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1 Introduction

The study of heat kernels and their estimates is at the interface of analysis, geometry and
probability. Let us start with some examples of heat kernel. The fundamental solution of
the heat equation on Rn

Btu � 1

2
∆u, (1.1)

is given by the classical Gauss–Weierstrass kernel

ptpx, yq � 1

p2πtqn{2 exp
�
� |x� y|2

2t

�
. (1.2)

That is, for any fixed x P Rn, the function pt, yq ÞÑ ptpx, yq solves the heat equation on
p0,8q�Rn and limtÓ0 ptpx, �q � δx, where δx is the Dirac mass at x in the sense of distribu-
tions. In particular, for any f P C8

c pRnq, the function upt, xq � ³
Rn ptpx, yqfpyq dy, pt, xq P

p0,8q � Rn solves the Cauchy problem for the heat equation (1.1) with initial condition
up0, xq � fpxq for all x P Rn.

The fundamental solution of the heat equation can alternately be viewed as the tran-
sition probability density of the standard Brownian motion as ptpx, �q is the density of
the multivariate normal random variable with mean x and covariance matrix tIn�n. Thus
the measure ptpx, yqdy is the law of the Brownian motion Bt starting at B0 � x. By
extension, we use the term heat kernel to refer to the transition kernel of a variety of
Markov processes.

It is known that the behavior heat kernel is closely related to the geometry of the
underlying space. A classical result in this direction is the Varadhan’s asymptotic formula
[Var] (see also [Nor, HR]). It states that the fundamental solution of the heat equation
Btu � 1

2
∆u on a Riemannian manifold satisfies

lim
tÓ0

2t log ptpx, yq � �dpx, yq2,

where ∆ is the Laplace-Beltrami operator and d denotes the Riemannian distance. Despite
the universal nature of Varadhan’s short time asymptotic mentioned above, the long time
behavior of the heat kernel of a manifold can be significantly different from the Euclidean
case. For instance, the heat kernel of the 3-dimensional hyperbolic space H3 is given by
[DM, Theorem 2.1]

ptpx, yq � 1

p2πtq3{2
dpx, yq

sinhpdpx, yqq exp
�
� t

2
� dpx, yq2

2t



.

In the expression (1.2) for the heat kernel, the term |x� y|2{t reflects that time scales
like the square of the distance (Brownian space-time scaling). There are Markov processes
with other space-time scaling behavior. We describe two such examples: jump processes
on Rn and diffusions on fractals.
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Let pYtq be the symmetric α-stable process (where α P p0, 2q) on Rn; that is, pYtq is a
Lévy process (stationary, independent increments) such that

Ereiξ�pYt�s�Ysqs � expp�t|ξ|αq, for all t, s ¥ 0 and ξ P Rn.

Then the law of pYtq admits a density (heat kernel) pt satisfying the following estimate:
there exists C P r1,8q such that

C�1min

�
t�n{α,

t

|x� y|n�α



¤ ptpx, yq ¤ Cmin

�
t�n{α,

t

|x� y|n�α



, for all t ¡ 0, x, y P Rn.

(1.3)
This formula suggest the space time scaling relation distanceα scales like time.

A rich family of heat kernels arise from diffusions on fractals. Barlow and Perkins con-
structed a diffusion process on the standard Sierpiński gasket [BP]. The law of this diffu-
sion process at any time t ¡ 0 admits a density with respect to the df -Hausdorff measure,
where df � log2 3 is the Hausdorff dimension of the Sierpiński gasket. Let dw � log2 5. The
transition density pt admits the following estimates: there exists C1, C2, C3, C4 P p0,8q
such that for any x, y in the Sierpiński gasket and any t P p0, 1q, we have

C3

tdf {dw
exp

���C4

�
|x� y|dw

t

�1{pdw�1q�
¤ ptpx, yq ¤ C1

tdf {dw
exp

���C2

�
|x� y|dw

t

�1{pdw�1q�

(1.4)

Bounds of the form (1.4) are called sub-Gaussian heat kernel estimates is now known to
hold on many fractals.

Here is the outline for this course. We will begin by covering fundamental aspects
of the theory of Dirichlet forms, a powerful framework for constructing and analyzing
symmetric Markov processes. We will then survey key results characterizing spaces that
satisfy heat kernel estimates analogous to (1.2), (1.3), and (1.4). We will illustrate these
results by applying them to a number of examples. One important class of examples
is the boundary trace process. Consider the reflected Brownian motion on the n � 1-
dimensional upper half space Rn � r0,8q. The boundary trace process is obtained by
removing the path of the reflection Brownian motion in the interior Rn � p0,8q in a
certain sense. A classical result of Spitzer states that the resulting process is a jump
process on the boundary BHn�1 � Rn and coincides with the symmetric 1-stable process
(Cauchy process). By modifying the reflected Brownian motion to a different reflected
diffusion process, Molchanov and Ostrovskii [MO] discovered that any α-stable process
with α P p0, 2q can be obtained as trace of a diffusion process on the upper half space.
This was rediscovered in an analytic setting by Caffarelli and Silvestre [CS]. We will study
the behavior of boundary trace process for more general diffusions and domains.
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2 Dirichlet forms and symmetric Markov processes

We refer to the standard references [FOT, CF, BH91] for a comprehensive introduction
to the theory of Dirichlet forms.

2.1 Semigroup and resolvent

Definition 2.1 (semigroup of operators). Let H be a Hilbert space over R equipped with
inner product x�, �y and norm ∥�∥. We say that a family of linear operators tTt : H Ñ
H|t ¡ 0u is a semigroup if it satisfies

(1) Each Tt is a symmetric operator; that is, xTtpfq, gy � xf, Ttpgqy for all t ¡ 0 and
f, g P H.

(2) tTt : t ¡ 0u satisfy the semigroup property; Tt�s � TtTs for all t, s ¡ 0.

(3) Each Tt is a contraction operator, ∥Ttpuq∥ ¤ ∥u∥ for all t ¡ 0, u P H.

(4) (strongly continuous) For all u P H, we have limtÓ0 ∥Ttpuq � u∥ � 0.

It is more precise to call it a symmetric, strongly continuous, contraction semigroup.
We will use the abbreviated term semigroup.

A Markov process pYtqt¥0 on a space X defines an operator

Ptfpxq � ExrfpYtqs � ErfpYtq|Y0 � xs,
for all t ¡ 0, x P X and a suitable class of functions f . By the Markov property, for any
t, s ¡ 0, x P X and f : X Ñ R bounded, we have the semigroup property

Pt�sfpxq � ExrfpYt�sqs � Ex rExrfpYt�sq|Ftss � Ex rEYtrfpYsqss � ExrpPsfqpYtqs � PtpPspfqqpxq.
This estimate implies that the expected distance traveled by the diffusion process pBtq
satsifes the bound Er|Bt �B0|s � t1{dw for all t P p0, 1q. This should be compared with
the expected distance traveled by the Brownian motion on Rn which is comparable to

?
t.

Example 2.2. (i) The Brownian (or heat) semigroup is given by Pt : L
2pRnq Ñ L2pRnq

is

Ptfpxq :�
»
Rn

1

p2πtqn{2 exp
�
� |x� y|2

2t

�
fpyq dy, for all t ¡ 0, f P L2pRnq.

This corresponds to the standard Brownian motion on Rn.

(ii) Let γn denote the standard Gaussian measure on Rn; γnpdxq � p2πq�n{2e�|x|2{2 dx.
The Ornstein-Uhlenbeck process pXtqt¥0 on Rn is a Markov process that is associated
with the stochastic differential equation

dXt � �Xt dt�
?
2dBt,
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where pBtq is the standard Brownian motion on Rn. Alternately,

Xt � e�tX0 � e�tBe2t�1,

where pBtq is again the standard Brownian motion. Then the Ornstein-Uhlenbeck
semigroup is defined by Pt : L

2pRn, γnq Ñ L2pRn, γnq as

Ptfpxq :�
»
Rn

f
�
e�tx�

?
1� e�2ty

	
γnpdyq, for all f P L2pRn, γnq, t ¡ 0.

(iii) Let X � t1, . . . , nu and c : X �X Ñ r0,8q be such that cpx, yq � cpy, xq ¥ 0 for all
x, y P X. Let m : X Ñ r0,8q be

mpxq :�
¸
zPX

cpx, yq.

Let us assume that mpxq ¡ 0 for all x P X. This defines a discrete time Markov
chain pZnqnPNYt0u with transition probabilities given by

P px, yq :� cpx, yq
mpxq , for all x, y P X.

This defines a linear operator Q : L2pE,mq Ñ L2pE,mq given by

Qfpxq � ErfpZ1q|Z0 � xs �
¸
yPX

P px, yqfpyq.

By the Markov property, we have Qkfpxq � ErfpZkq|Z0 � xs for all k P NYt0u with
Q0 � I, where Qk denotes the k-fold composition of Q. A standard construction of a
continuous time process pYtq from the discrete time process pZnqnPNYt0u is obtained
by waiting at every state x P E for an exponential time Expp1q before jumping
to a state y with probability Qpx, yq. If pNptqqt¥0 denotes a Poisson process with
rate 1 (independent of pZnq) that determines the waiting times, we have that the
semigroup corresponding to process Yt :� ZNptq is given by

Ptfpxq � ErfpYtq|Y0 � xs �
8̧

k�0

PpNptq � kqErfpZkq|Z0 � xs �
8̧

k�0

e�t t
k

k!
Qkfpxq.

Then pPtqt¥0 is a semigroup on L2pX,mq.
Exercise 2.3. Verify that the examples above are a semigroup (in the sense of Definition
2.1).
Hint: In order to show strong continuity, it might help to look at Lemma 2.35.

As we will see, it is often easier to construct or analyze the Laplace transform of a
semigroup.
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Definition 2.4 (resolvent). A resolvent on H is a family of linear operators tGα : H Ñ
H|α ¡ 0u on H such that

(1) Each Gα is a symmetric operator; ; that is, xGαpfq, gy � xf,Gαpgqy for all t ¡ 0 and
f, g P H.

(2) tGα : α ¡ 0u satisfy the resolvent equation

Gα �Gβ � pα � βqGαGβ � 0, for all α, β ¡ 0. (2.1)

(3) (contraction property) For any u P H, α ¡ 0, we have ∥αGαu∥ ¤ ∥u∥.

(4) (strongly continuous) For any u P H, we have limαÑ8 ∥αGαpuq � u∥ � 0.

The resolvent can be viewed as the Laplace transform of the semigroup t ÞÑ Tt. To
describe this we need to define integrals of Hilbert space valued function.

Definition 2.5. Let I � R be an interval and pH, x�, �yq be a Hilbert space. We say that a
function f : I Ñ H is weakly measurable if for any v P H, the functions t ÞÑ xv, fptqy and
t ÞÑ ∥fptq∥ are measurable functions on I. If a weakly measurable function f : I Ñ H
satisfies

³
I
∥fptq∥ dt   8, we say that f is integrable. If f : I Ñ H is weakly measurable

and integrable, then by the Riesz-Fréchet representation theorem, there exists a unique
x P H such that

xv, xy �
»
I

xv, fptqy dt, for all v P H. (2.2)

We denote x as the integral
³
I
fptq dt P H.

The following basic properties of this integral are easily verified.

Exercise 2.6. Let I � R be an interval and pH, x�, �yq be a Hilbert space.

1. If f : I Ñ H is continuous, then f is weakly measurable.

2. If f : I Ñ H is weakly measurable and integrable, then we have the triangle
inequality ∥∥∥∥»

I

fptq dt
∥∥∥∥ ¤ »

I

∥fptq∥ dt.

3. Let H1 be a Hilbert space and let T : H Ñ H1 be a bounded linear map. If
f : I Ñ H is continuous and integrable, then T � f : I Ñ H1 is weakly measurable
and integrable. Furthermore, we have

T

�»
I

fptq dt


�
»
I

pT � fqptq dt.

Every semigroup defines a resolvent as its Laplace transform.

7



Exercise 2.7. Consider a strongly continuous contraction semigroup tTt : t ¡ 0u on H.
For any α ¡ 0, u P H consider the integral

Gαpuq �
» 8

0

e�αtTtpuq dt.

