfies

| (@ e is@P) man) = | (7@ + @) e do <
(0,00) (0,00)
Then (€, F) is a Dirichlet form on L*(X,m), where

E(f. f) = JX f(z)g'(x) m(dz), forall f,ge F.

1. Show that (&, F) is irreducible.

2. Show that (€, F) is recurrent if n € (0,2] and is transient if n € (2, 00).
Hint: For the case n € (2,0), the proving the following inequality is useful

|f(z) — f(y)|2 <(n—2)" ¥ —y* ™E(S, f), forall feF ayel withaz <y.

3 Heat kernel

Definition 3.1. Let (€, F) be a regular Dirichlet form on L*(X,m). A family {p:},_, of
[0, co]-valued Borel measurable functions on X x X is called the heat kernel, if p; is an

integral kernel of the operator P; for any t € (0,0), that is, for any ¢ € (0,20) and any
fe L*X,m),

Pf(x) = JX pe(z,y) f(y) dm(y) for m-a.e. v € X.

3.1 Existence of heat kernel via ultracontractivity

In general, a heat kernel need not exist (consider the semigroup consisting of identity
maps). From a probabilistic perspective, if the heat kernel exists, p;(z,y) m(dy) can be
viewed as the law of the corresponding Markov process started at z at time ¢. So the
existence of heat kernel can be viewed as the absolute continuity (with respect to the
reference measure m) of the law of a Markov process.

The following very general result is useful to show the existence of a heat kernel (see
[DS, Theorem 6, VI.8.6]).
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Proposition 3.2. Suppose (X, M, m) be a o-finite, separable measure space and let
T : LY(X,m) — L*(X,m) be a bounded linear operator. Then there exists a jointly mea-
surable function K : X x X — R such that K € L*(X x X,m xm) with | K|, = [T,
and

Tf(x)= JX K(z,y)f(y)m(dy), m-a.e. for each f e L'(X,m).

A linear operator that is bounded from L' to L® as above is said to be ultracontractive.
Ultracontractivity of semigroup offers a way to show the existence of heat kernel.

Proposition 3.3. Let (£, F) be a regular Dirichlet form on L*(X,m) and let {P; : t > 0}
denote the associated semigroup. Assume that there exists C; = 0,Cy > 0 and n = 1 such
that we have the Nash inequality

LFIE2 < L (O AR + CollECEH AN, forall fe L(X,m) A F. (3.1)

Then the semigroup {P, : t > 0} admits a heat kernel {p.(-,-)} such that

esssup py(x, y) < max (201, —) .
z,yeX t

Proof. First we show the estimate

nCy

n/4
5 ) Ifll,, forallt>0and feL'(X,m). (3.2)

1P:(f)]l, < max (201,

By the density of L' n L? in L! and linearity of P, it suffices to consider f € L*(X,m) n
L*(X,m) with |||, = 1. By the spectral theorem, we note that P,(f) € D(A) for all
t > 0, where A is the generator and

% 1B = 2<%Pt(f)>Pt(f)> = 2€AR(f), B(f)) = =28 (R(f), P (f))-

Setting W(t) := || P,(f)||> by the above equality and (3.1), we obtain
n (1) n
U = IR < IR (GBS + Cz €S, B(H)I)

(2.17)
< CLU(t) — 2710, (1).

If U(t) = (207)™2, then U(#)' 2" —C1U(t) = V() (Y ()Y —C,) = 271 (+)%". This leads
to the differential inequality,
()2 < — 0T (1)

for all + > 0 such that W(t) = (2C;)™? (recall that ¥ is non-increasing). This can be
written as

d 2 2
— (U(t —2/n = _ 2yt —(1+2/n)\11/ > =
dt ( ®) ) n *) *) nCy
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which implies (3.2).

Now by duality of L, spaces and symmetry of P, we have ||B|, ,, = || P54 To
see this, note that
1Bl = sup BNl = sup  [[B(f)l
JeL || fllo=1 fEL'AL*% || flly=1
- s [ gp(dn= s (R
feL L™ | fll,=1,YX feL*aL™ | fll,=1,
geLl [lgll; =1 geL' L™ |igll,=1
= sup  (f,B(g)y= sup |9l =[Pl
feL' L™ | flly=1, geLInL® ||gll; =1
geL'nL” |lgll;=1
Now by the semigroup property and submultiplicativity of operator norms, we have
2 (32) nCy\"”
120 < [Pl NPl = Pl e (200,52 )
The existence of heat kernel and the upper bound follows from Proposition 3.2 n

