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1 Introduction

This project is a detailed study of the Dirac monopole from two different perspectives, roughly the physical
and mathematical perspectives. The Dirac monopole is a hypothesized magnetic monopole, the magnetic
equivalent of the electric point charge, as defined and studied by Paul Alain Maurice Dirac in [2], in 1931.
As of yet, no magnetic monopole has been discovered in nature, so it remains a purely theoretical object.
Nonetheless, its theory is important both in physics and mathematics. The implications of the existence
of a single magnetic monopole are aesthetically pleasing, to say the least. This would make Maxwell’s
equations completely symmetric, which is quite elegant, but this is not all! In his 1931 paper, Dirac showed
that the existence of a magnetic monopole would force electric charge to be quantized. This is the physical
perspective, which we take up in §2. Taking the mathematical point of view, we note that the Dirac monopole
is just an example of a more general notion. It is arguably the simplest nontrivial example of a connection
on a principal fibre bundle. We will describe these objects and show exactly how the monopole fits the
description in §3. The study of the Dirac monopole from this dual perspective is a stepping stone towards
a deeper understanding of both physics and geometry.

2 Magnetic Monopole and Dirac Quantization

In this section, we are working in Euclidean space R3, endowed with all of its familiar structure: a standard
basis and inner product. Elements of R3 will be written in bold font. TR3 denotes the tangent bundle of
R3 and T ∗R3, the cotangent bundle. This last vector space is also denoted by Ω1(R3) when we are thinking
of cotangent vectors as differential 1-forms, i.e. in the context of exterior algebra, with a wedge product
and exterior derivative; these functors are described more generally for manifolds in §3.1. There is a natural
isomorphism between R3×R3 and TR3, and there is a natural isomorphism between TR3 and Ω1(R3). These
are known as the ”musical isomorphisms”. Whereas elements of R3 will be denoted by letters written in
bold font, their musically isomorphic copies will be denoted by the same letters without the bold font.

A magnetic monopole generates (and in fact is described by) a magnetic field B on R3 \ {0} given by

B =
g

ρ2
eρ,

where g is a constant called the strength of the monopole, ρ is the distance from the origin and eρ is a unit
vector pointing away from the origin. Using the traditional Cartesian coordinates,

B =
g

ρ3
(x, y, z).

Under the natural isomorphism, this vector maps to the 1-form

B =
g

ρ3
(x dx+ y dy + z dz) .

Now B is described as a pseudovector in physics. This means that B changes orientation when R3 is acted
on by an element of O(3) \ SO(3), and this happens because the magnetic field is obtained from a cross
product. We take this to mean that B should really be a 2-form. On Rn, the isomorphism between k-forms
and (n− k)-forms is given by the Hodge star operator. If n = 3, the isomorphism is

?dx = dy ∧ dz, ?dy = dz ∧ dx, ?dz = dx ∧ dy

We write then B = ?B, and record the appropriate expression for the magnetic field of the monopole:

B =
g

ρ3
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy) . (1)



Before pursuing further the study of the magnetic monopole, let us quickly recall Maxwell’s equations
and rewrite them using differential forms.

2.1 Electromagnetism using Differential Forms

Maxwell’s equations are classically written as a collection of 4 facts about the curl and divergence of the
electric and magnetic fields E and B. These are

∇×E = −∂B∂t ∇ ·E = ρ

∇×B = J + ∂E
∂t ∇ ·B = 0

where ρ is charge per unit volume and J is current per unit area. Since E is integrated over paths, it can
be seen as a 1-form E and, similarly, B can be replaced by a 2-form B. Then dE is a 2-form corresponding
to ∇× E and dB is a 3-form corresponding to ∇ ·B. In order to write the divergence of E and the curl of
B using the differential operator d, we must make use of the Hodge star ?. Then, Maxwell’s equations take
the form

dE = −∂B∂t d ? E = ρ

d ? B = J + ∂?E
∂t dB = 0

In the above equations, J , the current density, is a 2-form.
This process of synthesis can be taken one step further by viewing the electric and magnetic fields as

2-forms on Minkowski spacetime and combining them into one single 2-form. If A = (A1,A2,A3) is a vector
potential for B, i.e. if B = ∇×A, and if φ is a potential for E, we may simplify Maxwell’s equations further
by introducing the Faraday tensor: first, define the 1-form A = φdt + Aµdx

µ (note that we are using the
Einstein summation convention here, so Aµdx

µ = A1dx
1 + A2dx

2 + A3dx
3). We agree that dx0 = dt and

A0 = φ, and we define

F =
1

2
Fµνdx

µ ∧ dxν = dA.

(Again, the Einstein summation convention is used above). Componentwise, with the notation ∂µ = ∂
∂xµ ,

Fµν = ∂µAν − ∂νAµ. (2)

This last equation is perhaps the one most commonly encountered in physics. It is immediate from it that
the field strngth F is invariant under a gauge transformation A 7→ A + df , for any f ∈ C∞(R4). In matrix
form, the Faraday tensor is

F =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


and Maxwell’s equations become

dF = 0

d ? F = j,

where the current j is now a 3-form.