Show that tGα : H Ñ H|α ¡ 0u defines a resolvent (in the sense of Definition 2.4).
Hint: The standard approach to showing the resolvent identity is to use

e�αt � e�βt � pβ � αq
» t

0

e�αpt�sqe�βs ds

in the integral for Gαpuq �Gβpuq and interchange the order of integration and use semi-
group property.

Here is another probabilistic approach to show the resolvent identity1: Assume α ¡ β
and consider two independent random variables ξβ and ξα�β with exponential distributions
with rate α. Then here is an outline of the probabilistic approach.

1. ξα :� ξβ ^ ξα�β is exponentially distributed with rate α.

2. ErTξαpuqs � αGαpuq,ErTξβpuqs � βGβpuq.

3. Ppξα � ξβq � 1� Ppξα   ξβq � β
α
.

4. Conditioned on the event tξα   ξβu, the distribution on ξβ � ξα is exponential with
parameter β (memoryless property).

5. Write

Tξβ � 1tξα�ξβuTξα � 1tξα ξβuTξα � Tξβ�ξα � 1tξα�ξβuTξα � 1tξα ξβuTξβ�ξα � Tξα ,

and take expectations on both sides to derive the resolvent identity.

Another way to rephrase the probabilistic approach is as follows. Let ξα and ξβ be
independent exponential random variables with rates α and β with α ¡ β and let Z be
an independent (of ξα, ξβ) Bernoulli random variable with PpZ � 1q � 1�PpZ � 0q � β

α
.

Then verify that the random variable

rξβ :� 1tZ�1uξα � 1tZ�0upξα � ξβq

is also exponentially distributed with parameter β. Writing

T
�ξβ
� 1tZ�1uTξα � 1tZ�0uTξα � Tξβ � 1tZ�1uTξα � 1tZ�0uTξβ � Tξα

and taking expectations as above yields the resolvent identity.

1Thanks to Ryoichiro Noda for sharing this argument due to David Croydon.
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2.2 Generators and background on self-adjoint operators

The generator provides an infinitesimal description of the semigroup. Let A : DpAq Ñ H
be a denseley defined operator on a Hilbert space H; that is, DpAq is a dense subspace of
H.

Definition 2.8 (Generator of a semigroup). Let tTt : H Ñ H|t ¡ 0u be a semigroup.
Then the generator A of the semigroup tTt : t ¡ 0u is the operator A : DpAq Ñ H is
defined as

Apuq :� lim
tÓ0

Ttpuq � u

t
, for all u P DpAq,

where the domain DpAq is

DpAq � tu P H : lim
tÓ0

Ttpuq � u

t
existsu.

Often the generator is easier to compute than the semigroup as we illustrate.

Example 2.9. We will slightly generalize Example 2.2-(iii). Let X � t1, . . . , nu and
c : X�X Ñ r0,8q be such that cpx, yq � cpy, xq ¥ 0 for all x, y P X. Let m : X Ñ r0,8q
be

mpxq :�
¸
yPX

cpx, yq.

Assume thatmpxq ¡ 0 for all x P X. This defines a discrete time Markov chain pZnqnPNYt0u
with transition probabilities given by

P px, yq :� cpx, yq
mpxq , for all x, y P X.

Let λ : X Ñ p0,8q be a function determining a continuous time process as follows: at each
state x P X, the process waits (independently of other waiting times and transitions) an
exponential time with parameter λpxq2 before jumping to a new state y with probability
P px, yq. Call this process pYtqt¥0 on X. If λ � 1, the number of transitions (jumps) is a
Poisson process which helped in the computation of semigroup. Since λ need note be a
constant function, the computation of semigroup corresponding semigroup Pt : RX Ñ RX .
Nevertheless, we can compute the generator by observing that

Ptfpxq � ExrfpYtqs � e�λpxqtfpxq �
¸
yPX

p1� e�λpxqtqP px, yqfpyq �Opt2q,

for all f P RX , t P p0, 1q, x P X. This implies

Lfpxq � lim
tÓ0

Ptfpxq � fpxq
t

� �λpxqfpxq � λpxq
¸
yPX

P px, yqfpyq � λpxqpI �Qqfpxq.

2exponential random variable with paramet λ has mean λ�1, so larger λ means smaller wait times
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Since P is m-symmetric, it is easy to see that L is rm-symmetric with rmpxq � λpxq�1mpxq
as

xLf, gyL2p rmq � xpI�Qqf, gyL2pmq � xf, pI�QqgyL2pmq � xf, LgyL2p rmq, for all f, g P L2pX, rmq.
Using the symmetry of L in L2pX, rmq, we can conclude that pPtq is also symmetric in
L2pX, rmq.

If the discrete time random walk on X is irreducible, then using limiting behavior of
discrete time Markov chains, one can interpret rm (normalized to be a probability measure)
as the asymptotic occupation time of a Markov chain; that is

lim
tÒ8

1

t

» t

0

1tYs�yu ds � rmpyq°
zPX rmpzq , Px-a.s. for all x, y P X.

Using the contraction property of the semigroup, we see that the generator is a non-
positive definite operator.

Lemma 2.10. DpAq defined above a subspace of H, A : DpAq Ñ H is a linear map, and
A is non-positive definite; that is,

xApuq, uy ¤ 0, for all u P DpAq.
Proof. The first two claims are easy consequence of the definition of A. If u P DpAq, then

xApuq, uy � lim
tÓ0

1

t
xTtpuq � u, uy.

By Schwarz’s inequality, for any u P H, t ¡ 0, we have xTtpuq�u, uy � xTtpuq, uy�∥u∥2 ¤
∥Ttpuq∥ ∥u∥� ∥u∥2 ¤ 0 (since T is a contraction).

Lemma 2.11. Let tGα : α ¡ 0u be a resolvent on H. Then for each α ¡ 0, Gα is injective
and non-negative definite.

Proof. Let β ¡ 0. Since Gβ is linear, it suffices to show that Gβ has a trivial kernel. Let
u P H be such that Gβpuq � 0. By the resolvent equation, for any β ¡ 0 we have

Gαpuq � Gβpuq � pβ � αqGαpGβpuqq � 0.

Hence by strong continuity u � limαÑ8 αGαpuq � 0. Hence Gβ is injective for each β ¡ 0.

To show that Gα is non-negative definite, we need to verify that xu,Gαuy ¥ 0 for all
u P H. To this end, fix u P H and define fpαq � xu,Gαuy. By the contraction property
of the semigroup

∥Gαpuq �Gβpuq∥ ¤ |α � β|α�1β�1 ∥u∥ .
Therefore, limβÑαGβpuq � Gαpuq. For α � β, by the resolvent equation and symmetry
of the resolvent operators, we have

fpβq � fpαq
β � α

� �xu,GαpGβpuqqy � �xGαpuq, Gβpuqy.
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Letting β Ñ α and using limβÑα Gβpuq � Gαpuq, we obtain that α ÞÑ fpαq is differentiable
and

f 1pαq � � ∥Gαpuq∥2 ¤ 0.

By the strong continuity, we have limαÑ8 αfpαq � limαÑ8xu, αGαpuqy � ∥u∥2   8.
Hence limαÑ8 fpαq � 0. Since f is non-increasing, we conclude fpαq � xu,Gαuy ¥ 0 for
all α P p0,8q.

By Exercise 2.7, every semigroup defines a resolvent as a Laplace transform. So one
might wonder if we can compute the generator of semigroup directly from the resolvent.
This motivates the following definition.

Definition 2.12 (Generator of a resolvent). Let tGα : α ¡ 0u be a resolvent on H. The
generator of tGα : α ¡ 0u is defined as the linear operator A : DpAq Ñ H defined by

DpAq � GαpHq, Apuq � αu�G�1
α puq, for any α ¡ 0, u P DpAq,

whereG�1
α : GαpHq Ñ H is the inverse ofGα (recall from Lemma 2.11 thatGα is injective).

The fact that the above operator is well-defined is an easy exercise in the use of
resolvent equation that we state below.

Exercise 2.13. Let tGα : α ¡ 0u be a resolvent on H.

(i) For any α, β ¡ 0, show that GαpHq � GβpHq.
(ii) For any α, β ¡ 0 and any u P GαpHq � GβpHq, show that αu � G�1

α puq � βu �
G�1

β pvq.

Hint: Use the resolvent equation (2.1).

Let H be a Hilbert space. Let T : DpT q Ñ H be a densely defined operator (DpT q �
H). Then define

DpT �q � tx P H|y ÞÑ xT pyq, xy is a bounded operator on DpT qu.
If x P H, then by Hahn-Banach theorem, there is a unique extension of the map y ÞÑ
xx,Apyqy to H. Hence by Riesz-Fréchet representation theorem, there exists (a unique)
T �pzq P H such that

xT pyq, xy � xy, T �pxqy, for all x P DpT �q.
It is easy to verify that T � : DpT �q Ñ H is a linear map. For an operator T : DpT q Ñ H,
let GpT q � tpu, T puqq : u P DpT qu � H � H denote the graph of T . We view H � H
is a Hilbert space with inner product xpx1, y1q, px2, y2qyH�H � xx1, x2y � xy1, y2y for all
px1, y1q, px2, y2q P H �H.

Definition 2.14. (i) We say an operator T : DpT q Ñ H is closed if GpT q is a closed
set (in H �H).
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(ii) We say a densely defined operator T : DpT q Ñ H is symmetric if for all x, y P DpT q,
we have

xT pxq, yy � xx, T pyqy.
Equivalently, T � is an extension of T (DpT �q � DpT q and T �pxq � T pxq for all
x P DpT q).

(iii) We say that an operator T : DpT q Ñ H is self-adjoint if T � T �.

For a subspace M of a Hilbert space H, by MK we denote the orthogonal complement
defined by

MK � tu P H : xu,my � 0 for all m PMu.
The following lemma expresses the graph of the adjoint T � in terms of the graph of T .

Lemma 2.15. Let T : DpT q Ñ H be a densely defined operator and let GpT q �
tpu, T puqq : u P Hu � H � H denote the graph of T . Let V : H � H Ñ H � H be
defined by V px, yq � py,�xq for all px, yq P H �H. Then GpT �q � V pGpT qqK.

Proof. px, yq P GpT �q if and only if

xT puq, xy � xu, yy, for all u P DpT q.

This can be rewritten as

xV pu, T puqq, px, yqyH�H � xpT puq,�uq, px, yqyH�H � xT puq, xy�xu, yy � 0, for all u P DpT q.

Clearly, every self-adjoint operator is symmetric and closed (by Lemma 2.15).

Corollary 2.16. Let T : DpT q Ñ H be an injective self-adjoint operator with range RpT q.
Then T�1 : RpT q Ñ H is a densely defined, self-adjoint operator.

Proof. Let us show that RpT q is dense. This is equivalent to showing that RpT qK � t0u.
Let y P RpT qK as RpT q � pRpT qKqK. Then py, 0q P V pGpT qqK � GpT �q � GpT q. Since T
is injective, y � 0.

Let V, S : H�H Ñ H�H be defined by V px, yq � py,�xq and Spx, yq � py, xq for all
px, yq P H�H. Then by Lemma 2.15 and the observation that V � S � �S � V , we have

GppT�1q�q � V
�
GpT�1q�K � V pSpGpT qqqK � SpV pGpT qqqK.

Since S : H�H Ñ H�H is a unitary (inner-product preserving) bijection with S2 � Id,
we have SpV pGpT qqqK � SpV pGpT qqKq and hence by Lemma 2.15, we have

GppT�1q�q � SpV pGpT qqKq � SpGpT �qq � SpGpT qq � GpT�1q.
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Exercise 2.17. Let pΩ, µq be a measure space and let H � L2pΩ, µq. Let λ : Ω Ñ R be
a measurable function (not necessarily bounded). Show that the multiplication operator
Mλ : DpMλq Ñ H with domain

DpMλq :� tf P L2pΩ, µq : λf P L2pΩ, µqu

defined by Mλpfq � fp�qλp�q is a densely defined, self-adjoint operator.

Theorem 2.18 (Spectral theorem). Let A be a self-adjoint operator on a Hilbert space
H. Then there is a measure space pΩ, µq and a unitary map U : L2pΩ, µq Ñ H and a
measurable function λ : ΩÑ R such that

U�1AU �Mλ, DpAq � tUpfq : f P DpMλqu,

where Mλ : DpMλq Ñ L2pΩ, µq is as defined in Exercise 2.17.