Example 3.4. J. Nash obtained the following inequality on R™: there exists C' > 0 such
that

n/4
5= < sty ([ 19roRar) L forall g e DR oW RY

Therefore Proposition 3.3, gives the upper bound py(z,y) < t /2 for all z,y € R" for
the heat kernel for Brownian motion on R”. The advantage of this method is that it is
robust to perturbations. Consider a measurable symmetric positive definite matrix valued
function A : R" — R™ ™ such that there exists A € [1, )

ATHIEP < EA@)E < A€, for all 7, e R™

Then the Dirichlet form E(f, f) = {5.(Vf(2)) A(x)V(f) dx on W'?(R") corresponding
to uniformly elliptic operator div(A(z)V(-)) also satisfies the above Nash inequality and
hence the same upper bound.

Let us quickly sketch the proof of Nash for the case when f e C*(R") is smooth and
well-behaved at infinity [?]. The Fourier transform f(§) = ;. f(x)e *™*¢ dx satisfies

Al <151 Again by
Parseval’s identity and the Fourier transform of derivative formula, we have

| wr@rde = ()

the Parseval’s identity H f H = ||f|l, and the elementary bound
2

flo)| e

Denoting w,, as the volume of unit ball in R", we have

;- |

fle)| de
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fie)| ae

<| | derne| e
{l¢|<R}} *© {l§1=R}}

< IfII? wa R™ + (2%3)_2J IV f(z)| da.
Minimizing the above expression as a function of R, we obtain the Nash inequality when f
is smooth and well-behaved at infinity. The general case follows from the same argument
by viewing f as a tempered distribution.

3.2 Brownian motion on the Sierpinski gasket

Let % = {q17QQ7Q3}7 where

1 /3
q = (57 7) y g2 = (an)» q3 ‘= (170)-
Let S := {1,2,3} and set f; : R* — R? as f;(z) := 3(z + ¢;) for all j € S. Define
inductively for m € N

Vm = U fj(vm—l)-
jes

By an induction argument, V;, <V, for all m € N'u {0}. Set V, = Uﬁ:o V., and let
K =V, denote the closure of V, in R?. Since V, = UjeS f;(V*), we have

K =] f;(K).
JES

We set [} = fj‘ i for all j € S. We define words of lengths with alphabet S as W), =
S = wy ... Wy W, ..., Wy €S for all m e N U {0} (with Wy = {J} consisting of the
empty word). For m e Nu {0}, w = wy ... w,, € W, and F,, :== F,,, 0o---0 F, (with
Fg =1) and zp := qi.

The approach behind constructing a Dirichlet form on K is to construct a limit of
a sequence of Dirichlet forms on V,, as m — oo. Equivalently, from a probabilistic
perspective, the diffusion on Sierpinski gasket is constructed as a limit of random walks
on a sequence of graph approximations. For x,y € V,,, we say that  ~ y if and only if
x #yand z,y € F,(Vp) for some w € W,,.

We define quadratic forms E(™ £ .V, x V,, — R for all u,v e R¥»

B =3 3 () —u) (o)~ o) o) = (3) BV, (33)

The reason for the re-scaling factor (g)m is due to the following fact. For any m €

N U {0},u € RV there exists a unique extension H,, ,.1(u) € RYm+1 of u such that

3
E" D (Hpp i1 (), Hpmy1(w)) = min - B (0,0) = ZE™ (u,u). (3.4)
veRVm+1, d
v|v,, =u
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The analysis can be reduced to the case m = 0. Suppose (u(q1),u(q2),u(q3)) = (a,b,c) €
R®. For j,k € S with j # k, we set q; = Fi(q;), so that Fy(K) n Fj(K) = {g;x}. Let
v € RV be an extension of u with (z,y, 2) := (v(qa3),v(g31), v(q12)), then

EW(v,v) = (y—2)2+(a—y)*+(a—2)*+(0—2)* 4+ (x—2)>+(2=b)*+(2—c)*+ (c—y)*+ (y—2z)*.
We need to minimize this expression as a function of x,y, z. This leads to
dr=b+z2z4+y+c, dy=c+x+z2+a, 4dz=a+y+z+0b,
or equivalently,
a+ 2b+ 2c 2a+ b+ 2c 2a + 2b + ¢
xr = —7 y = —7 Z= -
) ) 5)

For v chosen as above, it is easy to compute that EM (v, v) = %E(O) (u,u). This completes
the proof of (3.4).