2.2 Topology of the Monopole

We use de Rham cohomology to discuss the topology of the monopole. Given a manifold M , its kth de Rham
cohomology group is denoted Hk

dR(M). The main facts that we need are that the cohomology groups are in
fact finite-dimensional vector spaces, hence determined by their dimension, and that de Rham cohomology
is homotopy-invariant, i.e. that manifolds of the same homotopy type have the same cohomology groups. It



will turn out that all of the manifolds we consider here have the homotopy type of a sphere. We record then
these cohomology groups:

Hi
dR(Sn) '

{
R if i = 0, n

0 otherwise

Let us now return to the monopole, with magnetic field given by (1). It is easy to see that B satisfies
Maxwell’s equations:

dB = g

(
∂

∂x

(
x

ρ3

)
+

∂

∂y

(
y

ρ3

)
+

∂

∂z

(
z

ρ3

))
dx ∧ dy ∧ dz = 0

However, such a magnetic field cannot be the curl of a smooth vector field A defined on R3 \ {0}. In terms
of differential forms, there is no smooth globally defined 1-form A on R3 \ {0} such that B = dA. To see
this, proceed by contradiction: integrate B over the surface of a ball of radius r centred at the origin. On
the one hand, since B is radially symmetric,∫

∂Br(0)

B =
g

r2
· 4πr2 = 4πg.

On the other hand, applying Stokes’ theorem,∫
∂Br(0)

B =

∫
∂Br(0)

dA =

∫
∅
A = 0.

In other words, B is a closed and non-exact 2-form, i.e. an element of the vector space H2
dR(R3 \ {0}).

What is this vector space? R3 \ {0} has the homotopy type of S2, seen by the retraction along radial lines
emanating from the origin. Hence H2

dR(R3 \ {0}) ' R and B represents a generator for this vector space. It
is thus due to the topology of R3 \ {0} that B is not exact. The field B is singular at ρ = 0, which makes it
topologically interesting. It is possible to write B as dA locally, for a 1-form A defined on a subspace of R3

which is homotopy equivalent to a point. For example, on the sets U+ = R3 \ {(0, 0, z) ∈ R3 : z ≤ 0} and
U− = R3 \ {(0, 0, z) ∈ R3 : z ≥ 0}, we may define corresponding 1-forms

A+ =
g

ρ(z + ρ)
(−y dx+ x dy)

A− =
g

ρ(z − ρ)
(−y dx+ x dy)

The above 1-forms are well defined and smooth on their respective domains, because the singularities of the
forms on their domains are removable: 1/(ρ(z+ρ)) = 1/2z2 if x = y = 0 and z > 0 and 1/(ρ(z−ρ)) = 1/2z2

if x = y = 0 and z < 0. It is easy to compute the exterior derivatives of the above forms to arrive at

dA+ = g

2ρ(z + ρ)− (z y
2

ρ + 2y2)− (z x
2

ρ + 2x2)

ρ2(z + ρ)2

 dx ∧ dy

+ g

(
y(ρ+ z2

ρ + 2z)

ρ2(z + ρ)2

)
dy ∧ dz + g

(
x(ρ+ z2

ρ + 2z)

ρ2(z + ρ)2

)
dz ∧ dx

= g

(
z

ρ3
dx ∧ dy +

x

ρ3
dy ∧ dz +

y

ρ3
dz ∧ dx

)
= B

Similarly,

dA− = g

(
z

ρ3
dx ∧ dy +

x

ρ3
dy ∧ dz +

y

ρ3
dz ∧ dx

)
= B

On the overlap, we have

A+ −A− =
g

ρ

(
−2ρ

z2 − ρ2

)
(−y dx+ x dy) = 2g

(
−y dx+ x dy

x2 + y2

)
.



Clearly, A+ − A− is closed. Is it exact? We can proceed as above, and integrate these forms over a path,
say the unit circle in the xy-plane. Call it S1. This circle is the boundary of two hemispheres of S2 ⊂ R3,
which we denote by H+ and H−. H+ ⊂ U+, so A+ is defined everywhere on H+. Similarly, A− is globally
defined on H−. Suppose now that A+ − A− = df , for some f : U+ ∩ U− → R. Applying Stokes’ theorem,
we have ∫

S1

A+ −A− =

∫
S1

df =

∫
∂S1

f = 0.

But we must also have∫
S1

A+ −A− =

∫
∂H+

A+ −
∫
∂H−

A− =

∫
H+

dA+ +

∫
H−

dA− =

∫
S2

B = 4πg.

Hence there is no f such that A+ − A− = df , and the 1-form A+ − A− is a generator of H1
dR(U+ ∩ U−) '

H1
dR(S1) = R. It is, however, locally exact. If we define θ = arctan

(
y
x

)
, then

A+ −A− = 2g dθ.

The above formula is well defined for θ 6= 0, i.e. for y 6= 0.
It is important to note at this point that the forms A± are independent of ρ. In terms of the polar

coordinates (ρ, ϕ, θ), where ρ and θ are as above and ϕ = arctan

(√
x2+y2

z

)
,

A+ = g(1− cosϕ)dθ

A− = −g(1 + cosϕ)dθ.