Furthermore, if A is non negative definite (respectively, non positive definite); that is,
xApuq, uy ¥ 0 (respectively, xApuq, uy ¤ 0) for all u P DpAq, then λpxq ¥ 0 (respectively,
λpxq ¤ 0) for µ-almost every x P Ω.

Definition 2.19 (Functional calculus). Let A be a non-positive self-adjoint operator on
a Hilbert space H and let U : L2pΩ, µq Ñ H and λ : ΩÑ R be as given in Theorem 2.18.
Then for any Borel function f : p�8, 0s Ñ R, we define fpAq : DpfpAqq Ñ H denote the
operator defined by

U�1fpAqU �Mfpλp�qq, DpfpAqq � tUpgq : g P DpMfpλp�qqqu

It is easy to verify that fpAq is a self-adjoint operator on H. Note that if f is bounded,
then fpAq is a bounded operator with DpfpAqq � H. If f is non-negative (respectively,
non-positive), then fpAq is a non-negative definite (respectively, non-positive definite)
operator.

Proposition 2.20. Let tTt : t ¡ 0u be a a strongly continuous contraction semigroup
tTt : t ¡ 0u on H and let us denote the associated resolvent by tGα : α ¡ 0u defined as

Gαpuq :�
» 8

0

e�αtTtpuq dt, for all u P H, α ¡ 0. (2.3)

Let As amd Ar denote the generators of the semigroup tTt : t ¡ 0u and the resolvent
tGα : α ¡ 0u respectively. Then As � Ar and is a non-positive definite self-adjoint
operator.

Proof. Let u P DpArq. Then u � Gαpvq for some v P H and

1

t

�
e�αtTtpuq � u

� � 1

t

�
e�αtTt

�» 8

0

e�αsTspuq ds


�
» 8

0

e�αsTspuq ds



� 1

t

��» 8

t

e�αsTspuq ds


�
» 8

0

e�αsTspuq ds
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� �1

t

�» t

0

e�αsTspvq ds



tÑ0ÝÝÑ �v.

This implies u P DpAsq since

Aspuq � lim
tÓ0

Ttpuq � u

t
� lim

tÓ0
e�αtTtpuq � u

t
� lim

tÓ0
Ttpuqp1� e�αtq

t
(2.4)

� �v � αu � αu�G�1
α puq � Arpuq. (2.5)

This show that Ar is an restriction of As.

It remains to show that DpAsq � DpArq. To this end, let u P DpAsq. Then by the
calculation in (2.4)

v :� � lim
tÓ0

1

t

�
e�αtTtpuq � u

� � �Aspuq � αu.

Define w :� u�Gαv. We have

lim
tÓ0

1

t

�
e�αtTtpwq � w

� � lim
tÓ0

1

t

�
e�αtTtpuq � u

�� lim
tÓ0

1

t

�
e�αtTtpGαpvqq �Gαpvq

�
� �v � lim

tÓ0
1

t

�
�
» 8

t

e�αsTspvq ds�
» 8

0

e�αsTspvq ds


� �v � v � 0.

Therefore w P DpAsq and

0 � lim
tÓ0

1

t

�
e�αtTtpwq � w

� � Aspwq � αw.

Therefore
0 � αxw,wy � xAspwq, wy ¥ αxw,wy,

and hence w � 0, or equivalently, u � Gαpvq P DpArq.
By Corollary 2.16 G�1

α is a self-adjoint operator and hence Ar � α�G�1
α is self-adjoint.

By Lemma 2.10, Ar � As is a non-positive definite operator.

We now state a converse to Proposition 2.20. The resolvent and semigroup corre-
sponding to the generator can be defined using functional calculus (Definition 2.19).

Proposition 2.21. Let H be a Hilbert space and let A : DpAq Ñ H be a non-positive
definite, self-adjoint operator.

(a) Then tTt � expptAq|t ¡ 0u and tGα � pα � Aq�1|α ¡ 0u are a semigroup and
resolvent respectively. Furthermore, tGα : α ¡ 0u is the resolvent corresponding to
the semigroup tTt � expptAq|t ¡ 0u.

(b) The generators of the semigroup tTt ¡ 0|t ¡ 0u and the resolvent tGα|α ¡ 0u in (a)
coincide with A. Furthermore, there is a unique semigroup and a unique resolvent
whose generators are A.
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Proof. (a) Let U : L2pΩ, µq Ñ H be an unitary operator and λ : ΩÑ p�8, 0s be as given
in the spectral theorem (Theorem 2.18). Then we have

U�1TtU �Mexpptλp�qq, U�1GαU �Mpα�λp�qq�1 , for all t ¡ 0, α ¡ 0.

The symmetry of Tt follows from symmetry of Mexpptλq. For all f, g P H, t ¡ 0 we
have

xTtpfq, gy �
»
Ω

MexpptλqpU�1pfqqU�1pgq dµ �
»
Ω

expptλqU�1pfqU�1pgq dµ

�
»
Ω

U�1pfqMexpptλqpU�1pgqq dµ � xf, Ttpgqy.

The proof of the semigroup property is similar as for all t, s ¡ 0

TtTs � UMexpptλqU�1UMexppsλqU�1 � UMexpptλqMexppsλqU�1 � UMexpppt�sqλqU�1 � Tt�s.

To show strong continuity, note that for any f P H and using the fact that λ ¤ 0
m-a.e., we have |pexpptλq � 1qU�1pfq| ¤ U�1pfq m-a.e. for all t ¡ 0. Hence by
dominated convergence theorem, we have

lim
tÓ0

∥Ttpfq � f∥2 � lim
tÓ0

»
Ω

∣∣pexpptλq � 1qU�1pfq∣∣2 dµ � 0, for all f P H.

The proof that tGα � UMpα�λp�qq�1U�1|α ¡ 0u defines a resolvent is similar and left
as an exercise.

To verify that tGα : α ¡ 0u is the resolvent corresponding to the semigroup tTt �
expptAq|t ¡ 0u, for any f P H, we have» 8

0

e�αtTtpfq dt �
» 8

0

U
�
e�αtMexpptλqpU�1pfqq� dt � U

�» 8

0

e�αtMexpptλqpU�1pfqq dt



� U

�» 8

0

expp�αt� λtqU�1pfq dt


� U

�
Mpα�λp�qq�1pU�1pfqq� � Gαpfq.

(b) For any f P L2pΩ, µq, we have the pointwise limit

lim
tÓ0

Mexpptλp�qqpfq � f

t
� lim

tÓ0
pexpptλp�q � 1qpfp�q

t
�Mλpfq,

and that since λ ¤ 0 m-a.e., we have∣∣∣∣expptλp�qq � 1

t

∣∣∣∣ � 1� expptλp�qq
t

Ò λp�q,m-a.e. as t Ó 0.

So by the dominated convergence theorem,

lim
tÓ0

Mexpptλp�qqpfq � f

t
� lim

tÓ0
pexpptλp�q � 1qpfp�q

t
�Mλpfq,
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in L2pΩ, µq if and only if f P DpMλq � tf P L2pΩ, µq : λf P L2pΩ, µqu. This implies
that the generator of the semigroup tTt � UMexpptλp�qqU�1 : t ¡ 0u is A � UMλU

�1.
Since the generators of a semigroup and the corresponding resolvent coincide (by
Proposition 2.20), we have that A is the generator of the resolvent tGα : α ¡ 0u.
By the injectivity of Laplace transform, it suffices to show that the resolvent is
uniquely determined by the generator. Suppose tGα : α ¡ 0u and tG1

α : α ¡ 0u
are two resolvent with generator A, for any f P H, α ¡ 0, w :� Gαpfq � G1

αpfq
satisfies

pα � Aqpwq � pα � AqpGαpfq �G1
αpfqq � f � f � 0.

Since �A is non-negative definite, we have

0 � xpα � Aqpwq, wy ¥ αxw,wy ¥ 0,

and hence w � 0. Since f P H is arbitrary, Gα � G1
α.

Exercise 2.22. Show that tGα � UMpα�λp�qq�1U�1|α ¡ 0u defined in the proof above is
a resolvent.

In the next exercise, we outline a direct proof of the uniqueness of the semigroup
with a given generator (without relying on the injectivity of Laplace transform and the
corresponding uniqueness result for the resolvent).

Exercise 2.23. Let H be a Hilbert space and let A : DpAq Ñ H be a non-positive
definite, self-adjoint operator. Let tTt : t ¡ 0u be a semigroup with generator A.

(i) Show that for any x P DpAq, t ¡ 0, we have Ttpxq P DpAq and
d

dt
pTtpxqq � ApTtpxqq � TtpApxqq.

(ii) Using (i), show that if tTt : t ¡ 0u and trTt : t ¡ 0u are two semigroups with generator
A, then for any x P DpAq the function Ex : p0,8q Ñ r0,8q defined by

Exptq �
∥∥∥Ttpxq � rTtpxq

∥∥∥2

, for all t ¡ 0

satisfies

d

dt
Exptq � 2xTtpxq � rTtpxq, ApTtpxq � rTtpxqqy ¤ 0, for all t ¡ 0

and limtÓ0Exptq � 0.

(iii) Conclude from (ii) that Ttpxq � rTtpxq for all x P H and t ¡ 0.

The following exercise can be viewed as an inverse Laplace transform formula for the
semigroup corresponding to a resolvent.
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Exercise 2.24. Let tGα : α ¡ 0u be a resolvent on H. Show that for all t ¡ 0, f P H

Ttpfq � lim
αÑ8

e�tα
8̧

n�0

ptαqn
n!

pαGαqnpfq (2.6)

defines a semigroup and that tGα : α ¡ 0u is the resolvent corresponding to the semigroup
tTt : t ¡ 0u. Hint: Use the proof of Proposition 2.21 to express Gα � UMpα�λp�qq�1U�1

and show that Tt � UMexpptλp�qqU�1.

2.3 Closed quadratic forms

Definition 2.25. Let H be a Hilbert space with the inner product x�, �y. A quadratic
form E : F � F Ñ R is a dense subspace of F (called the domain of the quadratic form)
of H such that it satsfies the following properties:

(i) (bi-linearity) For all a1, a2 P R and f1, f2, g P F , we have Epa1f1 � a2f2, gq �
a1Epf1, gq � a2Epf2, gq.

(ii) (symmetry) Epf, gq � Epg, fq for all f, g P H.

(iii) (non-negative definite) Epf, fq ¥ 0 for all f P F .

We say that a quadratic form is said to closed if F is a Hilbert space equipped with the
inner product E1 : F � F Ñ R

E1pf, gq � Epf, gq � xf, gy, for all f, g P F .

Familiar properties of inner product such as Schwarz inequality and triangle inequality
hold for (non-negative definite) quadratic forms with identical proofs.

Exercise 2.26. Let E : F � F Ñ R be a quadratic form on a Hilbert space H. Show
that for all f, g P F , we have the Schwarz inequality

|Epu, vq| ¤ Epu, uq1{2Epv, vq1{2

and the triangle inequality

Epf � g, f � gq1{2 ¤ Epf, fq1{2 � Epg, gq1{2.

There is a one-to-one correspondence between closed quadratic forms and non-positive
definite self-adjoint operators A.

Theorem 2.27. Let A be a non-positive definite, self-adjoint operator on H. Then pE ,Fq
is a closed quadratic form, where

Epf, gq � x
?
�Apfq,

?
�Apgqy, f, g P F :� Dp?�Aq. (2.7)

Conversely, any closed quadratic form on H arises from a non-positive definite, self-
adjoint operator on H as given in (2.7).
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Proof. Since pF , E1q is an inner product space, we need to verify completeness. Note that?�A is a non-negative definite, self-adjoint operator. Let pfnqnPN be a Cauchy sequence in
pF , E1q. This implies that pfn,

?�ApfnqqnPN is a Cauchy sequence in H�H that belongs
to the graph Gp?�Aq. Since the graph of every self-adjoint operator is closed (by Lemma
2.15), we conclude that there exists f P F such that limnÑ8 E1pf �fn, f �fnq � 0. Hence
pF , E1q is Hilbert space.