By (3.4), for any u € R"*, the sequence (S(m) (u‘v ,u‘v )) is non-decreasing
m m"/ meNu{0}

and hence lim,, o, £™ (u‘v 7“‘\/ ) € |0, o0] exists. Define

Fie i ={uce RV*|n£iiréO€(m)(u‘Vm,u‘vm) <o}, E®(u,u) = lim S(m)(u‘vm,u‘vm),

m—00

for all u € F,. It is easy to see that F, is a subspace of R"* since £ (au, au) = a*>£™) (u, u)
for all @ € R,u € R"*, and £#)(u + v)Y2 < E®(u,u)? + EH)(v,v)"? for all u,v € F,
(see Exercise 2.26). By bi-linearity we have that lim,, ., £ (u‘vm, u‘vm) € R exists for
all u,v e F,.

The following self-similarity follows easily from the definition of the energies.
Exercise 3.5. For any u € R"*, we have
m 5 m
el ul, )= 3 D EM(uo By, juo By, ), (3.5)
jes
and hence
F o Ve | : ) = 25 et
s ={ueR"™ :uoF;e F,foral je S}, &EY(uu)= 525 (uo Fj,uoF;). (3.6)
JeS
More generally, for any m € N, we have
5 m
Fe={uecR% :uoF, e F, forall e Wy}, E¥(u,u)= <§> Z EW(uoF, uoF}).

TEWm

(3.7)
Proposition 3.6. For all z,y € V, and u € F,, we have
[u(x) — u(y)[* < 400z — y|*E™ (u, u) (3.8)

where |-| denotes the Euclidean distance in R* and o = log,(5/3). In particular, every
u € Fy 1s uniformly continuous in V, and hence admits a unique continuous extension to
its closure K = V.
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Proof. Note that the graph corresponding to V; with edges given by < has diameter 2.

Hence for any vy, z € V] there exists g € V] such that one of hte following hold: y = z = ¢
1 11 Vi

ory~gq=zory~q~ z In all these cases, for any v € R"* we have

o(y) — v(2)] < [u(y) — ()] + [v(g) — v(2)] < V2 (Joly) — v(@)]” + [v(g) —v(2))
<V2ED (v (3 D /6 /5EW (v, v) (3.9)
Now let u € F,,x € V, be arbitrary. Then there exists m e Nyw = wy ... w,, € W,,,,j € S

such that F,(qg;). Set for 1 < k < m, x = Fyy .w,_,(g;) (With Fy = I for j = 0). Then
forall k =1,...,m we have

1/2

u(en1) = ulan))| = \u © P (Pt (00 1)) = 00 P (Pl Ly, (1)

< ‘\/ 51) uOle wk I‘V’ w1 wk 1‘ 1)1/2 < \/ 6/58(*)(U,OFw;quw)
(k—1)/2 (k1) 1/2
6 /3 5
$6) (@) B e ren)

TeEWg_1

. (k—1)/2
&0 g (g) £ (u, u) /2. (3.10)

Hence we obtain

%10 (k—1)/2
lu(q Z lu(zr_1) — u(xy)) Z \/7< > 5(*)(u u)l/2
Z \[( ) 5(*)(u,u)1/2 < 5EM (u, u) 2. (3.11)

Thus for any z,y € V, and any u € F,, we have

u(2) — uly)] < [u(z) — ulg)] + |u(y) — u(g)] < 106 (u, u)2. (3.12)

Since for any w € W,,,, m € Nu {0}, F,,(K) is a subset of an equilateral triangle with side
length 27 for any w,v € W,, with F,,(K) n F,(K) # &, we have

v —yl<2™+2™m=2""" forallxe F,(K),ye F,(K). (3.13)

Let z,y € K be arbitrary with z # y. Let n := n,, = max{m € N u {0} :
there exist v,w € W, with z € F,(V,),y € Fu(Vi), Fo(K) n Fo(K) # &} Let g € F,(K)n
F,(K) c V,, where v,w € W, with z € F,(V,),y € F,,(Vi) as above. Then

u(z) —u(y)] < Ju(@) —ulg)] + [u(y) —w(@)| = |uo Fy(F, (z)) —wo Fu(F, (1))
22) 10 (5(*)(u o Fy,uo F)"* + £ (uo Fy uo Fw)1/2)

< 10V2 (EW(wo Fyyuo F) + EP(uo Fyuo F,))