It follows that we can consider A± as 1-forms on S2. The exterior derivative of these 1-forms is

dA+ = dA− = g sinϕ dϕ ∧ dθ.

Note that this is simply the area form on S2 (with a factor of g). This is thus the expression for the magnetic
field of a monopole restricted to S2.

Remark. It may seem bothersome that the above discussion of the magnetic monopole uses the specific
vector potentials A+ and A−. These are ansätze and, therefore seem to not describe the monopole with
appropriate generality. Are there other interesting vector potentials which we are neglecting by working
with A+ and A−? We remark that it is indeed a general description of the magnetic field of a monopole
and its vector potentials and that any other choice of vector potentials would yield the same results. Let
a, b ⊂ R3 be Dirac strings, i.e. nonintersecting (and not selfintersecting) paths in R3 starting at 0 and
extending to infinity, and let Ua = R3 \ a, Ub = R3 \ b. On Ua and Ub there exist 1-forms Aa and Ab such
that dAa = dAb = B. This follows from topological considerations. The de Rham cohomology is homotopy
invariant, in the sense that manifolds with the same homotopy type have the same de Rham cohomology.
We have

H2
dR(Ua) = H2

dR(point) = 0,

so, since B is closed, its restriction to Ua or Ub must also be exact. This gives the existence of Aa and Ab.
Now, on the overlap Ua∩Ub, d(Aa−Ab) = 0. The overlap is homotopy equivalent to S1, so H1

dR(Ua∩Ub) = R,
a 1-dimensional vector space. Therefore the 1-form Aa−Ab differs from A+−A− by a scalar multiple. This
shows that there aren’t many ”different” vector potentials satisfying dA = B.

We further remark that we do not lose generality by considering 1-forms locally defined on S2. If U ⊂ S2

and A ∈ Ω1(U) is such that dA = ι∗B, where ι : S2 ↪−→ R3 is the inclusion map, then we might as well extend
A on a larger subspace of R3 \ 0. For example, if π : R3 − 0→ S2 is the retraction given by π(x) = x/‖x‖,
then we may extend A to the space π−1(U).

2.3 Quantization

To finalize our study of the monopole, let us derive the Dirac quantization condition. This was originally
done by Dirac in [2], but we follow the work of Wu & Yang [7], who do it in more modern terms, i.e. using



gauge theory. These two approaches are equivalent [1]. The paper by Wu & Yang contains a very readable
account of gauge theory, the Aharanov-Bohm effect and the Dirac monopole.

To understand the derivation of the quantization condition in the paper by Wu & Yang, it is only
necessary to understand the concept of gauge transformations. Maxwell’s equations are invariant under the
transformation A 7→ A′ = A+ dα, where A is the electromagnetic 1-form from equation (2) above and α is
any 0-form. This is a gauge transformation and a field of charge e transforms accordingly:

ψ 7→ ψ′ = e−ieαψ

We turn back to the 1-forms A+ and A− defined above. These new forms are related by a gauge
transformation with gauge S = e−2igeθ:

Aa = Ab + 2gdθ = A− +
i

e
S−1dS.

Such a gauge transformation is allowed iff S is single-valued [7], i.e. iff 2ge ∈ Z. Thus we arrive at the Dirac
quantization condition.

3 Geometry

The monopole magnetic field is defined on R3 \ {0}, or, if we want to work in spacetime, it is defined on R4

with the worldline of the monopole removed. This space is homotopy-equivalent to S2. This motivation for
studying circle bundles over S2 is to be found in Trautman [6]. To the author’s knowledge, this is the first
paper in which a general construction of solutions to the Yang-Mills equations is given in geometric terms. To
begin understanding the construction, we develop these ”geometric terms”. S1 ⊂ C is diffeomorphic to the
Lie group U(1). A manifold with the additional structure that it is locally homeomorphic (or diffeomorphic)
to a Cartesian product with U(1) is an example of a principal fibre bundle. We now turn to the theory of
principal fibre bundles and connections on them.

3.1 Preliminaries

We need first to fix some notation.

3.1.1 Manifolds

In this section, we work with smooth manifolds. The reference is Naber’s textbook [3]. As with Rn, TpM
denotes the tangent space of a manifold M at a point p ∈ M , TM denotes the tangent bundle of M
and Ωk(M) denotes the C∞(M)-module of k-forms. We point out that TpM is both the vector space of
derivations at p, as well as the collection of differentiable curves γ : R→M satisfying γ(0) = p (to be precise,
TpM is the set of equivalence classes of curves passing through p at t = 0, where γ ∼ σ if γ′(0) = σ′(0)). We
will use both the notion of a linear map and that of a differentiable curve when dealing with tangent vectors
on a manifold. Γ(TM) is the collection of smooth sections of TM , i.e. it is the set of vector fields on M . If
X ∈ Γ(TM) is a vector field, we will use the notation X|p or Xp to denote the element X(p) ∈ TpM .