Define Eαpf, gq :� Epf, gq � αxf, gy for all f, g P F . Let tGα � pα � Aq�1 : α ¡ 0u
denote the resolvent generated by A. Using the spectral theorem, it is easy to verify that

GαpHq � F , EαpGαpfq, gq � xf, gy, for all f P H, g P F . (2.8)

Conversely, let pE ,Fq be a closed quadratic form. Since pF , Eαq is a Hilbert space for
each α ¡ 0 and for any u P H, the function v ÞÑ xu, vy where v P F is a bounded linear
functional in the Hilbert space pF , Eαq. Hence by Riesz-Fréchet representation theorem,
there exists (a unique) Gαpuq in F such that

EαpGαpuq, vq � xu, vy, for all u P H, v P F and α ¡ 0. (2.9)

We claim that tGα : α ¡ 0u is a resolvent. For the symmetry of Gα note that for each
u, v P H, we have

xGαpuq, vy (2.9)� EαpGαpuq, Gαpvqq (2.9)� xu,Gαpvqy.

To obtain the resolvent equation, note that for any u P H, v P F , we have

EαpGβpuq � pα � βqGαGβpuq, vq � EαpGβpuq, vq � pα � βqEαpGαpGβpuqq, vq
(2.9)� EαpGβpuq, vq � pα � βqxGβpuq, vy � EβpGβpuq, vq
(2.9)� xu, vy (2.9)� EαpGαpuq, vq.

Since pF , Eαq is a Hilbert space, we obtain the resolvent equation

Gαpuq � Gβpuq � pα � βqGαGβpuq, for all u P H.

For each α ¡ 0, αGα is a contraction since

∥pαGαqpuq∥ ∥Gαpuq∥ � αxGαpuq, Gαpuqy ¤ EαpGαpuq, Gαpuqq � xu,Gαpuqy ¤ ∥u∥ ∥Gαpuq∥ ,

for all u P H. For strong continuity, we use the contraction property to obtain

α ∥αGαpuq � u∥2 ¤ EαpαGαpuq � u, αGαpuq � uy (2.9)� α2xGαpuq, uy � Epu, uq � αxu, uy
¤ α ∥αGαpuq∥ ∥u∥� α ∥u∥2 � Epu, uq ¤ Epu, uq, for all u P F .

Hence
lim
αÑ8

∥αGαpuq � u∥ � 0, for all u P F .
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Since F is dense in H, for any u P H, there exists a sequence punqnPN in F such that
limnÑ8 ∥un � u∥ � 0. Now since αGα is a contraction, we have

∥αGαpuq � u∥ ¤ ∥pαGαqpu� unq∥�∥αGαpunq � un∥�∥un � u∥ ¤ 2 ∥u� un∥�∥αGαpunq � un∥ .

Let αÑ 8 and then nÑ 8 to obtain

lim sup
αÑ8

∥αGαpuq � u∥ ¤ 2 ∥u� un∥
nÑ8ÝÝÝÑ 0.

This concludes the proof of strong continuity and hence tGα : α ¡ 0u is a resolvent.

Let A be the generator of the resolvent pE 1,F 1q closed quadratic form corresponding to
the non-positive self-adjoint operator A as defined in (2.7). By (2.8), we have GαpHq � F 1

and hence

E 1pGαpuq, Gαpvqq (2.8)� xGαpuq, vy (2.9)� EαpGαpuq, Gαpvqq, for all u, v P H.

Hence E 1 and E coincide on GαpHq � GαpHq. By (2.9), GαpHq is dense in the Hilbert
space pF , Eαq. Similarly, by (2.8), GαpHq is dense in the Hilbert space pF 1, E 1αq. Since
both pE ,Fq and pE 1,F 1q are closed quadratic forms that coincide on a dense set, they
are equal. Hence the correspondence given in (2.7) is a bijection between non-positive
definite, self-adjoint operators and closed quadratic forms.

The quadratic form corresponding to the generator of a semigroup and resolvent can
be described directly as outlined below.

Exercise 2.28. Let A be a non-positive definite, self-adjoint operator on H that is the
generator of a semigroup tPt � expptAq : t ¡ 0u and resolvent tGα � pα�Aq�1 : α ¡ 0u.
Let pE ,Fq denote the closed quadratic form corresponding to A as given by Theorem
2.27. Using the spectral theorem, show the following

(a) For any f P H, the function

t ÞÑ 1

t
xpI � Ptqf, fy

is non-increasing and non-negative function on p0,8q. Furthermore the quadratic
form pE ,Fq is given by

F �
"
f P H| lim

tÓ0
1

t
xpI � Ptqf, fy   8

*
,

and

Epf, fq � lim
tÓ0

1

t
xpI � Ptqf, fy, for all f P F .

(b) For any f P H, the function

α ÞÑ αxpI � αGαqf, fy
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is non-decreasing and non-negative function on p0,8q. Furthermore the quadratic
form pE ,Fq is given by

F �
"
f P H| lim

αÒ8
αxpI � αGαqf, fy   8

*
,

and
Epf, fq � lim

αÒ8
αxpI � αGαqf, fy, for all f P F .

To summarize, there is a one-to-one correspondence between

(a) Closed non-negative definite quadratic forms (Definition 2.25)

(b) Non-positive definite self-adjoint operators (Definition 2.14)

(c) Semigroups (Definition 2.1)

(d) Resolvents (Definition 2.4).

2.4 Beurling-Deny criterion and Markov operators

We introduce the definition of Dirichlet form.

Definition 2.29. Let pX,M,mq be a σ-finite measure space. A Dirichlet form on
L2pX,mq is a quadratic form (in the sense of Definition 2.25; that is, bi-linear, sym-
metric, non-negative definite, closed, densely defined) E : F � F Ñ R on L2pX,mq such
that it satisfies the Markov property : for all u P F , we have ru :� p0 _ uq ^ 1 P F and
Epru, ruq ¤ Epu, uq.

At this point the terminology Markov property might seem strange. As we will later
justify (see Theorem 2.34), the Markov property of quadratic form is equivalent to the
Markovian property of the corresponding semigroup (or resolvent).

Definition 2.30. We say that a bounded linear map T : L2pX,mq Ñ L2pX,mq is
Markovian if for any f P L2pX,mq such that 0 ¤ f ¤ 1 m-almost everywhere, we
have 0 ¤ T pfq ¤ 1 m-a.e.

Exercise 2.31. Let T : L2pX,mq Ñ L2pX,mq be a bounded linear operator. Then show
that the following are equivalent.

(a) For any f P L2pX,mq such that 0 ¤ f ¤ 1 m-almost everywhere, we have 0 ¤ T pfq ¤
1 m-a.e.

(b) For any f P L2pX,mq such that f ¤ 1 m-almost everywhere, we have T pfq ¤ 1 m-a.e.

The following exercise gives a description of all Dirichlet forms on a finite set. This
special case of the Beurling-Deny decomposition of regular Dirichlet forms admits an
elementary proof as outlined below. We use 1A to denote the indicator of a set A.
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Exercise 2.32. Let X � t1, . . . ,mu, where n P N and let m be a measure on X with
mptiuq ¡ 0 for all i P X. Let E : F � F Ñ R be a Dirichlet form on L2pX,mq.

(i) Prove that F � L2pX,mq.
(ii) Show that for any i, j P X with i � j, we have

Ep1tiu,1tjuq ¤ 0.

Hint: Consider f � 1tiu � ϵ1tju for ϵ ¥ 0.

(iii) Show that for any i P X, we have Ep1tiu,1Xq ¥ 0. Hint: Consider f � 1X � ϵ1tiu
for ϵ ¥ 0.

(iv) Using (ii) and (iii), show that there exists cij ¥ 0, for all 1 ¤ i   j ¤ n and kpiq ¥ 0
for all i P X such that

Epf, fq �
¸

1¤i j¤n

cijpfpiq � fpjqq2 �
ņ

i�1

kpiqfpiq2, for all f P F � RX .

Lemma 2.33. Let P : L2pX,mq Ñ L2pX,mq be a bounded, linear, m-symmetric, Marko-
vian operator and let F : RÑ R be a 1-Lipschitz function (that is, |F paq � F pbq| ¤ |a� b|
for all a, b P R) such that F p0q � 0.

(i) Then for any n P N, for all pairwise disjoint sets A1, . . . , An such that mpAiq   8
for all i � 1, . . . , n, and for all a1, . . . , an P R, writing f � °n

i�1 ai1Ai
, we have

xpI � P qf, fyL2pX,mq �
ņ

i�1

µia
2
i �

1

2

¸
1¤i j¤n

αi,jpai � ajq2, (2.10)

where

αi,j :� x1Ai
, P1Aj

yL2pX,mq ¥ 0, µi � mpAiq �
ņ

k�1

αi,k ¥ 0, for all 1 ¤ i, j ¤ n.

(2.11)

(ii) For any g P L2pX,mq, then rg :� F pgq satisfies

xpI � P qrg, rgyL2pX,mq ¤ xpI � P qg, gyL2pX,mq. (2.12)

Proof. (i) Note that by the m-symmetry of P , we have αi,j � x1Ai
, P1Aj

yL2pX,mq �
xP1Ai

,1Aj
yL2pX,mq � αj,i for all 1 ¤ i, j ¤ n. By linearity of P and the symmetry

αi,j � αj,i, we have

xpI � P qf, fyL2pX,mq �
ņ

i�1

ņ

j�1

aiajxpI � P q1Ai
,1Aj

yL2pX,mq
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�
ņ

i�1

a2impAiq �
ņ

i�1

ņ

j�1

aiajαi,j

�
ņ

i�1

µia
2
i �

ņ

i�1

ņ

j�1

�
a2iαi,j � aiajαi,j

�
�

ņ

i�1

µia
2
i �

1

2

ņ

i�1

ņ

j�1

�
a2iαi,j � a2jαi,j � 2aiajαi,j

�
�

ņ

i�1

µia
2
i �

1

2

¸
1¤i j¤n

αi,jpai � ajq2.

Since 0 ¤ P1Aj
¤ 1 m-a.e. by the Markovian property of P , we have αi,j �

x1Ai
, P1Aj

yL2pX,mq ¥ 0. Since A1, . . . , An are pairwise disjoint, by the Markovian
property of P , we have

ņ

k�1

P p1Ak
q � P

�
ņ

k�1

1Ak

�
¤ 1, m-a.e.

Hence

ņ

k�1

αi,k � x1Ai
,

ņ

k�1

P p1Ak
qy ¤

»
X

1Ai
dm � mpAiq, for all 1 ¤ i ¤ n,

or equivalently µi ¥ 0 for all 1 ¤ i ¤ n.

(ii) If g is a simple function as given in (i), then the desired estimate (2.12) follows from
(2.10) and (2.11). In general, for any g P L2pX,mq, there exists a sequence of simple

function pgnqnPN such that gn
nÑ8ÝÝÝÑ g pointwise, |gn| Ò |g| pointwise, and gn

nÑ8ÝÝÝÑ
g in L2pX,mq. Since |F paq| ¤ |a| for all a P R, by the dominated convergence

theorem rgn :� F pgnq nÑ8ÝÝÝÑ rg :� F pgq in L2pX,mq. Hence by the continuity of P ,

P p rgnq nÑ8ÝÝÝÑ Prg in L2pX,mq hence by using (2.12) for simple functions (since rgn are
also simple functions) we obtain

xpI � P qrg, rgyL2pX,mq � lim
nÑ8

xpI � P q rgn, rgnyL2pX,mq

(2.10),(2.11)¤ lim
nÑ8

xpI � P qgn, gnyL2pX,mq � lim
nÑ8

xpI � P qg, gyL2pX,mq.

Let pX,B,mq be a σ-finite measure space.

Theorem 2.34. Let E : F � F Ñ R be a closed quadratic form on L2pX,mq. Let
tTt : t ¡ 0u, tGα : α ¡ 0u and A : DpAq Ñ L2pX,mq denote the associated semigroup,
resolvent and generator associated with E respectively. Then the following are equivalent:

(a) Tt is a Markovian operator for each t ¡ 0.

22



(b) αGα is a Markovian operator for each t ¡ 0.

(c) For all f P DpAq, we have xApfq, pf � 1q�y ¤ 0.

(d) For all u P F , we have ru :� p0_ uq ^ 1 P F and Epru, ruq ¤ Epu, uq.

Proof. The implications (a) ùñ (b) and (b) ùñ (a) follow easily from (2.3) and (2.6).