—
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# 3\N"? [ /5\" 2
S s (5) ((3) 2, 8<*><quT\v*7quT‘w)>
TEWR
7) 3\ /2
= 10v2 <5> X (u, u)'/2. (3.14)

Let 4,7 € S be such that x € F,;(K),y € F,;(K), where vi,wj € W, denotes
concatenation of words. By the maximality on n, F,;(K) n F,;(K) = & and hence
o —y| = P2t (
mate

draw a picture to see the possibilities). Hence from (3.14), we esti-

4 [0
lu(z) — u(y)]> < (200)-27°"EX) (u, u) < 200 (%) |z — y|*EW) (u, 1) < 400|z — y|*EX (u, u).
[

Let F < C(K) be defined as

—{ue C(K): lim M) u‘v , ul

m—0o0 Vm

) < oo} ={ue C(K):ul, €F.}.

The standard Dirichlet form on Sierpinksi gasket £ : F x F — R is defined as

E(u,v) := lim M) u‘v ol ), forallu,veF.

m—Q0 V
The following properties of (£, F) follow easily from the construction. From (3.6), we
have the self-similarity property
={ueC(K):uoF;eFforall je S}, &E(u,u) ZEuOFj,UOFj). (3.15)
]ES

By Proposition 3.6 and the density of V, in K, we have
lu(z) — u(y)]> < 400|z — y|*E(u,u), for all u e F, (3.16)
where a = log,(5/3). In particular, by (3.16), we have
Rlg = {alkl|a € R} = {u e F|E(u,u) = 0}.

For any 1-Lipschitz function F' : R — R and for any v € F, we have F'ou € F and
E(Fou,Fou) < E(u,u). In particular, for any u € F, we have @ := u, A 1 € F and
E(u,u) < E(u,u). The subspace F is closed under pointwise multiplication (that is, an
algebra). More precisely, we have for all u,v € F, we have uv € F and (denoting by |-/,
the sup norm)

E(uv,wv) < 2 ||ull%, £, v) + 2%, £ (u, u). (3.17)

The estimate (3.17) follows from showing an analogous estimate for £ for all m € N
using the elementary inequality

(wo)(2) = (uv)(1))* < 2u(z)*(v(@) — v(Y))* + 20(y)*(u(z) —u(y))?, forallz,ye K.
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Next, we show that F is dense subspace of the Banach space (C'(K), |-||,,). Since F is an
algebra, by the Stone-Weierstrass theorem (cf. [Fol, Corollary 4.50]), it suffices to show
that F separates points and that for any x € K, there exists v € F such that v(z) # 0.
There it suffices to show the following: for any non-empty finite subset V' < K, we have

{ul,, :ue F} =R".

Since the inclusion {u‘v cu e F} < RY is trivial, it suffices to show that {u‘v cueF} o
RY. To this end, it suffices to consider V with #V > 2 as Rlx < F. Let g € RV be
arbitrary. Choose m € N such that 2'=™ < ming yev, |z — y|. Then for any z,y € V with

TH£Y
x # y and for any v,w € W,, with z € F,(K),y € F,(K), we have
F,(K)n F,(K) = . (3.18)

For each z € V, pick w, € W,, such that x € F,, (K). Define h € R such that for all
x €V and for all z € V,, n F, (K), we have h(z) = g(x), and h is arbitrarily defined
at other vertices (such a function h exists due to (3.18)). There exists u € F such that
u‘vn =H, 1,0-0H, mi1h. It is easy to see that u‘sz () = g(x) for all z € V and hence

u‘v = g. This concludes the proof that in the Banach space (C(K),|||,,), we have
Fl= = o). (3.19)

We summarize the construction of Dirichlet form for Brownian motion on the Sierpinski
gasket below.

Proposition 3.7. Let m be a Radon probability measure on the Sierpinski gasket K with
full support. Then (€, F) is a strongly local, reqular, Dirichlet form on L?(K,m).