An example of a smooth manifold, which is the only example we need here, is Sn, the n-sphere. Sn

is embedded in Rn+1. It is standard to describe Sn using polar coordinates in the following fashion: if
(x1, . . . , xn+1) ∈ Sn ⊂ Rn+1, then we put

x1 = cos(ϕ1)

x2 = cos(ϕ2) sin(ϕ1)

. . .

xn = cos(ϕn) sin(ϕn−1) . . . sin(ϕ1)

xn+1 = sin(ϕn) . . . sin(ϕ1),

where ϕ1 ∈ [0, 2π) and ϕj ∈ (0, π), for j ≥ 2.



Another description of Sn is via stereographic projection. Let x ∈ Sn ↪−→ Rn+1 be a point which is not
(0, . . . , 0, 1) (we call this the north pole). Map it to Rn via

x = (x1, . . . , xn+1) 7→
(

x1

1− xn+1
, . . . ,

xn

1− xn+1

)
.

The inverse map takes a point x = (x1, . . . xn) ∈ Rn and maps it to Sn ↪−→ Rn+1 via

x 7→ 1

1 + ‖x‖2
(
2x1, . . . , 2xn, ‖x‖2−1

)
.

It is easy to check that the above maps are inverses of each other and that they are diffeomorphisms between
Rn and Sn with the north pole removed. We may also use the stereographic projection to identify Sn with
the one-point compactification of Rn. We will require this identification in the case n = 2.

3.1.2 Lie Groups

A Lie group G is a group and a smooth manifold such that the group operations are smooth with respect to
the differentiable structure. Common examples include the general linear groups (denoted by GLn(F ) for
F = R,C or H), as well as the orthogonal groups and special orthogonal groups. In this paper, Lie groups
will be matrix Lie groups, i.e. subgroups of GLn(F ). If g ∈ G, we let Lg be the map x 7→ gx and Rg, the
map x 7→ xg. Lg and Rg are called, respectively, left and right translation by g. To every Lie groupG, we
can associate an algebra called its Lie algebra. This is the vector space of left-invariant vector fields, together
with the Lie bracket operation, and it is denoted by g. More precisely, X ∈ g is a vector field such that, for
all g ∈ G,

Xg = (Lg)∗xe.

3.1.3 Bundles

Definition 1. A Principal Fibre Bundle (also referred to as a PFB) is a quadruple (P,B, π,G), where P
and B are smooth manifolds, π : P → B is a smooth surjective map, G is a Lie group acting smoothly on P
from the right, and the following conditions are satisfied:

1. The action preserves fibres: for all p ∈ P and g ∈ G,

π(p · g) = π(p).

This means that for every x ∈ B, the fibre π−1({x}) contains the orbit of x under G.
2. The bundle is locally trivial: for every x ∈ B, there is a neighbourhood V of x and a diffeomorphism

Ψ : π−1(V )→ V ×G of the form Ψ(p) = (π(p), ψ(p)). Such a pair (V,Ψ) is called a (local) trivialization of
the principal bundle at x.

3. Furthermore, the group action is compatible with the bundle structure: if x ∈ B, (V,Ψ) is a trivialization
at x, then, with the same notation as above,

ψ(p · g) = ψ(p) · g

for all g ∈ G.

If the rest is clear from context, we denote a principal fibre bundle (P,B, π,G) by G → P → B. (The first
arrow in this notation denotes the action of G on P , whereas the second is the projection π).

Condition 3. in the above definition implies that we may, in a sense, identify the fibre of a PFB with the
group G:

Lemma 1. Let (P,B, π,G) be a PFB and let p ∈ P . The fibre containing p is the orbit of p under the
action of G. This is seen by working with trivializations and using property (3) of the definition.



The main example of a prinicipal fibre bundle is the Hopf bundle S1 → S3 → S2, which will be described
in detail below. It is clear that S3 is not homeomorphic to S2 × S1. One way to prove this cleanly is by
noticing that the fundamental group of S3 is trivial, whereas the fundamental group of S2×S1 is isomorphic
to Z. To try to capture the geometry of this bundle, we need an object which will describe the manner in
which the fibres S1 are glued together to form S3, very loosely speaking. This object is the connection on a
principal fibre bundle, and it is defined below, using also the notion of fundamental vector field.

Definition 2. Let G be a Lie group with identity e. Denote its Lie algebra by g. Recall that (a) g denotes
the set of left-invariant vector fields on G and (b) the Lie algebra of a Lie group is isomorphic to the tangent
space to G at the identity. Lg : G→ G is the map x 7→ gx. (a) says that

g = {X ∈ Γ(TG) : ∀g ∈ G, X|g= (Lg)∗X|e}.

Incidentally, this also provides us with the idea for an isomorphism between TeG and g (recall that Lg is an
isomorphsim). We write this as g ' TeG. Suppose P is a smooth manifold and σ : P ×G→ P is a smooth
right-action on P given by σ(p, g) = p·g. Define σp : G→ P by σp(g) = σ(p, g) = p·g. Given A ∈ g, define the
fundamental vector field corresponding to A to be A# ∈ Γ(TP ) given by A#

p = (σp)∗e(Ae), where Ae = A(e).
We define the map Adg : G→ G by h 7→ ghg−1 and the map adg : g→ g by adg(A) = (Adg)∗e(Ae). In our
case, every Lie group is a matrix Lie group, i.e. G ⊂ GLn(F ) for F = R,C or H.