Next, let us show that (d) ùñ (b). Let u P F such that 0 ¤ u ¤ 1 m-a.e. and α ¡ 0.
We consider the function Ψu : F Ñ R defined by

Ψpwq :� Epw,wq � αxw � α�1u,w � α�1uy.
For all w P F , we have

Ψpwq �ΨpGαpuqq � Eαpw,wq � 2xw, uy � α�1xu, uy
� EαpGαpuq, Gαpuqq � 2xGαpuq, uy � α�1xu, uy

� Eαpw,wq � 2xw, uy � EαpGαpuq, Gαpuqq
� Eαpw,wq � 2EαpGαpuq, wq � EαpGαpuq, Gαpuqq
� EαpGαpuq � w,Gαpuq � wq,

and hence
Ψpwq ¤ ΨpGαpuqq if and only if w � Gαpuq. (2.13)

Now, define v � α�1 pp0_ pαGαpuqqq ^ 1q � p0 _ Gαpuqq ^ α�1. So by (d), we have
v P F and

Epv, vq ¤ α�2EpαGαpuq, αGαpuqq � EpGαpuq, Gαpuqq. (2.14)

Since upxq P r0, 1s for m-a.e., we have for m-a.e. x P X,∣∣vpxq � α�1upxq∣∣ � ∣∣�p0_Gαpuqpxqq ^ α�1
�� α�1upxq∣∣ ¤ ∣∣Gαpuqpxq � α�1upxq∣∣.

(2.15)
By (2.14), (2.15), we have Ψpvq ¤ ΨpGαpuqq and hence by (2.15), we conclude that
v � p0_Gαpuqq ^ α�1 � Gαpuq. Thus αGα is a Markovian operator.

The implications (a) ùñ (d) and (b) ùñ (d) follows from Lemma 2.33 (by setting
F ptq � p0_ tq ^ 1 in Lemma 2.33-(ii)) and Exercise 2.28.

Next, let us show (b) ùñ (c). By using Lemma 2.33 (by setting F ptq � t ^ 1) and
Exercise 2.28(b), we obtain that for all f P F , f ^ 1 P F and Epf ^ 1, f ^ 1q ¤ Epf, fq.
In particular for f P DpAq, we have f ^ 1 � f � pf � 1q� and hence Epf � pf � 1q�, f �
pf � 1q�q ¤ Epf, fq or equivalently,

2xApfq, pf � 1q�y � �2Epf, pf � 1q�q ¤ �Eppf � 1q�, pf � 1q�q ¤ 0.

It remains to show (c) ùñ (b). By Exercise 2.31, it suffices to show that if f P L2pX,mq
satisfies f ¤ 1 m-a.e., then αGαpfq ¤ 1 for all α ¡ 0. Fix α ¡ 0 and f as above and set
g :� αGαpfq so that g P DpAq and

αg � Apgq � αf. (2.16)
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By (2.16) and (c) xApgq, pg � 1q�y ¤ 0, we obtain xg, pg � 1q�y ¤ xf, pg � 1q�y, or
equivalently, »

tg¥1u
pg � fqpg � 1q�y ¤ 0. �

»
X

pg � fqpg � 1q�y ¥ 0.

Since f ¤ 1 m-a.e., the above inequality implies that g � αGαpfq ¤ 1 m-a.e.

In order to show the existence of heat kernel, it is useful to consider the Markovian
semigroup as an operator on LppX,mq for all 1 ¤ p ¤ 8. By the Markovian prop-
erty, for any f P L2pX,mq X L8pX,mq, we have Ptpfq P L2pX,mq X L8pX,mq with
∥Ptpfq∥8 ¤ ∥f∥8. Since pX,M,mq is a σ-finite space, there exists an increasing se-
quence of measurable sets pAnqnPN with mpAnq   8 such that X � �

nPNAn. So for any
f P L8pX,mq with f ¥ 0 m-a.e., we have f1An P L2pX,mq X L8pX,mq for all n P N.
Hence by the Markovian property of Pt, we have

∥Ptpf1Anq∥8 ¤ ∥f∥8 , Ptpf1Anq ¤ Ptpf1An�1q m-a.e., for all n P N.

Hence limnÑ8 Ptpf1Anqpxq exists for m-a.e. x P X. We set the pointwise limit as

Ptf :� lim
nÑ8

Ptpf1Anq, for all f P L8pX,mq with f ¥ 0 m-a.e.,

and Ptpfq � Ptpf�q � Ptpf�q for all f P L8pX,mq. This defines an operator Pt :
L8pX,mq Ñ L8pX,mq as a contraction operator; that is ∥Ptpfq∥8 ¤ ∥f∥8 for all
f P L8pX,mq. By the dominated convergence theorem and the symmetry of Pt in
L2pX,mq, for any t ¡ 0, g P L1pX,mq X L8pX,mq and for any f P L8pX,mq, we have»

X

gPtpfq dm �
»
X

fPtpgq dm.

Hence ∥Ptpgq∥1 � supfPL8pX,mq,∥f∥
8
�1

³
X
fPtpgq dm ¤ ∥g∥1 for all g P L1pX,mq X

L8pX,mq. Since L1pX,mq X L8pX,mq is dense in L1pX,mq, by continuous extension
we obtain a linear contraction Pt : L

1pX,mq Ñ L1pX,mq. For any p P r1,8q, by Hölder
inequality we have

∥Ptpfq∥p ¤ ∥f∥p , for all f P L1pX,mq X L8pX,mq. (2.17)

Since L1pX,mq X L8pX,mq is dense in LppX,mq, we obtain a linear contraction Pt :
LppX,mq Ñ LppX,mq for all 1 ¤ p   8.

The following lemma provides a convenient sufficient condition for the strong conti-
nuity property of a semigroup.

Lemma 2.35. Let H � L2pX,mq be a Hilbert space over R, where m is a measure on X.
Consider a family of linear operators tTt : L

2pX,mq Ñ L2pX,mq|t ¡ 0u such that each
Tt is a Markovian, contraction operator. Furthermore if L � L1pX,mq X L8pX,mq is a
dense subspace of L2pX,mq such that for any f P L, we have

lim
tÓ0

Ttpfqpxq � fpxq for m-a.e. x P X. (2.18)

Then for any u P L2pX,mq, we have limtÓ0 ∥Ttpuq � u∥2 � 0.
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Proof. Since Tt is a contraction, we have

∥Ttpfq � f∥22 � ∥Ttpfq∥22�∥f∥22�2xf, Ttpfqy ¤ 2 ∥f∥22�2xf, Ttpfqy, for all f P L2pX,mq.
(2.19)

If f P L, by (2.18) and the dominated convergence theorem (dominating function is
∥f∥8 f P L1pX,mq by the Markovian property of Tt; by Exercise 2.31 we have ∥Ttpfq∥8 ¤
∥f∥8) we have

lim
tÓ0
xf, Ttpfqy � ∥f∥22 . (2.20)

Hence by (2.19) and (2.20) we have limtÓ0 ∥Ttpfq � f∥2 � 0 for all f P L. By the density
of L in L2pX,mq and the contraction property of Tt, we have limtÓ0 ∥Ttpfq � f∥2 � 0 for
all f P L2pX,mq

2.5 Regular Dirichlet forms and Fukushima’s theorem

Definition 2.36. Let pX,M,mq be a σ-finite metric measure space, and let pE ,Fq be
a Dirichlet form on L2pX,mq. We say the Dirichlet form pE ,Fq be a Dirichlet form on
L2pX,mq is regular, if it satisfies the following properties:

(a) X is a locally compact separable metrizable topological space X, with M the associ-
ated Borel σ-field, a Radon measure m on X with full support ( a Borel measure m on
X which is finite on any compact subset of X and strictly positive on any non-empty
open subset of X).

(b) The vector space F X CcpXq is dense both in pF , E1q and in pCcpXq, ∥�∥8q.
A fundamental theorem of Fukushima the assumption of the regularity of the Dirich-

let form allows us to construct a m-symmetric Markov process on X whose semigroup
coincides with the semigroup of the Dirichlet form. Assume for the moment that the semi-
group corresponding to a Dirichlet form is defined over a space of pointwise well-defined
functions. Then the Markov property along with Riesz–Markov–Kakutani representation
theorem would then imply the existence of a sub-probability measure on X which can be
made into a transition probability on X Y ∆, where ∆ is an absorbing cemetery state.
Fukushima observed that the assumption of regularity ensures that every function in the
domain of the form can be modified to continuous outside a small set (quasi-continuous).
This allows us to overcome the difficulty of functions in L2 being not pointwise well-
defined.

Theorem 2.37 (Fukushima’s theorem). [FOT, Theorem 7.2.1] Let pE ,Fq be a regular
Dirichlet form on L2pX,mq. Let B denote the Borel σ-field on X. Let X Y t∆u de-
note the one-point compactification of X and let B∆ � B Y tB Y ∆|B P Bu. For each
x P X Y t∆u, there is a X∆ :� X Y t∆u-valued stochastic process pΩ, pFtqt¥0, tYt : t P
r0,8su, tPxuxPXYt∆uq that satisfies the following properties:

1. pFtqt¥0 is a right continuous filtration on Ω and pYtq is pFtqt¥0-adapted; that is Yt :
pΩ,Ftq Ñ pX Y∆,B∆q is measurable for each t ¥ 0.
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2. For each E P B∆ and t ¡ 0, the function x ÞÑ PxpYt P Eq is measurable on pXY∆,B∆q.
3. (Markov property) For each x P X, t, s ¥ 0 and E P B we have

PxpYt�s P E|Ftq � PYtpYs P Eq.

4. (cemetery is absorbing) Y8pωq � ∆ for all ω P Ω, P∆pYt � ∆q � 1 for all t ¥ 0. More
generally, PxpYtpωq � ∆q � 1 for all t ¥ ζpωq, where ζpωq denotes the lifetime of the
process

ζpωq :� inftt ¥ 0 : Ytpωq � ∆u.

5. (normal process) For each x P X, we have PxpY0 � xq � 1.

6. (càdlàg paths) t ÞÑ Ytpωq is right continuous on r0,8q and has left limits on p0,8q.
7. (time shift operators) For each t ¥ 0, there exists a time shift operator θt : Ω Ñ Ω

such that Ys � θt � Yt�s.

8. (strong Markov property) For any probability measure µ on pXYt∆u,B∆q and for any
pFtq-stopping time T , and for all s ¥ 0, we have

Pµ pYT�s P E|FT q � PYT
pYs P Eq, for all E P B∆.

9. The process is quasi-left continuous on p0,8q: for any sequence of pFtqt¥0 stopping
times Tn Ò T and any probability measure µ on pX Y t∆u,B∆q, we have

Pµ

�
lim
nÑ8

YTn � YT , T   8
	
� PµpT   8q.

The semigroup pP Y
t q corresponding to the process pYtq defined by P Y

t fpxq � ExrfpYtq1tt ζus
coincides with the semigroup corresponding to the Dirichlet form pE ,Fq on L2pX,mq (the
term 1tt ζu is usually dropped with the convention that every function f on X is extended
to X Y t∆u by setting fp∆q � 0).

The Markov process in Fukushima’s theorem is not quite unique because the semigroup
associated to a Dirichlet form is not well-defined pointwise. However, it is essentially
unique outside a very small set as shown in [FOT, Theorem 4.2.8]. We describe the
uniqueness below.

Let X Y t∆u-valued stochastic process pΩ, pFtqt¥0, tYt : t P r0,8su, tPxuxPXYt∆uq be a
stochastic process as above. We say that subset N of X is properly exceptional for the
Markov process tYt : t P r0,8su if N is a Borel set with mpN q � 0 and

Px ptω P Ω|Ytpωq P X∆zN , Yt�pωq P X∆zN u, for all t ¥ 0q � 1, for all x P XzN .

The process constructed in Fukushima’s theorem is unique in the following sense. Suppose
tYt : t ¥ 0u and trYt : t ¥ 0u be two Markov processes that satisfy the conclusion of
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Theorem 2.37, then there is a common properly exceptional set N for both tYt : t ¥ 0u
and trYt : t ¥ 0u such that for all x P XzN , for all t ¥ 0 and E P B, we have

PxpYt P Eq � rPxprYt P Eq.