Proof. Since C'(K) is dense in L?(K,m), by (3.19), we have that F is a dense subspace of
L?(K,m). The bi-linearity, symmetry, non-negative definiteness and Markov property of
(€, F) follow from the corresponding properties for £™). Next, let us verify that (£, F)
is closed. To this end, let (f,)nen be an £-Cauchy sequence. By (3.8), for all z,y € K
and for all g € F, we have (denoting every g € F by its continuous version)

l9(x)” < 2(|g(y)|” + 400& (g, g))

By averaging over y with respect to m, we have
l9(z)]? < Q(J lg()|” dm + 400E(g, g)) < 800E1(g,g), forallze K,ge F.  (3.20)
K

By (3.20) for each z € K, (f,,(x))nen is a Cauchy sequence and hence lim,, o, f,,(x) = f(x)
exists. Let ¢ > 0 and n € N be arbitrary. Then exists N € N such that for all k,l e N
with £ A [l = N, we have

gm ((fk - fl)‘vny (fk — fl)‘vn) <E(fx—fi, fe=1f) <&E(fe—fi, fr—1f1) <€ forallneN.
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By letting [ — oo and using the pointwise convergence of f; to f, we obtain

sup € ((fi = Ny, Ui = Ny, ) <

neN

Hence f e F and limy oo E(fx — f, fx — f) = 0.

It remains to show that f;, converges to f in L*(K, m). By (3.20) and sup,,cy E1(fn, fn) <
o0, we have

supsup | fn(z)| < 0.
neN zeK

Combining this with (3.8) and sup,,cy £1(fn, fn) < o0, we have that the sequence (f,,)nen is

uniformly boundeded and equicontinuous. Hence by the Arzela-Ascoli theorem, (f,,)n w0

converges to f in the sup norm and hence f, % f. Therefore (&1, F) is a Hilbert
L

(K,m)
space. The regularity of (£, F) follows from (3.19) and F < C(K).
Let us verify the strong locality property. Let f,g € F and a € R be such that
supp,,(f — alk) nsupp,,(9) = &. Then there exists n € N such that

dist(supp,,(f — alk),supp,,(g)) = . ppil(ljf . |z —y| > 27"
zesupp,, (f—alk),
yesupp,,, (9)

Therefore for all w € W,,, we have either F,,(K) n supp,,(f —alg) = & or F,(K) n
supp,,(g) # & (or possibly both). Thus by the self-similarity property (3.15) we have

e = % (3) everuger) o

weWy,

]

Our next goal is to obtain the existence of heat kenrel for Brownian motion on the
Sierpinski gasket. To this end, we need the following general notion of energy measures.
The energy measure of a function f can be viewed as the generalization of the measure
A, IV f(2)|? da.

Definition 3.8 (Energy measure; [FOT, (3.2.13), (3.2.14) and (3.2.15)]). Let (£, F) be
a strongly local, regular, Dirichlet form on L?*(X,m). The £-energy measure T'(f, f) of
f € F is defined, first for f € F n L*(X,m) as the unique ([0, oo]-valued) Radon measure
on X such that

| st - t0-5ere  frangeFac. e

next by T'(f, f)(A) 1= lim, 0 T ((—=n) v (f A n),(—=n) v (f A n))(A) for cach A € B(X)
for fe F.

By [FOT, (3.2.13) and (3.2.14)], we have the triangle inequality for energy measure

VG NB) VTG 9B <TG —9.f 9B <EG—9.f~9).  (322)
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for all Borel sets B and for all f,ge F.

The self-similarity property of energy (3.15) along with the definition of energy mea-
sure leads to the self-similarity of the corresponding energy measures.

Exercise 3.9. Show that for the Dirichlet form (€, F) on L*(K,m) in Proposition 3.7,
the corresponding energy measure satisfies

I(f, f) = (§)m S (F)o(U(f o Fu fo F)), forallmeN, and fe F.  (3.23)

3 weWm,

On the Sierpinski gasket, let B(x,r) denote the open ball centered at = € K with
radius » > 0 with respect to the Euclidean metric. We show the following Poincaré
imequality on the Sierpinski gasket.

Proposition 3.10. Let (€, F) be the Dirichlet form on L*(K,m) in Proposition 3.7. Set
dy, =log5/log2. There ezists C > 0,A = 1 such that for allz € K,0 <r <1, fe F, we
have

| 15w = S Pty < oo [ arr, (3.24)
B(Z’,T) B(CE,A’I‘)
where fp(z) = m S f(z) m(dz).