Remark. We note that the notation used for the adjoint representation is non-standard. It is however the
one which appears in [3].

Definition 3. Let (P,B, π,G) be a principal bundle. Let σ : P ×G→ P denote the (right) action and let
σp : G→ P be as in the above definition amd σg : P → P be defined by σg(p) = σ(p, g). A connection on a
principal fibre bundle, is a g-valued 1-form ω on P such that

(σg)
∗ω = adg−1 ◦ ω

ω(A#) = A
(3)

Remark. (1) In practice, we use the identification of g ' TeG, so ωp is a map from TpP into TeG and the
second equation becomes ω(A#) = Ae.

Remark. (2) If the Lie group G is a matrix Lie group, then the map adg is conjugation by the element g.
Explicitly, if G is a subgroup of GLn(F ), g is its Lie algebra, g ∈ G and X ∈ g, then

adg(X) = gXg−1.

This can be seen by thinking of tangent vectors as differentiable curves, so that

adg(X) =
d

dt
(Adg(exp(tXe)))

∣∣∣∣
t=0

,

where exp is the usual exponential map of a Lie algebra into its Lie group. We have Adg(exp(tXe)) =
exp(tgXeg

−1). Taking the derivative yields the result.

3.2 The Hopf Bundle S1 → S3 → S2

We will see now that the Dirac monopole is just an instance of the more general idea of a connection on a
principal fibre bundle.

Consider the PFB (S3, S2, π, U(1)), where S3 = {(z1, z2) ∈ C2 : |z1|2+|z2|2= 1}, U(1) = {g ∈ C : |g|= 1},
and the action σ : S3 × U(1)→ S3 is given as follows:

σ((z1, z2), g) = (z1g, z2g),

for all (z1, z2) ∈ S3 and g ∈ U(1).

Definition 4. This principal fibre bundle is called a Hopf bundle.



The Dirac monopole is an instance of a connection in the following (almost) precise sense:

Theorem 1. Let UN , US denote the sphere S2 with the north and south pole removed, respectively (the
north pole is the point (0, 0, 1) and the south pole is (0, 0,−1)). There is a connection ω on the PFB

S1 → S3 π−→ S2, and there are sections sN : UN → S3, sS : US → R3, which are in some sense natural, and
such that

s∗Nω = A+ s∗Sω = A−,

where A± are the 1-forms on S2 which define the Dirac monopole, and are defined in section 3.2. The sense
in which the sections sN , sS are natural will be made precise in the following discussion of the bundle.

This is the main theorem of this project. We will give the proof in the following subsections.

3.2.1 The Hopf Fibration S3 π−→ S2

The space S2 is obtained from S3 by taking the quotient by the action of U(1), which yields the complex
projective space CP1 (this is isomorphic to S2), and identifying CP1 with S2. We will give this map explicitly,
in three different guises, but first, we establish the isomorphism between S2,C ∪ {∞} and CP1.

Lemma 2. S2 ' C ∪ {∞} ' CP1.

Proof. First, let σ : C ∪ {∞} → CP1 be given by

σ(z) =

{
[z, 1] if z 6=∞
[1, 0] if z =∞

.

Note: [z, 1] = [z(|z|2+1)−1/2, (|z|2+1)−1/2]. This definition of σ is preferable if we want the coset to be
represented by an element of S3. σ−1 is obviously

σ−1([z1, z2] =

{
z1

z2 if z2 6= 0

∞ if z2 = 0

σ−1 is well defined because, if [z1, z2] = [w1, w2], then there is some λ ∈ C such that z1 = w1λ and z2 = w2λ,
hence z1/z2 = w2/w2.

Thus C ∪ {∞} ' CP1. The isomorphism S2 ρ−→ C ∪ {∞} is obtained by extending the stereographic
projection of S2 (with a point removed) onto R2 ' C to a map of the whole sphere onto C ∪ {∞} ' CP1.
This is (see section (2.1)):

ρ(x1, x2, x3) =

{
1

1−x3 (x1 + ix2) if x3 6= 1

∞ if x3 = 1

For z ∈ C ∪ {∞}, the inverse is

ρ−1(z) =

{
1

1+|z|2 (z + z, i(z − z), |z|2−1) if z 6=∞
(0, 0, 1) if z =∞

Finally, let’s compose these maps to obtain the explicit isomorphism τ : S2 → CP1:

τ(x1, x2, x3) = (σ ◦ ρ)(x1, x2, x3) =


[

x1+ix2√
2(1−x3)

, 1−x3√
2(1−x3)

]
if x3 6= 1

[1, 0] if x3 = 1

The inverse is τ−1 = ρ−1 ◦ σ−1:

τ−1([z1, z2]) =

{
1

|z1|2+|z2|2 (z1z2 + z1z2, i(z1z2 − z1z2), |z1|2−|z2|2) if z2 6= 0

(0, 0, 1) if z2 = 0

τ−1 is well-defined because σ−1 is.