Let us recall some basic facts about regular Dirichlet forms. First, we define the
1-capacity Cap1pAq of A � X with respect to pX,m, E ,Fq by

Cap1pAq :� inf
 
E1pf, fq

�� f P F , f ¥ 1 m-a.e. on a neighborhood of A
(
, (2.21)

where E1 :� E � x�, �yL2pX,mq as defined before. A subset N of X is said to be E-polar if
Cap1pN q � 0. For A � X and a statement Spxq on x P A, we say that S holds E-quasi-
everywhere on A (E-q.e. on A for short), or Spxq holds for E-quasi-every x P A (E-q.e.
x P A for short), if Spxq holds for any x P AzN for some E-polar N � X.

Polar sets and properly exceptional are defined using the Dirichlet form pE ,Fq and the
corresponding Markov process pYtqt¥0 respectively. These two notions are closely related
as follows: any properly exceptional set N � X for pYtqt¥0 is E-polar, c any E-polar subset
of X is included in some properly exceptional set N for pYtqt¥0.

Definition 2.38 (Quasi-continuous function). Let pE ,Fq is a regular Dirichlet form on
L2pX,mq. Let f P L2pX,mq. A quasi-continuous version of f is a (pointwise defined)

function rf : X Ñ R, rf � f m-a.e. and for ϵ ¡ 0 there exists an open set G of X such

that Cap1pGq   ϵ and rf ���
XzG

.

A crucial ingredient in the proof of Theorem 2.37 is the existence of quasicontinuous
modification of functions in F [FOT, Theorem 2.1.3].

Theorem 2.39. Let pE ,Fq be a regular Dirichlet form on L2pX,mq. Then every function
f P F admits a quasi-continuous modification.

Remark 2.40. The assumption of local compactness in the definition of regular Dirichlet
forms does not allow for some infinite dimensional examples. There is a fruitful generaliza-
tion of regular Dirichlet form that allows for such examples called quasi-regular Dirichlet
forms. We refer to [AM, CF] for more on this theory.

2.6 Irreducibility, recurrence and transience

Familiar probabilistic notions such as irreducibility, recurrence and transience can be
defined at the level of Dirichlet forms.

Let pE ,Fq be a Dirichlet form on L2pX,mq and let pPtqt¡0 denote the corresponding
semigroup.

Definition 2.41. We say that a measurable set A � X is E-invariant, if it satisfies

Ptp1Afq � 1APtpfq, m-a.e. on X for any f P L2pX,mq and any t P p0,8q.
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Equivalently, 1Au P F for any u P F and

Epu, uq � Ep1Au,1Auq � Ep1Acu,1Acuq.

We say that a Dirichlet form pE ,Fq is irreducible if mpAqmpXzAq � 0 for any E-invariant
set A.

In order to define recurrence and transience, we recall the definition of extended Dirich-
let space.

Definition 2.42 (Extended Dirichlet space). We define the extended Dirichlet space Fe

of a Dirichlet form pE ,Fq on L2pX,mq as the space of m-equivalence classes of func-
tions f : X Ñ R such that limnÑ8 fn � f m-a.e. on X for some tfnunPN � F with
limk^lÑ8 Epfk � fl, fk � flq � 0. Then the limit Epf, fq :� limnÑ8 Epfn, fnq P R exists
and is independent of a choice (why?) of such tfnunPN for each f P Fe, so that E is
canonically extended to Fe � Fe.

We say that a Markovian semigroup pPtqt¥0 is transient if for any f P L1pX,mq X
L8pX,mq with f ¥ 0-m-a.e., we have

Gf :� lim
TÑ8

» T

0

Ptpfq dm   8, m-a.e.

We say that a Dirichlet form pE ,Fq on L2pX,mq is transient if there exists a f P
L1pX,mq X L8pX,mq such that f is strictly positive m-a.e., and satisfying»

X

|u|f dm ¤
a
Epu, uq, for all u P F .

The following theorem gives equivalent definitions of transience.

Theorem 2.43. Let pE ,Fq be a Dirichlet form on L2pX,mq and let pPtqt¡0 denote the
corresponding semigroup. The following are equivalent:

1. The semigroup pPtqt¡0 is transient.

2. The Dirichlet form pE ,Fq is transient.
3. pFe, Eq is a Hilbert space.

We say that a m-symmetric Markov semigroup pPtqt¥0 is recurrent, if for all non-
negative f P L1pX,mq, we have

Gf :� lim
TÑ8

» T

0

Ptf dt P t0,8u m-a.e. on X.

We say that a Dirichlet form pE ,Fq on L2pX,mq is recurrent if 1X P Fe and Ep1X ,1Xq �
0. Analogous to Theorem 2.43, we have the following result.
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Theorem 2.44. Let pE ,Fq be a Dirichlet form on L2pX,mq and let pPtqt¡0 denote the
corresponding semigroup. The following are equivalent:

1. The semigroup pPtqt¡0 is recurrent.

2. The Dirichlet form pE ,Fq is recurrent.
The following exercise concerns the Dirichlet form for n-dimensional Bessel process.

Exercise 2.45. Let n P p0,8q. Consider the measure mpdxq � xn�1 dx on X � p0,8q.
Let F denote the set of all functions f : X Ñ R such that f is absolutely continuous on
X and satisfies»

p0,8q

�
|f 1pxq|2 � |fpxq|2

	
mpdxq �

»
p0,8q

�
|f 1pxq|2 � |fpxq|2

	
xn�1 dx   8.

Then pE ,Fq is a Dirichlet form on L2pX,mq, where

Epf, fq �
»
X

f 1pxqg1pxqmpdxq, for all f, g P F .

1. Show that pE ,Fq is irreducible.
2. Show that pE ,Fq is recurrent if n P p0, 2s and is transient if n P p2,8q.

Hint: For the case n P p2,8q, the proving the following inequality is useful

|fpxq � fpyq|2 ¤ pn� 2q�1px2�n � y2�nqEpf, fq, for all f P F , x, y P I with x   y.

3 Heat kernel

Definition 3.1. Let pE ,Fq be a regular Dirichlet form on L2pX,mq. A family tptut¡0 of
r0,8s-valued Borel measurable functions on X � X is called the heat kernel, if pt is an
integral kernel of the operator Pt for any t P p0,8q, that is, for any t P p0,8q and any
f P L2pX,mq,

Ptfpxq �
»
X

ptpx, yqfpyq dmpyq for m-a.e. x P X.

3.1 Existence of heat kernel via ultracontractivity

In general, a heat kernel need not exist (consider the semigroup consisting of identity
maps). From a probabilistic perspective, if the heat kernel exists, ptpx, yqmpdyq can be
viewed as the law of the corresponding Markov process started at x at time t. So the
existence of heat kernel can be viewed as the absolute continuity (with respect to the
reference measure m) of the law of a Markov process.

The following very general result is useful to show the existence of a heat kernel (see
[DS, Theorem 6, VI.8.6]).
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Proposition 3.2. Suppose pX,M,mq be a σ-finite, separable measure space and let
T : L1pX,mq Ñ L8pX,mq be a bounded linear operator. Then there exists a jointly mea-
surable function K : X�X Ñ R such that K P L8pX�X,m�mq with ∥K∥8 � ∥T∥1Ñ8
and

Tfpxq �
»
X

Kpx, yqfpyqmpdyq, m-a.e. for each f P L1pX,mq.

A linear operator that is bounded from L1 to L8 as above is said to be ultracontractive.
Ultracontractivity of semigroup offers a way to show the existence of heat kernel.

Proposition 3.3. Let pE ,Fq be a regular Dirichlet form on L2pX,mq and let tPt : t ¡ 0u
denote the associated semigroup. Assume that there exists C1 ¥ 0, C2 ¡ 0 and n ¥ 1 such
that we have the Nash inequality

∥f∥1�n{2
2 ¤ ∥f∥1

�
C1 ∥f∥22 � C2 ∥Epf, fq∥

�n{4
, for all f P L1pX,mq X F . (3.1)

Then the semigroup tPt : t ¡ 0u admits a heat kernel tptp�, �qu such that

ess sup
x,yPX

ptpx, yq ¤ max

�
2C1,

nC2

t


n{2
.

Proof. First we show the estimate

∥Ptpfq∥2 ¤ max

�
2C1,

nC2

2t


n{4
∥f∥1 , for all t ¡ 0 and f P L1pX,mq. (3.2)

By the density of L1 XL2 in L1 and linearity of Pt, it suffices to consider f P L1pX,mq X
L2pX,mq with ∥f∥1 � 1. By the spectral theorem, we note that Ptpfq P DpAq for all
t ¡ 0, where A is the generator and

d

dt
∥Ptpfq∥2 � 2x d

dt
Ptpfq, Ptpfqy � 2xAPtpfq, Ptpfqy � �2EpPtpfq, Ptpfqq.

Setting Ψptq :� ∥Ptpfq∥22 by the above equality and (3.1), we obtain

Ψptq1�2{n � ∥Ptpfq∥2�4{n
2

(3.1)¤ ∥Ptpfq∥4{n1

�
C1 ∥Ptpfq∥22 � C2 ∥EpPtpfq, Ptpfqq∥

�
(2.17)¤ C1Ψptq � 2�1C2Ψ

1ptq.

If Ψptq ¥ p2C1qn{2, then Ψptq1�2{n�C1Ψptq ¥ ΨptqpΨptq2{n�C1q ¥ 2�1Ψptq2{n. This leads
to the differential inequality,

Ψptq1�2{n ¤ �C2Ψ
1ptq

for all t ¡ 0 such that Ψptq ¥ p2C1qn{2 (recall that Ψ is non-increasing). This can be
written as

d

dt

�
Ψptq�2{n� � � 2

n
Ψptq�p1�2{nqΨ1ptq ¥ 2

nC2
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which implies (3.2).

Now by duality of Lp spaces and symmetry of Pt, we have ∥Pt∥1Ñ2 � ∥Pt∥2Ñ8. To
see this, note that

∥Pt∥2Ñ8 � sup
fPL2,∥f∥2�1

∥Ptpfq∥8 � sup
fPL1XL8,∥f∥2�1

∥Ptpfq∥8

� sup
fPL1XL8,∥f∥2�1,

gPL1,∥g∥1�1

»
X

gPf pfq dm � sup
fPL1XL8,∥f∥2�1,

gPL1XL8,∥g∥1�1

xPtpfq, gy

� sup
fPL1XL8,∥f∥2�1,

gPL1XL8,∥g∥1�1

xf, Ptpgqy � sup
gPL1XL8,∥g∥1�1

∥Ptpgq∥2 � ∥Pt∥1Ñ2 .

Now by the semigroup property and submultiplicativity of operator norms, we have

∥Pt∥1Ñ8 ¤ ∥∥Pt{2
∥∥
1Ñ2

∥∥Pt{2
∥∥
2Ñ8 � ∥∥Pt{2

∥∥2

1Ñ2

(3.2)¤ max

�
2C1,

nC2

t


n{2
.

The existence of heat kernel and the upper bound follows from Proposition 3.2

Example 3.4. J. Nash obtained the following inequality on Rn: there exists C ¡ 0 such
that

∥f∥1�n{2
2 ¤ C ∥f∥1

�»
Rn

|∇fpxq|2 dx

n{4

, for all f P L1pRnq XW 1,2pRnq.

Therefore Proposition 3.3, gives the upper bound ptpx, yq À t�n{2 for all x, y P Rn for
the heat kernel for Brownian motion on Rn. The advantage of this method is that it is
robust to perturbations. Consider a measurable symmetric positive definite matrix valued
function A : Rn Ñ Rn�n such that there exists Λ P r1,8q

Λ�1 ∥ξ∥2 ¤ ξtApxqξ ¤ Λ ∥ξ∥2 , for all x, ξ P Rn.

Then the Dirichlet form Epf, fq � ³
Rnp∇fpxqqtApxq∇pfq dx on W 1,2pRnq corresponding

to uniformly elliptic operator divpApxq∇p�qq also satisfies the above Nash inequality and
hence the same upper bound.

Let us quickly sketch the proof of Nash for the case when f P C8pRnq is smooth and

well-behaved at infinity [?]. The Fourier transform pfpξq � ³
Rn fpxqe�2πix�ξ dx satisfies

the Parseval’s identity
∥∥∥ pf∥∥∥

2
� ∥f∥2 and the elementary bound

∥∥∥ pf∥∥∥
8
¤ ∥f∥1. Again by

Parseval’s identity and the Fourier transform of derivative formula, we have»
Rn

|∇fpxq|2 dx �
»
Rn

p2π|ξ|q2
∣∣∣ pfpξq∣∣∣2 dξ.