Proof. Since m(F,(K)) = 3™ and diam(F,(K)) = 27™ for all w € W,,,,m € N, there
exists Cy > 0 such that

Crlrds <m(B(a,r)) < Cyr¥r, forallze K,0 <r < 1. (3.25)

Therefore for all z € K,0 <r <1, fe F,

JB( ) ‘f( ) fB xr)‘ CIT 7 sup ‘f(y) - f(Z)|2 (326>

y,2€B(z,r)

Fix any y,z € B(z,r) and f € F. Let n € N u {0} be largest integer such that there
exist v,w € W, such that y € F,(K),z € F,(K) and F,(K) n F,(K) # . Let q €
F,(K)n Fu(K) , v # w. Similar to the proof of Proposition 3.6 (see (3.10)), we estimate

fy) — FEIP<2(f@) — f@ +1f(z) = f(@))
D R00(E(f o By, fo F)) + E(f o By, f o F))

(3.23)

2 800(3)n (2 F) (oK) © Fu(K)) (3.27)

As explained in the proof of Proposition 3.6, ‘/732_”_1 < |y — z| < 2r and hence by (3.26)
and (3.27), we obtain the desired Poincaré inequality (3.24) with A =1+ % as

F,(K) U Fy(K) c B(x,r +27) c B(x, (1+8/V3)r).
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For a function f € L'(K,m) and r > 0, by f, : K — R we denote the function

1
fr(2) 527[ fdmz—f fdm, forall ze K.
B(z,r) m(B(va)) B(z,r)

The following estimate is called the pseudo-Poincaré inequality. The difference from
Poincaré inequality is that the integrals involved are global.

Lemma 3.11. There exists C' > 0 such that for all f € F,r >0, we have

f (@) — fo(@)Pmdz) < Crig(f, f),

where d,, := log, 5.

Proof. It suffices to assume 0 < r < 1 as the case r > 1 follows from Proposition 3.10.
By Jensen’s inequality and the volume estimate (3.25), we have

| 1@ = @) P i) < f f,o 1) = @) ) ()
J J |f(z 1 i<y m(dy) m(dz) — (3.28)

Let N denote a r-net (a maximal r-separated subset; any two distinct points in N are
at least distance r apart and any set that strictly contains N is not r-separated). The
maximality of N implies that

Z ]lB (n,r) = ]1K7 Z ]lB(n 2r) ( )]IB(n,Qr) (y) < 1{d(m,y)<r}7 for all T,y € K.
neN neN

The balls B(n,2Ar), where A is the constant in (3.24) do not overlap too much in the
sense that Y\ Lpmaar) < 1k (due to the volume estimate (3.25)). Hence by (3.28), for
all f e F, we have

jK (@) — f,(0) P m(dn) < f ]i @) = 1) mdy) m

s j £0) = F) Lty m(dy) ()

“3 f £0) = S P ) (i)
neN ¥ B(n.2r) JB(n,2r)

< Z J ‘f(x) — fB(n,zr)}Zm dx
neN Y B(n,2r)

(3.24)

& 3 f Upaan dU(f, ) S 79 f). (3.29)

neN

O
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We obtain a Nash inequality for the Brownian motion on the Sierpinski carpet.
Proposition 3.12. There exists Cy,Cy € (0,0) such that
LA < I (Gl + CoIECH AN, for all [ & LY (K,m) A F,
where n = 2d¢/d,, = 2log5/log 3.
Proof. Let 0 <r <1and fe L'(K,m) nF. Then by Lemma 3.11,
1Fllo < NF = Follo + 1felly < 72 2ECE Y2+ 1 £l - (3.30)
By Cauchy-Schwarz inequality, for all f € L'(X, m),r € (0,1], we have

2 _
1Felly < felleo 1ol = AN 1E -

By Jensen’s inequality, we have

10 < | £y mldn) <07 | | )L e mlds) m(dn) = | 70 mias) < 11,
Combining the above tow estimates, we obtain

I frlly < /2 Ifll,, forall fe LYK, m) and r € (0,1].
Thus by (3.30), we obtain
1y < I = Felloat I folly < 7 2ECF NP4 | f]l, . for all f € F v LYK, m) and 7 € (0, 1].
Optimizing over r € (0, 1] yields the desired estimate. ]

Hence the using the Nash inequality above, we obtain the existence of heat kernel and
an upper bound using Proposition 3.3.

Proposition 3.13. Let m denote the self-similar measure on the Sierpinski gasket K
such that m(F,(K)) = 37% for all k € N and w € W),. Then the Dirichlet form (€, F) on
L*(K,m) admits a heat kernel. There exists C' > 0 such that

C
pe(z,y) < TR forallt € (0,1],z,y € K, where dy = log,y(3), dy, = log,(5).

As mentioned earlier in (1.4) sharp two-sided bounds on the heat kernel was obtained
by Barlow and Perkins and is referred to as sub-Gaussian heat kernel bounds [BP].
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