Note that we can also see τ−1 as a map from C2 into S2. In this case, τ−1|S3= π, where π is the Hopf
fibration. We look at this map more closely now.

First, the quotient of S3 by the action of U(1) is given by (z1, z2) 7→ [z1, z2] ∈ CP1. This is easy to see:
on the one hand, for all z1, z2 ∈ C and g ∈ U(1), (z1, z2) · g 7→ [z1g, z2g] = [z1, z2], i.e. elements of the same
orbit under the action of U(1) map to the same point in CP1; on the other hand, if [z1, z2] = [w1, w2] ∈ CP1

and (z1, z2), (w1, w2) ∈ S3, then there must be an element λ ∈ C such that (w1, w2) = (z1, z2) · g. It is clear
that λ must belong to U(1) so that (w1, w2) is in the orbit of (z1, z2). Hence S3/∼ is isomorphic to CP1.

Second, we apply the isomorphism CP1 → S2. Composing these maps, we obtain the Hopf map π : S3 →
S2.

1. If S3 = {(z1, z2) ∈ C2 : |z1|2+|z2|2= 1}, then

π(z1, z2) = (z1z2 + z1z2,−iz1z2 + iz1z2, |z1|2−|z2|2)

2. If S3 = {(x1, x2, x3, x4) ∈ R4 : (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1}, then

π(x1, x2, x3, x4) = (2x1x3 + 2x2x4, 2x2x3 − 2x1x4, (x1)2 + (x2)2 − (x3)2 − (x4)2)

3. Finally, we may express S3 using spherical coordinates: let z1, z2 ∈ C be such that |z1|2+|z2|2= 1. If
we write z1 = r1e

iξ1 and z2 = r2e
iξ2 , then r21 + r22 = 1, so there is an angle φ such that r1 = cos φ2

and r2 = sin φ
2 . For cosmetic reasons, we use the variables χ = ξ1 + ξ2 and θ = ξ1 − ξ2. Then

S3 = {(cos φ2 e
i
2 (χ+θ), sin φ

2 e
i
2 (χ−θ)) ∈ C2 : φ ∈ [0, π], θ, χ ∈ R}, and

π(φ, θ, χ) = (sinφ cos θ, sinφ sin θ, cosφ).

This last expression of the Hopf fibration is especially revealing: given spherical coordinates (φ, θ, χ) on S3,
we may consider the first two as describing the base manifold, that is S2, and the third as giving the angle
in a circle which is a fibre of π.

3.2.2 An Explicit Connection

Let us now find a very concrete example of a connection on the Hopf bundle. To do this, let ω′ be a
U(1)-valued 1-form on R4, so ω′ = i(ω1dx

1 + ω2dx
2 + ω3dx

3 + ω4dx
4), and consider the form ω = ι∗ω′,

where ι : S3 ↪→ R3 is the inclusion map. Let p ∈ S3 (so p = (p1, p2) ∈ C2 is such that |p1|2+|p2|2= 1),
and let Xp ∈ TpS

3. Since S3 is a submanifold of C2, TpS
3 is in fact a vector subspace of TpC2, which

is canonically identified with C2. Additionally, the tangent space of a product manifold is isomorphic to
the product of the tangent space of the manifolds (see Trautman 1970). Hence we identify Xp with a pair
(X1

p1 , X
2
p2) ∈ Tp1C × Tp2C, or with a pair (X1

p1 , X
2
p2) ⊂ C2. The use of the same letters should not cause

confusion. If ω is a connection on S3, we must have

ωp·g((σg)∗Xp) = adg−1(ωp(Xp)) = g−1ωp(Xp)g = ωp(Xp), for all g ∈ U(1).

Lemma 3. (σg)∗p(X
1
p1 , X

2
p2) = (X1

p1g,X
2
p2g).

Proof.

Finally, to compute very concretely, let’s write g = eit = cos t + i sin t for some t ∈ R, X1
p1 = v1 + iw1,

X2
p2 = v2 + iw2, and p1 = q1 + ir1, p2 = q2 + ir2, for some real numbers v1, w1, v1, w2, q1, r1, q2, r2. Then,

by the previous lemma,

(σg)∗p(X
1
p1 , X

2
p2) = (X1

p1 · g,X2
p2 · g)

= ((v1 cos t− w1 sin t) + i(v1 sin t+ w1 cos t), (v2 cos t− w2 sin t) + i(v2 sin t+ w2 cos t)),

so the equation
ωp·g((σg)∗p(X

1
p1 , X

2
p2) = ωp(X

1
p1 , X

2
p2)



is equivalent to

ω1|p·g(v1 cos t− w1 sin t)+ω2|p·g(v1 sin t+ w1 cos t)

+ω3|p·g(v2 cos t− w2 sin t) + ω4|p·g(v2 sin t+ w2 cos t)

= ω1|pv1 + ω2|pw1 + ω3|pv2 + ω4|pw2

With some thought and reorganisation, the following ansatz seems like it might solve the above:

ω = i(−x2dx1 + x1dx2 − x4dx3 + x3dx4).