Denoting ωn as the volume of unit ball in Rn, we have

∥f∥22 �
»
Rn

∣∣∣ pfpξq∣∣∣2 dξ
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¤
»
t|ξ| Ruu

∥∥∥ pf∥∥∥
8
dξ �R�2

»
t|ξ|¥Ruu

|ξ|2
∣∣∣ pfpξq∣∣∣2 dξ

¤ ∥f∥21 ωnR
n � p2πRq�2

»
Rn

|∇fpxq|2 dx.

Minimizing the above expression as a function of R, we obtain the Nash inequality when f
is smooth and well-behaved at infinity. The general case follows from the same argument
by viewing f as a tempered distribution.

3.2 Brownian motion on the Sierpiński gasket

Let V0 � tq1, q2, q3u, where

q1 :�
�
1

2
,

?
3

2



, q2 :� p0, 0q, q3 :� p1, 0q.

Let S :� t1, 2, 3u and set fj : R2 Ñ R2 as fjpxq :� 1
2
px � qjq for all j P S. Define

inductively for m P N
Vm �

¤
jPS

fjpVm�1q.

By an induction argument, Vm � Vm�1 for all m P N Y t0u. Set V� �
�8

m�0 Vm and let
K � V� denote the closure of V� in R2. Since V� �

�
jPS fjpV �q, we have

K �
¤
jPS

fjpKq.

We set Fj � fj
��
K

for all j P S. We define words of lengths with alphabet S as Wm �
Sm � w1 . . . wm : w1, . . . , wm P S for all m P N Y t0u (with W0 � tHu consisting of the
empty word). For m P N Y t0u, w � w1 . . . wm P Wm and Fw :� Fw1 � � � � � Fwm (with
FH � I) and x0 :� q1.

The approach behind constructing a Dirichlet form on K is to construct a limit of
a sequence of Dirichlet forms on Vm as m Ñ 8. Equivalently, from a probabilistic
perspective, the diffusion on Sierpiński gasket is constructed as a limit of random walks
on a sequence of graph approximations. For x, y P Vm, we say that x

m� y if and only if
x � y and x, y P FwpV0q for some w P Wm.

We define quadratic forms Epmq, E pmq : Vm � Vm Ñ R for all u, v P RVm

Epmqpu, vq � 1

2

¸
x,yPVm,

x
m�y

pupxq � upyqpvpxq � vpyqqq, E pmqpu, vq �
�
5

3


m

Epmqpu, vq. (3.3)

The reason for the re-scaling factor
�
5
3

�m
is due to the following fact. For any m P

NY t0u, u P RVm there exists a unique extension Hm.m�1puq P RVm�1 of u such that

Epm�1qpHm.m�1puq, Hm.m�1puqq � min
vPRVm�1 ,
v|Vm�u

Epm�1qpv, vq � 3

5
Epmqpu, uq. (3.4)
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The analysis can be reduced to the case m � 0. Suppose pupq1q, upq2q, upq3qq � pa, b, cq P
R3. For j, k P S with j � k, we set qkj � Fkpqjq, so that FkpKq X FjpKq � tqjku. Let
v P RV1 be an extension of u with px, y, zq :� pvpq23q, vpq31q, vpq12qq, then
Ep1qpv, vq � py�zq2�pa�yq2�pa�zq2�pb�xq2�px�zq2�pz�bq2�px�cq2�pc�yq2�py�xq2.
We need to minimize this expression as a function of x, y, z. This leads to

4x � b� z � y � c, 4y � c� x� z � a, 4z � a� y � x� b,

or equivalently,

x � a� 2b� 2c

5
, y � 2a� b� 2c

5
, z � 2a� 2b� c

5
.

For v chosen as above, it is easy to compute that Ep1qpv, vq � 3
5
Ep0qpu, uq. This completes

the proof of (3.4).

By (3.4), for any u P RV� , the sequence
�
E pmqpu��

Vm
, u
��
Vm
q
	
mPNYt0u

is non-decreasing

and hence limmÑ8 E pmqpu��
Vm

, u
��
Vm
q P r0,8s exists. Define

F� :� tu P RV� | lim
mÑ8

E pmqpu��
Vm

, u
��
Vm
q   8u, E p�qpu, uq � lim

mÑ8
E pmqpu��

Vm
, u
��
Vm
q,

for all u P F�. It is easy to see that F� is a subspace of RV� since E p�qpau, auq � a2E p�qpu, uq
for all a P R, u P RV� , and E p�qpu � vq1{2 ¤ E p�qpu, uq1{2 � E p�qpv, vq1{2 for all u, v P F�
(see Exercise 2.26). By bi-linearity we have that limmÑ8 E pmqpu��

Vm
, u
��
Vm
q P R exists for

all u, v P F�.

The following self-similarity follows easily from the definition of the energies.

Exercise 3.5. For any u P RV� , we have

E pm�1qpu��
Vm�1

, u
��
Vm�1

q � 5

3

¸
jPS

E pmqpu � Fj

��
Vm

, u � Fj

��
Vm
q, (3.5)

and hence

F� � tu P RV� : u � Fj P F� for all j P Su, E p�qpu, uq � 5

3

¸
jPS

E p�qpu � Fj, u � Fjq. (3.6)

More generally, for any m P N, we have

F� � tu P RV� : u�Fτ P F� for all τ P Wmu, E p�qpu, uq �
�
5

3


m ¸
τPWm

E p�qpu�Fτ , u�Fτ q.
(3.7)

Proposition 3.6. For all x, y P V� and u P F�, we have

|upxq � upyq|2 ¤ 400|x� y|αE p�qpu, uq (3.8)

where |�| denotes the Euclidean distance in R2 and α � log2p5{3q. In particular, every
u P F� is uniformly continuous in V� and hence admits a unique continuous extension to
its closure K � V�.
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Proof. Note that the graph corresponding to V1 with edges given by
1� has diameter 2.

Hence for any y, z P V1 there exists q P V1 such that one of hte following hold: y � z � q

or y
1� q � z or y

1� q
1� z. In all these cases, for any v P RV1 we have

|vpyq � vpzq| ¤ |vpyq � vpqq|� |vpqq � vpzq| ¤
?
2
�
|vpyq � vpqq|2 � |vpqq � vpzq|2�1{2

¤
?
2Ep1qpv, vq (3.3)�

a
6{5E p1qpv, vq. (3.9)

Now let u P F�, x P V� be arbitrary. Then there exists m P N, w � w1 . . . wm P Wm, j P S
such that Fwpqjq. Set for 1 ¤ k ¤ m, xk � Fw1...wk�1

pqjq (with FH � I for j � 0). Then
for all k � 1, . . . ,m we have

|upxk�1q � upxkqq| �
∣∣∣u � Fw1...wk�1

pF�1
w1...wk�1

pxk�1qq � u � Fw1...wk�1
pF�1

w1...wk�1
pxkqq

∣∣∣
(3.9)¤

a
6{5E p1qpu � Fw1...wk�1

��
V1
, u � Fw1...wk�1

��
V1
q1{2 ¤

a
6{5E p�qpu � Fw, u � Fwq

¤
c

6

5

�
3

5


pk�1q{2��
5

3


pk�1q ¸
τPWk�1

E p�qpu � Fτ , u � Fτ q
�1{2

(3.7)�
c

6

5

�
3

5


pk�1q{2
E p�qpu, uq1{2. (3.10)

Hence we obtain

|upq1q � upxq| ¤
m̧

k�1

|upxk�1q � upxkqq|
(3.10)¤

m̧

k�1

c
6

5

�
3

5


pk�1q{2
E p�qpu, uq1{2

¤
8̧

k�1

c
6

5

�
3

5


pk�1q{2
E p�qpu, uq1{2 ¤ 5E p�qpu, uq1{2. (3.11)

Thus for any x, y P V� and any u P F�, we have

|upxq � upyq| ¤ |upxq � upq1q|� |upyq � upq1q|
(3.11)¤ 10E p�qpu, uq1{2. (3.12)

Since for any w P Wm,m P NYt0u, FwpKq is a subset of an equilateral triangle with side
length 2�m, for any w, v P Wm with FwpKq X FvpKq � H, we have

|x� y| ¤ 2�m � 2�m � 2�m�1, for all x P FvpKq, y P FwpKq. (3.13)

Let x, y P K be arbitrary with x � y. Let n :� nx,y � maxtm P N Y t0u :
there exist v, w P Wm with x P FvpV�q, y P FwpV�q, FvpKq X FwpKq � Hu. Let q P FvpKqX
FwpKq � V�, where v, w P Wn with x P FvpV�q, y P FwpV�q as above. Then

|upxq � upyq| ¤ |upxq � upqq|� |upyq � upqq| � ∣∣u � FvpF�1
v pxqq � u � FwpF�1

w pyqq∣∣
(3.12)¤ 10

�
E p�qpu � Fv, u � Fvq1{2 � E p�qpu � Fw, u � Fwq1{2

�
¤ 10

?
2
�
E p�qpu � Fv, u � Fvq � E p�qpu � Fw, u � Fwq

�1{2
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v�w¤ 10
?
2

�
3

5


n{2��
5

3


n ¸
τPWn

E p�qpu � Fτ

��
V�
, u � Fτ

��
V�
q
�1{2

(3.7)� 10
?
2

�
3

5


n{2
E p�qpu, uq1{2. (3.14)

Let i, j P S be such that x P FvipKq, y P FwjpKq, where vi, wj P Wn�1 denotes
concatenation of words. By the maximality on n, FvipKq X FwjpKq � H and hence

|x� y| ¥
?
3
2
2�n�1 (draw a picture to see the possibilities). Hence from (3.14), we esti-

mate

|upxq � upyq|2 ¤ p200q�2�αnE p�qpu, uq ¤ 200

�
4?
3


α

|x� y|αE p�qpu, uq ¤ 400|x� y|αE p�qpu, uq.

Let F � CpKq be defined as

F :� tu P CpKq : lim
mÑ8

E pmqpu��
Vm

, u
��
Vm
q   8u � tu P CpKq : u��

V�
P F�u.

The standard Dirichlet form on Sierpińksi gasket E : F � F Ñ R is defined as

Epu, vq :� lim
mÑ8

E pmqpu��
Vm

, v
��
Vm
q, for all u, v P F .

The following properties of pE ,Fq follow easily from the construction. From (3.6), we
have the self-similarity property

F � tu P CpKq : u � Fj P F for all j P Su, Epu, uq � 5

3

¸
jPS

Epu � Fj, u � Fjq. (3.15)

By Proposition 3.6 and the density of V� in K, we have

|upxq � upyq|2 ¤ 400|x� y|αEpu, uq, for all u P F , (3.16)

where α � log2p5{3q. In particular, by (3.16), we have

R1K � ta1K |a P Ru � tu P F |Epu, uq � 0u.
For any 1-Lipschitz function F : R Ñ R and for any u P F , we have F � u P F and
EpF � u, F � uq ¤ Epu, uq. In particular, for any u P F , we have ru :� u� ^ 1 P F and
Epru, ruq ¤ Epu, uq. The subspace F is closed under pointwise multiplication (that is, an
algebra). More precisely, we have for all u, v P F , we have uv P F and (denoting by ∥�∥8,
the sup norm)

Epuv, uvq ¤ 2 ∥u∥28 Epv, vq � 2 ∥v∥28 Epu, uq. (3.17)

The estimate (3.17) follows from showing an analogous estimate for E pmq for all m P N
using the elementary inequality

ppuvqpxq � puvqpyqq2 ¤ 2upxq2pvpxq � vpyqq2 � 2vpyq2pupxq � upyqq2, for all x, y P K.
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Next, we show that F is dense subspace of the Banach space pCpKq, ∥�∥8q. Since F is an
algebra, by the Stone-Weierstrass theorem (cf. [Fol, Corollary 4.50]), it suffices to show
that F separates points and that for any x P K, there exists v P F such that vpxq � 0.
There it suffices to show the following: for any non-empty finite subset V � K, we have

tu��
V
: u P Fu � RV .

Since the inclusion tu��
V
: u P Fu � RV is trivial, it suffices to show that tu��

V
: u P Fu �

RV . To this end, it suffices to consider V with #V ¥ 2 as R1K � F . Let g P RV be
arbitrary. Choose m P N such that 21�m   minx,yPV,

x�y
|x� y|. Then for any x, y P V with

x � y and for any v, w P Wm with x P FvpKq, y P FwpKq, we have

FvpKq X FwpKq � H. (3.18)

For each x P V , pick wx P Wm such that x P FwxpKq. Define h P RVm such that for all
x P V and for all z P Vm X FwxpKq, we have hpzq � gpxq, and h is arbitrarily defined
at other vertices (such a function h exists due to (3.18)). There exists u P F such that
u
��
Vn
� Hn�1,n � � �Hm.m�1h. It is easy to see that u

��
Fwx pKq � gpxq for all x P V and hence

u
��
V
� g. This concludes the proof that in the Banach space pCpKq, ∥�∥8q, we have

F∥�∥
8 � CpKq. (3.19)

We summarize the construction of Dirichlet form for Brownian motion on the Sierpiński
gasket below.

Proposition 3.7. Let m be a Radon probability measure on the Sierpiński gasket K with
full support. Then pE ,Fq is a strongly local, regular, Dirichlet form on L2pK,mq.

Proof. Since CpKq is dense in L2pK,mq, by (3.19), we have that F is a dense subspace of
L2pK,mq. The bi-linearity, symmetry, non-negative definiteness and Markov property of
pE ,Fq follow from the corresponding properties for E pmq. Next, let us verify that pE ,Fq
is closed. To this end, let pfnqnPN be an E1-Cauchy sequence. By (3.8), for all x, y P K
and for all g P F , we have (denoting every g P F by its continuous version)

|gpxq|2 ¤ 2p|gpyq|2 � 400Epg, gqq
By averaging over y with respect to m, we have

|gpxq|2 ¤ 2p
»
K

|gpyq|2 dm� 400Epg, gqq ¤ 800E1pg, gq, for all x P K, g P F . (3.20)

By (3.20) for each x P K, pfnpxqqnPN is a Cauchy sequence and hence limnÑ8 fnpxq � fpxq
exists. Let ϵ ¡ 0 and n P N be arbitrary. Then exists N P N such that for all k, l P N
with k ^ l ¥ N , we have

E pnq
�
pfk � flq

��
Vn
, pfk � flq

��
Vn

	
¤ Epfk�fl, fk�flq ¤ E1pfk�fl, fk�flq ¤ ϵ, for all n P N.
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By letting l Ñ 8 and using the pointwise convergence of fl to f , we obtain

sup
nPN

E pnq
�
pfk � fq��

Vn
, pfk � fq��

Vn

	
¤ ϵ.

Hence f P F and limkÑ8 Epfk � f, fk � fq � 0.

It remains to show that fk converges to f in L2pK,mq. By (3.20) and supnPN E1pfn, fnq  
8, we have

sup
nPN

sup
xPK

|fnpxq|   8.

Combining this with (3.8) and supnPN E1pfn, fnq   8, we have that the sequence pfnqnPN is
uniformly boundeded and equicontinuous. Hence by the Arzela-Ascoli theorem, pfnqnÑ8
converges to f in the sup norm and hence fn

kÑ8ùùùùùñ
L2pK,mq

f . Therefore pE1,Fq is a Hilbert

space. The regularity of pE ,Fq follows from (3.19) and F � CpKq.
Let us verify the strong locality property. Let f, g P F and a P R be such that

suppmpf � a1Kq X suppmpgq � H. Then there exists n P N such that

distpsuppmpf � a1Kq, suppmpgqq � inf
xPsuppmpf�a1Kq,

yPsuppmpgq
|x� y| ¡ 2�n.

Therefore for all w P Wn, we have either FwpKq X suppmpf � a1Kq � H or FwpKq X
suppmpgq � H (or possibly both). Thus by the self-similarity property (3.15) we have

Epf, gq �
¸

wPWn

�
5

3


n

Epf � Fw, g � Fwq � 0.

Our next goal is to obtain the existence of heat kenrel for Brownian motion on the
Sierpinski gasket. To this end, we need the following general notion of energy measures.
The energy measure of a function f can be viewed as the generalization of the measure
A ÞÑ ³

A
|∇fpxq|2 dx.

Definition 3.8 (Energy measure; [FOT, (3.2.13), (3.2.14) and (3.2.15)]). Let pE ,Fq be
a strongly local, regular, Dirichlet form on L2pX,mq. The E-energy measure Γpf, fq of
f P F is defined, first for f P F XL8pX,mq as the unique (r0,8s-valued) Radon measure
on X such that»

X

g dΓpf, fq � Epf, fgq � 1

2
Epf 2, gq for all g P F X CcpXq, (3.21)

next by Γpf, fqpAq :� limnÑ8 Γ
�p�nq _ pf ^ nq, p�nq _ pf ^ nq�pAq for each A P BpXq

for f P F .

By [FOT, (3.2.13) and (3.2.14)], we have the triangle inequality for energy measure∣∣∣aΓpf, fqpBq �
a
Γpg, gqpBq

∣∣∣2 ¤ Γpf � g, f � gqpBq ¤ Epf � g, f � gq, (3.22)
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for all Borel sets B and for all f, g P F .

The self-similarity property of energy (3.15) along with the definition of energy mea-
sure leads to the self-similarity of the corresponding energy measures.

Exercise 3.9. Show that for the Dirichlet form pE ,Fq on L2pK,mq in Proposition 3.7,
the corresponding energy measure satisfies

Γpf, fq �
�
5

3


m ¸
wPWm

pFwq�pΓpf � Fw, f � Fwqq, for all m P N, and f P F . (3.23)

On the Sierpiński gasket, let Bpx, rq denote the open ball centered at x P K with
radius r ¡ 0 with respect to the Euclidean metric. We show the following Poincaré
inequality on the Sierpiński gasket.

Proposition 3.10. Let pE ,Fq be the Dirichlet form on L2pK,mq in Proposition 3.7. Set
dw � log 5{ log 2. There exists C ¡ 0, A ¥ 1 such that for all x P K, 0   r ¤ 1, f P F , we
have »

Bpx,rq

∣∣fpyq � fBpx,rq
∣∣2mpdyq ¤ Crdw

»
Bpx,Arq

dΓpf, fq, (3.24)

where fBpx,rq � 1
mpBpx,rqq

³
Bpx,rq fpzqmpdzq.

Proof. Since mpFwpKqq � 3�m and diampFwpKqq � 2�m for all w P Wm,m P N, there
exists C1 ¡ 0 such that

C�1
1 rdf ¤ mpBpx, rqq ¤ C1r

df , for all x P K, 0   r ¤ 1. (3.25)

Therefore for all x P K, 0   r ¤ 1, f P F ,»
Bpx,rq

∣∣fpyq � fBpx,rq
∣∣2mpdyq ¤ C1r

df sup
y,zPBpx,rq

|fpyq � fpzq|2. (3.26)

Fix any y, z P Bpx, rq and f P F . Let n P N Y t0u be largest integer such that there
exist v, w P Wn such that y P FvpKq, z P FwpKq and FvpKq X FwpKq � H. Let q P
FvpKq XFwpKq , v � w. Similar to the proof of Proposition 3.6 (see (3.10)), we estimate

|fpyq � fpzq|2 ¤ 2
�
|fpyq � fpqq|2 � |fpzq � fpqq|2�

(3.8)¤ 800 pEpf � Fv, f � Fvq � Epf � Fw, f � Fwqq
(3.23)¤ 800

�
3

5


n

Γpf, fq pFvpKq Y FwpKqq (3.27)

As explained in the proof of Proposition 3.6,
?
3
2
2�n�1 ¤ |y � z|   2r and hence by (3.26)

and (3.27), we obtain the desired Poincaré inequality (3.24) with A � 1� 8?
3
as

FvpKq Y FwpKq � Bpx, r � 2�nq � Bpx, p1� 8{
?
3qrq.
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For a function f P L1pK,mq and r ¡ 0, by fr : K Ñ R we denote the function

frpxq :�
 
Bpx,rq

f dm � 1

mpBpx, rqq
»
Bpx,rq

f dm, for all x P K.

The following estimate is called the pseudo-Poincaré inequality. The difference from
Poincaré inequality is that the integrals involved are global.

Lemma 3.11. There exists C ¡ 0 such that for all f P F , r ¡ 0, we have»
K

|fpxq � frpxq|2mpdxq ¤ CrdwEpf, fq,

where dw :� log2 5.

Proof. It suffices to assume 0   r   1 as the case r ¥ 1 follows from Proposition 3.10.
By Jensen’s inequality and the volume estimate (3.25), we have»

K

|fpxq � frpxq|2mpdxq À
»
K

 
Bpx,rq

|fpxq � fpyq|2mpdyqmpdxq

À r�df

»
K

»
K

|fpxq � fpyq|21tdpx,yq¤rumpdyqmpdxq (3.28)

Let N denote a r-net (a maximal r-separated subset; any two distinct points in N are
at least distance r apart and any set that strictly contains N is not r-separated). The
maximality of N implies that¸

nPN
1Bpn,rq ¥ 1K ,

¸
nPN

1Bpn,2rqpxq1Bpn,2rqpyq ¤ 1tdpx,yq¤ru, for all x, y P K.

The balls Bpn, 2Arq, where A is the constant in (3.24) do not overlap too much in the
sense that

°
nPN 1Bpn,2Arq À 1K (due to the volume estimate (3.25)). Hence by (3.28), for

all f P F , we have»
K

|fpxq � frpxq|2mpdxq À
»
K

 
Bpx,rq

|fpxq � fpyq|2mpdyqmpdxq

À r�df

»
K

»
K

|fpxq � fpyq|21tdpx,yq¤rumpdyqmpdxq

À r�df
¸
nPN

»
Bpn,2rq

»
Bpn,2rq

|fpxq � fpyq|2mpdyqmpdxq

À
¸
nPN

»
Bpn,2rq

∣∣fpxq � fBpn,2rq
∣∣2mpdxq

(3.24)

À rdw
¸
nPN

»
K

1Bpn,2Arq dΓpf, fq À rdwEpf, fq. (3.29)
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We obtain a Nash inequality for the Brownian motion on the Sierpiński carpet.

Proposition 3.12. There exists C1, C2 P p0,8q such that

∥f∥1�n{2
2 ¤ ∥f∥1

�
C1 ∥f∥22 � C2 ∥Epf, fq∥

�n{4
, for all f P L1pK,mq X F ,

where n � 2df{dw � 2 log 5{ log 3.

Proof. Let 0 ¤ r ¤ 1 and f P L1pK,mq X F . Then by Lemma 3.11,

∥f∥2 ¤ ∥f � fr∥2 � ∥fr∥2 À rdw{2Epf, fq1{2 � ∥fr∥2 . (3.30)

By Cauchy-Schwarz inequality, for all f P L1pX,mq, r P p0, 1s, we have

∥fr∥22 ¤ ∥fr∥8 ∥fr∥1 À r�df ∥f∥1 ∥fr∥1 .

By Jensen’s inequality, we have

∥fr∥1 ¤
»
frpxqmpdxq À r�df

»
K

»
K

fpyq1tdpx,yq rumpdyqmpdxq �
»
K

fpyqmpdyq ¤ ∥f∥1 .

Combining the above tow estimates, we obtain

∥fr∥2 À r�df {2 ∥f∥1 , for all f P L1pK,mq and r P p0, 1s.

Thus by (3.30), we obtain

∥f∥2 ¤ ∥f � fr∥2�∥fr∥2 À rdw{2Epf, fq1{2�r�df {2 ∥f∥1 , for all f P F X L1pK,mq and r P p0, 1s.

Optimizing over r P p0, 1s yields the desired estimate.

Hence the using the Nash inequality above, we obtain the existence of heat kernel and
an upper bound using Proposition 3.3.

Proposition 3.13. Let m denote the self-similar measure on the Sierpiński gasket K
such that mpFwpKqq � 3�k for all k P N and w P Wk. Then the Dirichlet form pE ,Fq on
L2pK,mq admits a heat kernel. There exists C ¡ 0 such that

ptpx, yq ¤ C

tdf {dw
, for all t P p0, 1s, x, y P K, where df � log2p3q, dw � log2p5q.

As mentioned earlier in (1.4) sharp two-sided bounds on the heat kernel was obtained
by Barlow and Perkins and is referred to as sub-Gaussian heat kernel bounds [BP].
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