This is indeed the case. An easy calculation shows that, with this 1-form, the left hand side is:

− (q1 sin t+ r1 cos t)(v1 cos t− w1 sin t) + (q1 cos t− r1 sin t)(v1 sin t+ w1 cos t)

− (q2 sin t+ r2 cos t)(v2 cos t− w2 sin t) + (q2 cos t− r2 sin t)(v2 sin t+ w2 cos t)

= (−q1 sin t cos t− r1 cos2 t+ q1 cos t sin t− r1 sin2 t)v1

+ (q1 sin2 t+ r1 cos t sin t+ q1 cos2 t− r1 sin t cos t)w1

+ (−q2 sin t cos t− r2 cos2 t+ q2 cos t sin t− r2 sin2 t)v2

+ (q2 sin2 t+ r2 cos t sin t+ q2 cos2 t− r2 sin t cos t)w2

= − r1v1 + q1w1 − r2v2 + q2w2

= ω1|pv1 + ω2|pw1 + ω3|pv2 + ω4|pw2

What we have just shown is that the connection ω is right-equivariant, i.e. that σ∗gω = adg−1 ◦ ω. This is
thus a good candidate for a connection. What is left to prove is that it acts trivially on fundamental vector
fields. First note that, equivalently, we may express the connection in terms of the complex variables as

ω = i · Im(z1dz1 + z2dz2),

since, if we put z1 = x1 + ix2 and z2 = x3 + ix4, we obtain the same 1-form:

z1dz1 + z2dz2 = (x1dx1 + x2dx2 + x3dx3 + x4dx4) + i(−x2dx1 + x1dx2 − x4dx3 + x3dx4).

Let now Ae = iα ∈ iR ' TeU(1) ' U(1). The fundamental vector field A# ∈ Γ(TS3) is defined by

A#
p (f) = (σp)∗eAe(f) = Ae(f ◦ σp).

Now, a differential curve corresponding to Ae is γ : R → S1 given by γ(t) = eiαt (it can be easily checked
that γ(0) = e and γ′(0) = iα). Thus, if p = (p1, p2) ∈ S3 and p1 = v1 + iw1, p2 = v2 + iw2, as above, then

A#
p (f) =

d

dt
(f ◦ σp ◦ γ)(t)

∣∣∣∣
t=0

=
d

dt
f(p1eiαt, p2eiαt)

∣∣∣∣
t=0

=
∂

∂z1
f(p1) · iαp1 +

∂

∂z2
f(p2) · iαp2,

where ∂
∂zi f is the partial derivative of f with respect to the ith complex coordinate. The last step is simply

an application of the chain rule. We have therefore that

A#
p = iα

(
p1

∂

∂z1

∣∣∣∣
p1

+ p2
∂

∂z2

∣∣∣∣
p2

)
.

We apply the 1-form ω to this tangent vector to obtain

ωp(A
#
p ) = i · Im(iα(p1p1 + p2p2)) = i · Im(iα(|p1|2+|p2|2)) = iα = A.

In the last step we have used the fact that p = (p1, p2) ∈ S3. Thus ω satisfies both conditions required in the
definition of a connection. Now that we have a connection, we can do concrete computations. Additionally,
we now know that our whole discussion isn’t void, since at least one connection exists. ω is known in the
literature as the natural connection form on the Hopf bundle. (Trautman 1977)



3.2.3 Canonical Cross-sections

One last notion we require before achieving the geometric description of the monopole is that of cross-section:

Definition 5. Given a PFB G→ P
π−→ B and a trivialization (V,Ψ), we define the canonical cross-section

associated to V to be the function s : V → π−1(V ) given by s(x) = Ψ−1(x, e).
Note that canonical cross-sections are indeed sections, since they are right-inverses of the projection:

π ◦ s = idV .

These will turn out to be the natural sections on the Hopf bundle, alluded to in Theorem 1 above.
In the example of the bundle S1 → S3 π−→ S2, the canonical cross-sections are obtained by first trivializing

S2 on the neighbourhoods UN = S2 − {(0, 0, 1)} and US = S2 − {(0, 0,−1)}. It is best done by identifying
S2 with CP1 and working in the projective space. The isomorphism τ maps the charts UN , US to charts on
CP1:

τ(UN ) = V2 = {[z1, z2] ∈ CP1 : z2 6= 0}
τ(US) = V1 = {[z1, z2] ∈ CP1 : z1 6= 0}

The charts V1, V2 cover CP1. The idea for obtaining the trivialization is to normalize an element [z1, z2]
of Vk by dividing by zk. Consider the map Φk : Vk × S1 → π−1(Vk) given by

Φk([z1, z2], g) = (z1, z2) · (zk)−1|zk|g.

This map is well defined. It is straightforward to check that the map Ψk : π−1(Vk)→ Vk × S1 given by

Ψk(z1, z2) = ([z1, z2], zk/|zk|)

is the inverse of Φk. Since this map is both a left and right inverse and they are both smooth, it follows that
(Vk,Ψk) is a trivialization of the Hopf bundle (with base manifold CP1). We can now define the canonical
cross-sections associated to these trivializations. Let’s first compute Ψ−1([z1, z2], e), for (z1, z2) ∈ S3, and

use the Euler angles z1 = cos φ2 e
i
2 (χ+θ), z2 = sin φ

2 e
i
2 (χ−θ):

Ψ−11 ([z1, z2], e) =

(
|z1|, z

2|z1|
z1

)
=

(
cos

φ

2
, sin

φ

2
e−iθ

)
Ψ−12 ([z1, z2], e) =

(
z1|z2|
z2

, |z2|
)

=

(
cos

φ

2
eiθ, sin

φ

2

)
If (x1, x2, x3) = (sinφ cos θ, sinφ sin θ, cosφ) is a point on S2, then sN : UN → S3 and sS : US → S3 are
given by composing Ψ−1k and τ :

sN (sinφ cos θ, sinφ sin θ, cosφ) = Φ2(τ(x1, x2, x3), e) =

(
cos

φ

2
, sin

φ

2
e−iθ

)
sS(sinφ cos θ, sinφ sin θ, cosφ) = Φ1(τ(x1, x2, x3), e) =

(
cos

φ

2
eiθ, sin

φ

2

)
If we want to work on R4 instead, we compose with the inclusion ι : §3 ↪→ R4:

ι ◦ sN (sinφ cos θ, sinφ sin θ, cosφ) =

(
cos

φ

2
, 0, sin

φ

2
cos θ,− sin

φ

2
sin θ

)
ι ◦ sS(sinφ cos θ, sinφ sin θ, cosφ) =

(
cos

φ

2
cos θ, cos

φ

2
sin θ, sin

φ

2
, 0

)
3.2.4 Proof of Theorem 1

We are now in a good position to prove theorem 1.



Proof. With all the pieces laid out, this is now just an exercise in computing pull-backs. Recall that the
1-form we wish to pull back is ω = ι∗(−x2dx1 + x1dx2 − x4dx3 + x3dx4). (We omitted the factor of i for
ease of notation). So we wish to compute s∗N (ι∗ω) = (ι ◦ sN )∗ω and s∗S(ι∗ω) = (ι ◦ sS)∗ω. Let’s fix a point
(φ, θ) on a chart of S3. Then the pull-back is

(ι ◦ sN )∗ω|(φ,θ)

= (−0) · d(cos
φ

2
) + (cos

φ

2
) · d(0)− (− sin

φ

2
sin θ) · d(sin

φ

2
cos θ) + (sin

φ

2
cos θ) · d(− sin

φ

2
sin θ)

= sin
φ

2
sin θ

(
1

2
cos

φ

2
cos θ dφ− sin

φ

2
sin θ dθ

)
− sin

φ

2
cos θ

(
1

2
cos

φ

2
sin θ dφ+ sin

φ

2
cos θ dθ

)
= −1

2
(1− cosφ)dθ

Similarly,

(ι ◦ sS)∗ω|(φ,θ)=− (cos
φ

2
sin θ) · d(cos

φ

2
cos θ) + (cos

φ

2
cos θ) · d(cos

φ

2
sin θ)

=− (cos
φ

2
sin θ) ·

(
−1

2
sin

φ

2
cos θ dφ− cos

φ

2
sin θ dθ

)
+ (cos

φ

2
cos θ) ·

(
−1

2
sin

φ

2
sin θ dφ+ cos

φ

2
cos θ dθ

)
=

1

2
(1 + cosφ)dθ

These are just the expressions of the vector potential for a Dirac monopole with strength g = 1
2 . This proves

Theorem 1.

We have achieved our stated purpose of giving a description of the Dirac monopole as the pullback to
the base manifold of a connection, that is a 1-form, defined on the total space of a principal fibre bundle.

4 Concluding Remarks

Several remarks are in order. These are mostly paths which still merit to be pursued, for they are interesting
extensions of the ideas in this project.

The Hopf bundle described in this paper is not the only one. As hinted, there are also Hopf bundles
obtained by considering spheres in F 2, where F = R,H, or even O, the octonions. By a sphere in F 2, we
mean a set S = {(q1, q2) ∈ F 2 : 〈q1, q2〉 = 1}, where 〈·, ·〉 is the usual inner product. There is an action of
the unit-norm elements of F on S. Taking the quotient by this action we obtain a Hopf bundle for every
normed division algebra. Applying the same procedure as in this project to the quaternionic Hopf bundle
yields a solution to the Yang-Mills equation known as the BPST instanton, since it was first discovered in a
paper by authors Belavin, Polyakov, Schwartz and Tyupkin [3].

In [6], the natural connection on the Hopf bundle is obtained from the Riemann metric on S3. Trautman
finds other solutions to the Yang-Mills equations by looking at the Riemann metric on more general spheres.
It would be interesting to understand this procedure more deeply and see how it applies to the even more
general settings alluded to at the end of Trautman’s paper.
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